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Preface

Rapid developments in machine learning 
solutions and adoption across various sec-
tors of industry enable the learning of com-
plex models of real-world problems from 
observed (training) data through systemic 
solutions in different fields. Significant time 
and effort are required to create effective ma-
chine learning models and achieve reliable 
outcomes. The main project concepts can be 
grasped by building robust data pipelines 
and analyzing and visualizing data using 
feature extraction, selection, and modeling. 
Therefore, the extensive need for a reliable 
machine learning solution involves a devel-
opment framework that not only is suitable 
for immersive machine learning modeling 
but also succeeds in preprocessing, visualiza-
tion, system integration, and robust support 
for runtime deployment and maintenance 
setting. Python is an innovative program-
ming language with multipurpose features, 
simple implementation and integration, an 
active developer community, and an ever-
increasing machine learning ecosystem, con-
tributing to the expanding adoption of ma-
chine learning.

Intelligent structures and data-driven en-
terprises are becoming a reality, and the de-
velopments in techniques and technologies 
are enabling this to happen. With data being 
of utmost importance, the market for ma-
chine learning and data science practitioners 
has never been larger than it is now. In fact, 
the world is facing a shortage of data scien-
tists and machine learning experts. Arguably 
the most demanding job in the 21st century 
involves developing some significant exper-
tise in this domain.

Machine learning techniques are comput-
ing algorithms, including artificial neural 
networks, k-nearest neighbor, support vector 
machines, decision tree algorithms, and deep 
learning. Machine learning applications are 
currently of great interest in economics, secu-
rity, healthcare, biomedicine, and biomedical 
engineering. This book describes how to use 
machine learning techniques to analyze the 
data in these fields.

The author of this book has a great deal 
of practical experience in the implementa-
tion of real-world problems utilizing Python 
and its machine learning ecosystem. Practi-
cal Machine Learning for Data Analysis Using 
Python aims to improve the skill levels of 
readers and qualify them to create practical 
machine learning solutions. Moreover, this 
book is a problem solver’s guide for building 
intelligent real-world systems. It offers a sys-
tematic framework that includes principles, 
procedures, practical examples, and code. 
The book also contributes to the critical skills 
needed by its readers to understand and 
solve various machine learning problems.

This book is an excellent reference for 
readers developing machine learning tech-
niques by using real-world case studies in 
the Python machine learning environment. 
It focuses on building a foundation of ma-
chine learning knowledge to solve different 
case studies from different fields in the real 
world, including biomedical signal analysis, 
healthcare, security, economy, and finance. 
In addition, it focuses on a broad variety of 
models for machine learning, including re-
gression, classification, clustering, and fore-
casting.
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This book consists of seven chapters. 
Chapter 1 gives an introduction to data 
analysis using machine learning techniques. 
Chapter 2 provides an overview of data pre-
processing such as feature extraction, trans-
formation, feature selection, and dimension 
reduction. Chapter 3 offers an overview of 
machine learning techniques such as naïve 
Bayes, k-nearest neighbor, artificial neural 
networks, support vector machines, deci-
sion tree, random forest, bagging, boosting, 
stacking, voting, deep neural network, re-
current neural network, and convolutional 
neural networks, for forecasting, predic-
tion, and classification. Chapter 4 presents 
classification examples for healthcare. It 
includes electrocardiogram (ECG), electro-
encephalogram (EEG), and electromyogram 
(EMG) signal-processing techniques com-
monly used in the analysis and recognition 
of biomedical signals. In addition, it presents 
several medical data classifications, such as 
human activity recognition, microarray gene 
expression data classification for cancer de-
tection, breast cancer detection, diabetes de-
tection, and heart disease detection. Chapter 
5 considers several applications, including 
intrusion detection, phishing website de-
tection, spam e-mail detection, credit scor-
ing, credit card fraud detection, handwrit-
ten digit recognition, image classification, 
and text classification. Chapter 6 provides 
regression examples, such as stock market 

analysis, economic variable forecasting, elec-
trical load forecasting, wind speed forecast-
ing, tourism demand forecasting, and house 
prices prediction. Chapter 7 includes several 
examples related to unsupervised learning 
(clustering).

The main intent of this book is to help 
a wide range of readers to solve their own 
real-world problems, including IT profes-
sionals, analysts, developers, data scientists, 
and engineers. Furthermore, this book is in-
tended to be a useful textbook for postgrad-
uate and research students working in the 
areas of data science and machine learning. 
It also formulates a basis for researchers who 
are interested in applying machine learning 
methods to data analysis. In addition, this 
book will help a broad readership, includ-
ing researchers, professionals, academics, 
and graduate students from a wide range 
of disciplines, who are beginning to look for 
applications in biomedical signal analysis, 
healthcare data analysis, financial and eco-
nomic data forecasting, computer security, 
and more.

Executing the code examples provided in 
this book requires Python 3.x or higher ver-
sions to be installed on macOS, Linux, or Mi-
crosoft Windows. The examples throughout 
the book frequently utilize the essential librar-
ies of Python, such as SciPy, NumPy, Scikit-
learn, matplotlib, pandas, OpenCV, Tensor-
flow, and Keras, for scientific computing.
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1
Introduction

1.1 What is machine learning?

With improved computation power and storage of computers, our era became the “age 
of information” or the “age of data.” Additionally we must analyze big data and create intel-
ligent systems by utilizing the concepts and techniques from artificial intelligence, data science, 
data mining, and machine learning. Of course, most of us have learned these terms and realize 
that “data is the new oil.” The most important task that organizations and businesses have 
employed in the last decade to utilize their data and understand and employ this informa-
tion is for making better informed decisions. In fact, with big developments in technology, a 
successful environment has been created around fields such as machine learning, artificial in-
telligence, and deep learning. Researchers, engineers, and data scientists have created frame-
works, tools, techniques, algorithms, and methodologies to achieve intelligent systems and 
models that can automate tasks, detect anomalies, perform complex analyses, and predict 
events (Sarkar, Bali, & Sharma, 2018).

Machine learning is defined as computational techniques utilizing the experience to en-
hance performance or to achieve precise predictions. The experience denotes the previous infor-
mation available to the learner that is naturally received from the electronic data recorded and 
made available for investigation. This data might be in the shape of digitized human-labeled 
training sets or other kinds of information collected by interacting with the ecosystem. In all 
situations, the data size and quality are critical for the accomplishment of the predictions made 
by the predictor. Machine learning is composed of creating competent and precise prediction 
algorithms. As in other fields of computer science, crucial measures of the quality of these meth-
ods are their space and time complexity. Nevertheless, in machine learning, the concept of 
sample complexity is needed to assess the sample size necessary for the algorithm to learn a group 
of notions. Usually, theoretical learning guarantees a method based on the complication of the 
model classes studied and the amount of training endured. As the performance of a learning 
technique is based on the data and features employed, machine learning is characteristically 
associated with statistics and data analysis. Typically, learning algorithms are data-driven 
techniques merging important concepts in computer science with concepts from probability, 
statistics, and optimization. Furthermore, these kinds of applications relate to broad categories 
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of learning problems. The main types of learning problems are classification, regression, rank-
ing, clustering, and dimension reduction (Mohri, Rostamizadeh, & Talwalkar, 2018).

In classification, a category is assigned to every item. The number of categories can be small 
or large depending on the type of problem. In regression, a real value is predicted for every 
item. Stock value prediction or variations of economic variable prediction are regression prob-
lems. In regression problems, the penalty for an incorrect prediction is based on the value of 
the difference between the predicted and true values, whereas in the classification problem, 
there is characteristically no concept of closeness among different categories. In ranking, items 
are ordered according to certain measures. In clustering, items are partitioned into homoge-
neous regions. Clustering is generally employed to analyze big data sets. For instance, in case 
of social network analysis, clustering algorithms are used to identify “communities” inside 
large groups of people. Manifold learning, or dimensionality reduction, is used to transform an 
initial representation of items into a lower-dimensional representation while keeping some 
properties of the initial representation. The aims of machine learning are to achieve precise 
predictions for unseen data and design robust and effective algorithms to yield these predic-
tions, even for big-scale problems (Mohri et al., 2018).

Machine learning employs right features to create accurate models, which accomplish the 
right tasks. Actually, features define the relevant objects in our domain. A task is an abstract 
representation of a problem to be solved related to those domain objects. The general form of 
this is classifying them into two or more classes. Most of these tasks can be characterized as 
mapping from data points to outputs. This mapping or model is itself formed as the output of 
a machine learning method by utilizing training data (Flach, 2012). We will discuss tasks and 
problems, which can be solved by utilizing machine learning. No matter what type of ma-
chine learning models encountered, they are designed to solve only a small number of tasks 
and utilize only a few numbers of features.

Most of the time, the knowledge or insight we are trying to extract from raw data will not 
be understandable by looking at the data. Machine learning converts data into information. 
Machine learning sits at the intersection of statistics, engineering, and computer science and 
is frequently seen in other fields. It can be used in a variety of fields, such as finance, economy, 
politics, geosciences, and medicine. It is a tool to solve different problems. Any field that 
requires understanding and working with data can benefit from machine learning methods. 
There are many problems in which the solution is not deterministic. Hence, we need statistics 
for these problems (Harrington, 2012).

This book presents an example-based approach to cover different practices, concepts, and 
problems related to Machine Learning. The main idea is to give readers enough knowledge 
on how we can solve the Machine Learning problems, and how we can use the main building 
blocks of Machine Learning in data analysis. This will enable the reader to learn about how 
Machine Learning can be utilized to analyze data.

1.1.1 Why is machine learning needed?

Human beings are the most intelligent creatures in this world. They can define, create, ass-
es, and solve complex problems. The human brain is still not explored completely, and there-
fore artificial intelligence has still not beaten human intelligence in various ways. In view of 
what you have studied so far, although the conventional programming model is rather good 
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and domain expertise and human intelligence are absolutely vital components in making 
data-driven decisions, machine learning is needed to produce precise and quicker decisions. 
The machine learning technique considers data and anticipated outputs or results, if any, and 
utilizes the computer to create the program, which can be identified as a model. This model 
can then be employed in the future to make required decisions and produce anticipated out-
puts from new data. The machine attempts to employ input data and anticipated outputs to 
learn characteristic patterns from the data, which can eventually help create a model similar 
to a computer program that may help in making data-driven decisions in the future (classify 
or predict) for novel input data points by utilizing the learned information from past experi-
ence. This will be clear when we consider a real-world problem, such as handling infrastruc-
ture for a decision support company. In order to solve a problem with machine learning, we 
should implement the following steps.

•	 Utilize	device	data	and	logs	to	obtain	sufficient	historical	data	in	a	certain	data	
warehouse.

•	 Determine	key	data	attributes,	which	might	be	beneficial	for	creating	a	model.
•	 Monitor	and	record	device	attributes	and	their	behavior	for	long	time	intervals,	which	

contain normal device behavior and anomalous device behavior or outliers.
•	 Use	these	input	and	output	pairs	with	any	particular	machine	learning	method	to	create	

a model that learns characteristic design patterns and detects consistent output.
•	 Rearrange	this	model	by	utilizing	unseen	values	of	device	attributes	to	predict	if	a	

specific device is working normally or of it may produce a prospective output. Hence 
when a machine learning model is developed, it can be organized easily to create an 
intelligent framework around it such that devices cannot only be monitored reactively 
but potential problems can be proactively detected and even fixed before any issue 
appears.

In fact, the workflow debated earlier with the series of stages required for creating a ma-
chine learning model is considerably more complicated than how it has been depicted. How-
ever, this is just to highlight and help you think more theoretically rather than technically in 
the case of machine learning processes and also show that you need to change your thinking 
from the conventional ways toward a more data-driven manner. The magnificence of ma-
chine learning is that it is never domain constrained and you can employ algorithms to elimi-
nate obstacles covering several areas, industries, and businesses. Similarly, it is not necessary 
to employ output data points to construct a model; occasionally input data is adequate for 
unsupervised learning (Sarkar et al., 2018).

1.1.2 Making data-driven decisions

Extracting crucial insights or information from the data is the main goal of companies and 
business organizations investing deeply in a good workforce like artificial intelligence and 
machine learning. The concept of data-driven decisions is not novel and has been used for 
decades in the field of statistics, management information systems, and operations research 
to improve effectiveness of decisions. Obviously, it is easier to talk than to implement since 
we can clearly utilize data to make any perceptive decisions. Additional imperative char-
acteristics of this problem is that generally we utilize the power of intuition or reasoning to 



4 1. Introduction

 

make decisions based on what we have experienced in the past. Our brain is a powerful ele-
ment that helps us recognize people in images, understand what our colleagues or friends are 
saying, decide whether to accept or refuse a business transaction, and so on. Our brain does 
most of the thinking for us. This is precisely why it is hard for machines to learn and solve 
problems such as computing tax rebates or loan interests. Remedies to these problems are 
to utilize different approaches such as data-driven machine learning techniques to improve 
the decisions. Although data-driven decision making is of vital meaning, it also needs to be 
implemented at scale and with efficiency. The main idea of utilizing artificial intelligence or 
machine learning techniques is to automate tasks or procedures by learning specific patterns 
from the data (Sarkar et al., 2018).

Nowadays, the majority of the workforce in developed countries is moving from manual 
labor to knowledge work. Events are much more uncertain at the moment; “minimize risk” job 
assignments, such as “maximize profits” and “find the best marketing strategy,” are all too 
common. The knowledge accessible from the World Wide Web creates the work of knowl-
edgeable employees even tougher. Producing wisdom from all the data with our job in mind 
turns out to be a more crucial talent. With so many economic activities reliant on information, 
we cannot afford to be lost in the data. Machine learning helps to analyze all the data and 
extract valuable information (Harrington, 2012).

1.1.3 Definitions and key terminology

It is common practice to calculate something and sort out the significant portions later. 
The items that should be assessed are called features or attributes and form an instance 
(Harrington, 2012). One of the crucial steps in machine learning is the feature extraction. 
Accordingly, the data to be processed, composed of several points, and characteristic and 
informative features can be extracted by employing different feature extraction techniques. 
These informative and characteristic parameters describe the behavior of the data, which 
may specify a precise achievement. Highlighting informative and characteristic features can 
describe data in better ways. These features can be extracted employing diverse feature ex-
traction algorithms, which are another step in data analysis to make simpler the succeeding 
stage for classification (Graimann, Allison, & Pfurtscheller, 2009). It is crucial to deal with 
a smaller number of samples that express suitable features of the data to accomplish better 
performance. Features are generally collected into a feature vector by transforming data into 
a related feature vector known as feature extraction. Characteristic features of data are exam-
ined by a data classification structure, and based on those distinctive features, the class of the 
data is decided (Subasi, 2019a).

The extracted features of the problem are not enough to completely explain the nature of 
data for many cases. Particularly, while describing the problem, employing a suboptimal or 
redundant feature set creates this kind of problem. Instead of seeking better features, it is better 
to assume that there is a nonlinear relation between input and output of the given system. For 
instance, an automatic diagnostic system for disease detection that uses biosignal wave forms 
employs the processed data as input. The aim is to study the relationship between the informa-
tion that is given to the system and associated with disease. After training, when we give new 
data to the system, it will identify the correct disease. These kinds of tasks can be accomplished 
by machine learning techniques easily (Begg, Lai, & Palaniswami, 2008; Subasi, 2019b).
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There are several computational intelligence techniques, such as supervised learning, un-
supervised learning, reinforcement learning, and deep learning. Among these learning para-
digms, the most studied one is the supervised learning technique that is based on function 
estimation. A set of examples is given to the supervised learning formulas by an external 
supervisor with the class label. The system identifies the hidden relationship between the 
sample set and desired output. After this training phase, it is easy to predict the output for 
unknown examples. Reinforcement learning, stochastic learning, and risk minimization are 
some paradigms in supervised learning (Begg et al., 2008; Subasi, 2019b).

Classification is one of the duties in machine learning. For instance, we want to differentiate 
epileptic EEG signals from a normal EEG signal. We must use the EEG equipment and then 
hire a neurologist (EEG expert) to analyze the EEG signal taken from a subject. This might be 
expensive and cumbersome, and the expert neurologist can only be in one place at a time. We 
can automate this process by attaching the EEG equipment to a computer to identify the epi-
leptic patient. How do we then decide if a subject has epilepsy or not? This task is termed as 
classification, and there are numerous machine learning techniques that are good at classifica-
tion. The class in this example is the epileptic or normal. If we decided on a machine learning 
technique to utilize for classification, the next step is to train the algorithm or allow it to learn. 
In order to train the algorithm, it must be fed quality data known as a training set. A training 
set is the set of training examples that is used to train the machine learning algorithms. Each 
training instance has numerous features and one target variable (class). The target variable 
is utilized to predict with the machine learning technique. In classification the target variable 
takes on a nominal value, and in the task of regression its value can be continuous. The target 
variable (class) is known in the training set. The machine learns by discovering some relation-
ship between the features and the target variable. The target variable is the types or classes, 
so it can be reduced to take nominal values. In the classification problem the target variables 
(classes) are assumed to be a finite number of classes. To test machine learning algorithms, usu-
ally a part of the training set of data (separate dataset), called a test set, is utilized. Firstly, the 
training example is given as input to the program during the machine learning process. Then, 
the test set is given as an input to the program. The target variable for each instance from the 
test set is not given to the program, and the program finds to which class each instance be-
longs. The target variable or class that the training sample belongs to is then compared to the 
predicted value, and the performance of the algorithm is evaluated (Harrington, 2012).

A canonical problem of epileptic seizure detection will be presented as a running example 
to demonstrate some elementary definitions and to define the employment and assessment 
of machine learning techniques in practice. Epileptic seizure detection involves the issue of 
learning to automatically classify EEG signals as either normal or epileptic.

Examples: Items or instances of data employed for learning or assessment. In our epilepsy 
problem, these examples are related to the recording of EEG signals employed for training 
and testing.

Features: The set of attributes, generally represented as a vector, that are related to an ex-
ample. In the case of EEG signals, some related features can include the mean value, standard 
deviation, mean power, skewness and kurtosis of the signal, and so on.

Labels: Values or categories given to examples. In classification problems, examples are 
given to specific categories, for instance, the normal and epileptic categories in a binary clas-
sification problem. In regression, items are assigned real-valued labels.



6 1. Introduction

 

Training sample: Examples utilized to train a learning algorithm. In the EEG problem, the 
training sample is composed of a set of EEG signals along with their related labels. The train-
ing sample differs for diverse learning scenarios.

Validation sample: Examples employed to adjust the parameters of a learning method when 
dealing with labeled data. Learning methods naturally have one or more tunable parameters, 
and the validation sample is utilized to choose suitable values for these model parameters.

Test sample: Examples employed to assess the performance of a learning technique. The test 
sample is a part of the training and validation set and is not available in the learning stage. 
In the epilepsy problem, the test sample is composed of a recording of EEG signals for which 
the learning algorithm should predict labels based on features. These predictions are then 
compared with the labels of the test sample to evaluate the performance of the algorithm.

Loss function: A function that calculates the difference, or loss, between the predicted label 
and the true label.

Now the learning stages of the epilepsy problem are defined. We can begin with a given 
group of labeled instances. First the data is randomly partitioned into a training set, a valida-
tion set, and a test set. The size of each of these sets is based on a different consideration. For 
instance, the amount of signal kept for validation is based on the number of adjustable pa-
rameters of the algorithm. Moreover, once the labeled set is comparatively small, the amount 
of training data is generally selected to be larger than that of the test set, as the learning 
performance is directly based on the training sample. Then, relevant features of the exam-
ples should be extracted. This is a crucial step in the design of machine learning solutions. 
Valuable and informative features can successfully guide the learning algorithm, whereas 
deprived or uninformative ones can be deceptive. Even though the selection of the features is 
crucial, it is left to the user. This selection reflects the user’s prior knowledge about the learning 
task, which in practice can have a dramatic effect on the performance of learners. Now, the 
selected features are used to train the learning algorithm by fixing diverse values of its adjust-
able parameters. For each value of these parameters, the algorithm chooses a different model 
out of the model set. Among them the model achieving the best performance on the valida-
tion set is chosen. In the final stage, utilizing the chosen model, the labels of the examples can 
be predicted in the test set. The performance of the classifier is assessed by utilizing the loss 
function related to the problem to compare the predicted and true labels. Hence, the perfor-
mance of an algorithm is of course assessed based on its test error on the test set. A learning 
algorithm can be consistent; that is, it achieves perfect performance on the examples of the 
training set but has a poor performance on the test set. This happens for consistent learners 
defined by very complex decision surfaces, which tend to memorize a comparatively small 
training set instead of seeking to generalize well. This highlights the key difference between 
memorization and generalization, which is the essential property required for a precise learn-
ing algorithm (Mohri et al., 2018)

1.1.4 Key tasks of machine learning

Epileptic seizure detection is a binary classification problem that might be the most com-
mon problem in machine learning. One apparent variation is to consider classification tasks 
with more than two classes. For example, it might be asked to separate different types of EEG 
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signals. This can be done as a combination of two binary classification problems: the first 
problem is to separate them as normal or abnormal, and the second problem is, among abnor-
mal EEG signals, to differentiate them as an epileptic or other disease. But, some potentially 
valuable information can get lost in this way, because some abnormal EEGs might seem to be 
epileptic rather than another type of disease. Because of this, it is helpful to view multi-class 
classification as a machine learning problem in its own right.

Main task in classification is to predict which class a sample of data falls into. Regression, 
which is another task in machine learning, is the prediction of a numeric value. Regression and 
classification are examples of supervised learning. This kind of problem is identified as super-
vised because we are telling the algorithm what to predict. Unsupervised learning is the oppo-
site of supervised learning in which there is no label or target value for the data. A task in which 
similar items are grouped together is known as clustering. Moreover, we need to find statistical 
values that define the data in unsupervised learning. This is defined as density estimation. An-
other task of unsupervised learning is to reduce the data from several features to a small num-
ber in a way that it can be properly visualized in two or three dimensions (Harrington, 2012). 
Association rules are a type of pattern that are popular in marketing applications, and the result 
of such patterns can be frequently found on online shopping web sites (Flach, 2012).

1.1.5 Machine learning techniques

Machine learning has numerous algorithms, techniques, and methods that can be utilized 
to create models to solve real-world problems employing data. Naturally, the same machine 
learning approaches can be categorized in different ways under many umbrellas (Sarkar 
et al., 2018). Some of the main fields of machine learning methods are as follows:

1. Methods based on the amount of human supervision in the learning process.
a. Supervised learning
b. Unsupervised learning
c. Semisupervised learning
d. Reinforcement learning

2. Methods based on the ability to learn from incremental data samples.
a. Batch learning
b. Online learning

3. Methods based on their approach to generalization from data samples.
a. Instance-based learning
b. Model-based learning

1.2 Machine learning framework

The best way to solve a real-world machine learning or analytics problem is to use a ma-
chine learning framework, starting from collecting the data to transforming it into valuable 
information or knowledge employing machine learning techniques. A machine learning 
framework is mainly composed of elements associated with data retrieval and extraction, 
preparation, modeling, evaluation, and deployment (Harrington, 2012; Sarkar et al., 2018). 
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Fig. 1.1 presents an overview of a typical machine learning framework with the main stages 
highlighted in their blocks.

To understand and develop an application utilizing machine learning framework, the pro-
cedures in the following sections must be used.

1.2.1 Data collection

This task is undertaken to extract, record, and collect the required data needed for analysis. 
Generally, this includes utilization of the historical data warehouses, data marts, data lakes, 
and so on. An evaluation is carried out based on the data available in the organization and 
if additional data is needed. You should collect the samples by scraping a website and ex-
tracting data, or you can get information from an RSS feed or an API. This data can be taken 
from the web (i.e., open data sources) or it can be taken from other channels, such as surveys, 
purchases, experiments, and simulations. You might have a device collect wind speed mea-
surements and send them to you, or blood glucose levels, or anything you can measure. The 
number of choices is endless. To save some time and effort, you can use publicly available 
data. This stage includes data collection, extraction, and acquisition from several data sources 
(Harrington, 2012; Sarkar et al., 2018).

1.2.2 Data description

Data	description	 includes	an	 initial	analysis	of	 the	data	 to	comprehend	more	about	 the	
data, its source, attributes, volume, and relationships. The following aspects are critical to 
create a suitable data description (Sarkar et al., 2018).

•	 Data	sources	(SQL,	NoSQL,	Big	Data),	record	of	origin	(ROO),	record	of	reference	(ROR)

FIGURE 1.1 A typical machine learning framework.
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•	 Data	volume	(size,	number	of	records,	total	databases,	tables)
•	 Data	attributes	and	their	description	(variables,	data	types)
•	 Relationship	and	mapping	schemes	(understand	attribute	representations)
•	 Basic	descriptive	statistics	(mean,	median,	variance)
•	 Focus	on	which	attributes	are	important	for	the	business

1.2.3 Exploratory data analysis

Exploratory data analysis is one of the first main analysis steps in the lifecycle. The aim is 
to	explore	and	understand	the	data	in	detail.	Descriptive	statistics,	charts,	plots,	and	visual-
izations can be utilized to look at the various data attributes and find relations and correla-
tions. Once data is collected, you need to make sure it is in a useable format. Some algorithms 
require features in a specific format; some algorithms can deal with target variables and fea-
tures like strings, integers, etc. In this stage, data is preprocessed, cleaned, and manipulated 
as	needed.	Data	preprocessing,	cleaning,	wrangling,	and	performing	initial	exploratory	data	
analysis is carried out in this stage as well. The following aspects are some of the main tasks 
in this step (Harrington, 2012; Sarkar et al., 2018).

•	 Explore,	describe,	and	visualize	data	attributes.
•	 Choose	data	and	attribute	subsets,	which	seem	the	most	crucial	for	the	problem.
•	 Make	widespread	assessments	to	find	relationships	and	associations	and	test	hypotheses.
•	 Note	missing	data	points,	if	any.

1.2.4 Data quality analysis

Data	quality	analysis	is	the	final	step	in	the	data	understanding	stage	in	which	the	quality	
of data is analyzed in the datasets and potential shortcomings, errors, and issues are deter-
mined. These need to be resolved before analyzing the data further or starting modeling ef-
forts.	Data	analysis	can	be	as	simple	as	looking	at	the	data	that	has	been	parsed	in	a	text	editor	
to make sure the previous stage is really working. The data can be checked to determine if 
any pattern is obvious or if a few data points are massively different from the rest of the data. 
Plotting data in different dimensions might help. The focus on data quality analysis includes 
the following (Harrington, 2012; Sarkar et al., 2018).

•	 Missing	values
•	 Inconsistent	values
•	 Wrong	information	due	to	data	errors	(manual/automated)
•	 Wrong	metadata	information

1.2.5 Data preparation

Data	preparation	is	another	step	that	takes	place	after	getting	enough	knowledge	of	the	
problem	and	related	dataset.	Data	preparation	is	mostly	a	set	of	tasks	to	clean,	wrangle,	and	
prepare the data before running machine learning techniques and creating models. An im-
perative point to remember is that data preparation generally is the most time-consuming 
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stage in the data mining lifecycle. But this phase must be carried out very carefully, because 
poor data may lead to poor models and inadequate performance results (Sarkar et al., 2018).

1.2.6 Data integration

The process of data integration is principally needed once there are multiple datasets that 
need to be integrated or merged. This can be achieved in two ways. Appending different data-
sets by combining them is naturally carried out for datasets having the same attributes. Merg-
ing different datasets together that have dissimilar attributes or columns is accomplished by 
employing common fields like keys (Sarkar et al., 2018).

1.2.7 Data wrangling

The process of data wrangling includes data processing, normalization, cleaning, and 
formatting.	Data	in	its	raw	form	is	hardly	utilized	by	machine	learning	techniques	to	build	
models. Therefore, the data should be processed based on its form, cleaned of underlying 
errors and inconsistencies, and formatted into more useable formats for machine learning 
algorithms. The following aspects are the major tasks related to data wrangling (Sarkar 
et al., 2018).

•	 Managing	missing	values	(remove	rows,	impute	missing	values)
•	 Managing	data	inconsistencies	(delete	rows,	attributes,	fix	inconsistencies)
•	 Correcting	inappropriate	metadata	and	annotations
•	 Managing	unclear	attribute	values
•	 Arranging	and	formatting	data	into	necessary	formats	(CSV,	JSON,	relational)

1.2.8 Feature scaling and feature extraction

In this stage important features or attributes are extracted from the raw data or new fea-
tures	are	created	from	existing	features.	Data	features	frequently	should	be	scaled	or	normal-
ized to avoid producing biases with machine learning algorithms. Moreover, it is often neces-
sary to choose a subset of all existing features based on feature quality and importance. This 
procedure is called feature selection. Feature extraction is producing new attributes or vari-
ables from existing attributes based on certain logic, rules, or hypothesis (Sarkar et al., 2018).

1.2.9 Feature selection and dimension reduction

Feature selection is fundamentally choosing a subset of features or attributes from the 
dataset based on parameters like attribute quality, importance, conventions, significance, and 
restrictions. Occasionally even machine learning techniques are utilized to select significant 
attributes based on the data (Sarkar et al., 2018).	Dimension	reduction	is	a	process	to	reduce	
the dimension of the original feature vector, while keeping the most distinctive information 
and removing the remaining unrelated information, for the purpose of decreasing the com-
putational time in a classifier (Phinyomark et al., 2013). Most of the feature extraction ap-
proaches produce redundant features. In fact, to enhance the performance of a classifier and 
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accomplish a minimum classification error, some types of feature reduction approaches that 
yield a new set of features should be used. Numerous techniques are used for dimension re-
duction and feature selection to accomplish a better classification accuracy (Wołczowski and 
Zdunek, 2017)

1.2.10 Modeling

In modeling, the data features are usually fed to a machine learning algorithm to create the 
model. The machine learning algorithm must be fed with good clean data from the previous 
stages to extract valuable information or knowledge. Naturally the machine learning algo-
rithm should be optimized with the intention of reducing errors and generalizing the repre-
sentations learned from the data. This knowledge is readily useable by a machine for the next 
stage. The model is formed in this stage. There is no training stage in case of unsupervised 
learning, because there is no target value. Modeling is one of the main stages in the process 
in which most of the analysis takes place utilizing clean, formatted data and its attributes to 
create models for solving problems. This is an iterative process, as presented in Fig. 1.1, along 
with model evaluation and all the preceding stages leading to modeling. The basic idea is to 
create multiple models iteratively while trying to get the best model that satisfies the perfor-
mance criteria data (Sarkar et al., 2018).

1.2.11 Selecting modeling techniques

In this phase, a list of appropriate data mining and machine learning techniques, frame-
works, tools, and algorithms are picked up. Techniques, which are proven to be robust and 
suitable in solving the problem, are typically chosen based on inputs and insights from data 
analysts and data scientists. These are principally determined by the current existing data, data 
mining targets, business targets, algorithm constraints, and limitations (Sarkar et al., 2018).

1.2.12 Model building

The procedure of model building is also identified as training the model utilizing the data 
and features from the existing dataset. A combination of data (features) and machine learn-
ing techniques together achieve a model that tries to generalize on the training data and give 
essential	results	 in	the	form	of	insights	and/or	predictions.	Usually	several	algorithms	are	
employed to realize multiple modeling approaches on the same dataset and solve the same 
problem to create the best model, which realizes outputs closer to the performance criteria. 
Key issue is to keep track of the models produced, the model parameters being utilized, and 
their outcomes (Sarkar et al., 2018).

1.2.13 Model assessment and tuning

In this phase, the information learned in the previous stage is utilized. Every model is eval-
uated based on different metrics, such as model accuracy, precision, recall, F-measure, and 
mean absolute error. The model parameters must also be tuned based on techniques, such 
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as grid search and cross-validation, to achieve a model that provides the best results. Tuned 
models are also matched with the data mining targets to determine if the desired results as 
well as desired performance will be achieved. Model tuning is also called hyperparameter 
optimization in the machine learning domain. The performance of the created model is evalu-
ated by using several metrics to see how well it does. Models have several parameters that 
must be tuned in a process called hyperparameter optimization to create models with optimal 
results. In the case of supervised learning, known metrics are used to evaluate the model. In 
unsupervised learning, other metrics are utilized to evaluate the success of the model (Har-
rington, 2012; Sarkar et al., 2018).

The final models from the modeling phase satisfy the performance criteria with respect to 
data mining objectives and have the desired performance results, such as accuracy, regard-
ing the model evaluation metrics. The evaluation phase includes a detailed evaluation and 
review of the final models and the results that are taken from them. When the models that 
have achieved the desirable and relevant results are created, a comprehensive evaluation of 
the model is performed based on the following constraints (Sarkar et al., 2018).

•	 Model	performance,	as	defined	with	success	criteria
•	 Reproducible	and	reliable	results	from	models
•	 Robustness,	scalability,	and	ease	of	implementation
•	 Potential	extensibility	of	the	model
•	 Satisfactory	model	assessment	results
•	 Ranking	final	models	depending	on	the	quality	of	results	and	their	importance	based	on	

orientation with business goals
•	 Any	assumptions	or	limitations,	which	are	overturned	by	the	models
•	 Cost	of	implementation	of	the	whole	machine	learning	framework,	from	data	extraction	

and processing to modeling and predictions

1.2.14 Implementation and examining the created model

Created models are implemented and frequently examined based on their prediction re-
sults.	Deploying	the	chosen	models	to	construction	and	becoming	confident	about	the	transi-
tion from training to construction is continuous. A suitable plan for implementation is formed 
based on necessary assets, servers, hardware, software, and so on. Models are validated, 
saved, and installed on systems and servers. Moreover, a plan is created for frequent moni-
toring and maintenance of models to regularly assess their performance, check their validity, 
and replace or update models once needed (Sarkar et al., 2018).

1.2.15 Supervised machine learning framework

The supervised machine learning techniques works with supervised, labeled data to train 
models and then predict outcomes for unseen test data samples. Some processes, such as 
feature scaling, extraction, and selection, must remain constant in the way that the same fea-
tures are utilized for training the model and the same features are extracted from unseen test 
data samples to test the model in the prediction phase. Fig. 1.2 shows a classical supervised 
machine learning framework. As can be seen in the figure, the two stages of model train-
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ing and prediction are highlighted. Moreover, as mentioned earlier, the same stages of data 
processing, feature scaling, extraction, selection, and dimension reduction are utilized for 
both data employed in training the model and new data samples for which the model pre-
dicts outcomes. This is a crucial point, which we should remember whenever any supervised 
model is being built. Also, as seen in the figure, the model is a combination of a supervised 
machine learning technique with training data features and related labels. In the prediction 
(testing) phase, the created model will take features from new unseen data samples and yield 
predicted labels (Sarkar et al., 2018).

1.2.16 Unsupervised machine learning framework

In unsupervised machine learning, patterns, associations, relationships, and clusters are 
extracted from the data. The procedures regarding the feature scaling, extraction, selection, 
and dimension reduction are the same as supervised learning, but there is no concept of pre-
labeled data in this case. Therefore, the unsupervised machine learning framework can be a 
bit more different than the supervised framework. Fig. 1.3 shows a classical unsupervised 
machine learning framework. As is seen in Fig. 1.3, labeled data is not employed for train-
ing the unsupervised model. In unsupervised machine learning, the training data without 
labels goes through the same data preparation stage as in the supervised learning framework, 
and the unsupervised model is built with an unsupervised machine learning technique with 
the same features used in training. In the prediction phase, features from new (unseen) data 
samples are extracted and pass through the model, which gives related results according to 
the type of machine learning task to be performed, such as clustering, pattern detection, as-
sociation rules, or dimensionality reduction (Sarkar et al., 2018).

FIGURE 1.2 Supervised machine learning framework.
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1.3 Performance evaluation

Model evaluation is the process of choosing the most suitable among the different models, 
with their types, features, and tuning parameters. This is determined in the predictive per-
formance assessment whereby the most accurate models are chosen. The predicted model 
utilizes different performance measures for quality assessment along with determining target 
estimate reliability. Various performance measures can be employed based on the intended 
application of the expected model. The most crucial aspect of a model’s quality is its general-
ization properties. The procedure for model evaluation comprises several steps for estimating 
the accuracy of a model in generalizing subsets of a domain with out-of-sample data. How-
ever, it has no significant use since the sorting of the training data is not the primary purpose 
of classification models. The true performance of the chosen model is defined by its expected 
yields on the whole domain. They aid in reliably estimating the unknown values of the ad-
opted performance measures on the entire domain that contains previously unseen instances 
(Cichosz, 2014). Learning model performance evaluation is used to obtain a reliable assess-
ment of the model’s predictive performance, that is, the target approximation’s quality that 
the model represents. Various performances can be utilized depending on the intended ap-
plication of the model under consideration. The generalization properties are essential for the 
quality of this model, because its creation is usually based on the training data set, typically 
a small subset of the entire domain. Therefore, according to Cichosz (2014), it is important to 
differentiate between the particular dataset value (dataset performance), training set value 
(training performance), and its true performance or expected performance in the full domain.

A crucial issue that should be kept in mind with all these machine learning problems is 
that they do not have a “correct” answer. This is different from several other issues in com-
puter science with which you are familiar. In some situations, the features utilized to define 

FIGURE 1.3 Unsupervised machine learning framework.
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the data only give a sign of what their class might be but do not comprise enough “signal” to 
predict the class perfectly. For these reasons, performance evaluation of learning algorithms 
is crucial, and we must have some idea about learning level of an algorithm to accomplish 
on new data in terms of prediction performance. Suppose we want to discover how well our 
newly trained model performs. One task we can perform is to count the number of correctly 
classified EEG signals, both epileptic and normal, and divide that by the total number of  
examples to obtain a proportion, which is called the accuracy of the classifier. However, this 
does not indicate whether overfitting is occurring (Flach, 2012).

A better idea might be to use only some portion of the data for training and the remaining 
as a test set. If overfitting arises, the test set performance will be substantially lower than the 
training set performance. Nevertheless, even if we choose the test instances randomly from 
the data, and the test instances are noisy, most of the test instances will be similar to the train-
ing instances. In practice this train–test split is therefore repeated in a process called cross-
validation, where the data is randomly divided into ten parts of equal size and nine parts are 
used for training and one part for testing. We repeat this ten times using each part once for 
testing. At the end, we calculate the average test set performance. Cross-validation can also be 
useful to other supervised learning problems, but unsupervised learning methods typically 
need to be evaluated differently (Flach, 2012).

To evaluate performance of the machine learning techniques in regression (forecasting), 
the statistical quality measures, including root mean-squared error (RMSE), mean-absolute 
error (MAE), relative absolute error (RAE), root relative squared error (RRSE), and correlation 
coefficient (R) (Table 1.1) should be employed instead of accuracy, F-measure, receiver operat-
ing characteristic (ROC) area, and Kappa statistic. In the regression, instead of determining if 
predicted value is right or wrong, we should consider how close or how far off the predicted 
values are versus the observed values. These measures are defined by assuming the numeric 
predictions for the n test cases and the actual (observed) values (ai) and the predicted (esti-
mated) ones (Pi) for the test case i as follows:

TABLE 1.1 Prediction performance metrics for regression.
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 (1.1)

A model’s dataset performance is obtained when the selected performance measures of a 
dataset are calculated, taking into account the true class labels. The dataset performance char-
acterizes the degree of resemblance with the dataset’s target concept. On the other hand, the 
training performance is established by evaluating the model on the training set that is used to 
come up with the model. This model dataset performance is useful for better comprehension 
of the model; however, it is not of key interest because the classification of the training data 
is not the purpose or aim of classification models. Finally, the model’s expected performance 
represents the true performance of the whole domain. The model’s true performance means 
that it can correctly classify arbitrary new instances from the domain under consideration. 
The performance would always remain unknown but can be approximated using dataset 
performance since the true or expected performance is generally not available for the domain. 
The appropriate procedures of evaluation are required to assess the true performance, which 
mostly contains previously unseen instances (that is, to estimate the values of the unknown 
adopted performance on the entire domain) (Cichosz, 2014).

The no free lunch theorem states that no learning algorithm can beat another once assessed 
over all possible classification problems, and accordingly the performance of any learning 
algorithm, over the set of all possible learning problems, is no better than random guessing. 
The way to eliminate the curse of the no free lunch theorem is to explore more about this dis-
tribution and utilize this knowledge in our choice of learning algorithm (Flach, 2012).

1.3.1 Confusion matrix

The performance of classifier models can be summarized by means of a confusion matrix. 
This matrix provides an important insight into the model’s capability to predict particular 
classes, as well as its generalization properties. Nevertheless, the confusion matrix does not 
always give an anticipated ability to compare and rank various models based on their func-
tionalities or performance and to select the best among several candidate models. The con-
fusion matrix can provide multiple measures of performance, but only those applicable to 
two-class models. These models can be represented by using the set C = {0,1}, where 0 can be 
shown as the negative class and 1 as the positive class. In the same manner, an individual can 
refer to an instance, x, as a positive instance given c(x) = 1 and a negative one when c(x) = 0. 
It is only required when there is some asymmetry between classes. To apply the same perfor-
mance measures on models with two or more categories, it would take extra effort. The con-
vention used in the confusion matrix is that the positive or negative refers to the class values 
predicted by the model, and the true or false relates to the accuracy of the predicted model 
(Cichosz, 2014). A 2 x 2 confusion matrix is shown in Fig. 1.4.

In this matrix, every row refers to actual classes as recorded in the test set, and each col-
umn to classes as predicted by the classifier. A wide range of performance indicators can be 
calculated from a confusion matrix. The simplest of these is accuracy, which is the proportion 
of correctly classified test instances.

a¯=1n∑i=1nai,p¯=1n∑i=1n
pi,SA=1n−1∑i=1nai−a¯2, 

SP=1n−1∑i=1npi−p¯2, SP-
A=1n−1∑i=1npi−p¯ai−a¯



 1.3 Performance evaluation 17

 

•	 The	error	in	misclassification	is	represented	as	the	ratio	of	instances	incorrectly	classified	
to all the instances:

FP FN
Misclassification Error

TP TN FP FN
= +

+ + + (1.2)

•	 To	calculate	the	accuracy	of	the	model,	the	proportion	of	correct	classification	to	all	
instances that are used, can be represented by the formula:

Accuracy
TP TN

TP TN FP FN
= +

+ + +
 (1.3)

•	 The	true	positive	rate	(TPR)	or	sensitivity	is	calculated	using	the	ratio	of	instances	
classified correctly as positive to all the positive instances, represented by the formula:

TPR
TP

TP FN
=

+
 (1.4)

•	 The	false	positive	rate	(FPR)	or	specificity	is	given	using	the	ratio	of	instances	classified	
incorrectly as positive to all the negative instances, and the formula is:

FPR
TN

TN FP
=

+
 (1.5)

•	 The	precision	of	the	model	is	the	ratio	of	instances	classified	correctly	as	positive	to	all	the	
instances positively classified:

Precision
TP

TP FP
=

+
 (1.6)

•	 Finally,	the	recall	is	the	ratio	between	the	instances	classified	correctly	to	the	instances	
that are not sorted correctly:

Recall
TP

TP FN
=

+ (1.7)

Misclassification Error=FP+FN
TP + TN + FP + FN

Accuracy=
TP + TNTP + TN + FP + FN

TPR=TPTP+FN

FPR=TNTN + FP

Precision=TPTP + FP

Recall=TPTP+FN

FIGURE 1.4 Representation of confusion matrix.
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1.3.2 F-measure analysis

One way is to calculate the harmonic mean of precision and recall, which in the informa-
tion retrieval literature is known as the F-measure (Flach, 2012). This is a statistical analysis 
that measures the accuracy of the test using the weighted harmonic mean of both the recall 
and	precision.	According	to	Sokolova,	Japkowicz,	and	Szpakowicz	(Sokolova,	Japkowicz,	
& Szpakowicz, 2006), the F-measure is a composite measure that uses assistance algorithms 
with an advanced sensitivity and encounters simulations with higher specificity. The F-
score attains the best value, that is, perfect precision as well as recall, represented by the 
value 1. The lowest recall and precision means the worst F-score and would be represented 
by the value 0. The more realistic measure provided by the F-score can be achieved by us-
ing both recall and precision in the test performance. The technique is usually used in the 
retrieval of information for document classification and classification inquiry performance. 
However, the F-measures do not take into consideration the true negatives. Measures 
such as the Cohen’s kappa and Matthews correlation coefficient may be preferable when 
evaluating the binary classifier performance. The F-score is widely used in the processing 
of natural language in literature, for instance, word segmentation and entity recognition 
evaluation.

F Measure
Precision Recall

Precision Recall
*− =
+

 (1.8)

1.3.3 ROC analysis

A receiver operating characteristic (ROC) curve is taken from a coverage curve by nor-
malizing the axes to [0, 1]. But generally, coverage curves can be rectangular whereas ROC 
curves always occupy the unit square. Moreover, while in a coverage plot the area under the 
coverage curve gives the absolute number of correctly ranked pairs; in an ROC plot the area 
under the ROC curve (AUC) is the ranking accuracy (Flach, 2012). One tool that enhances the 
classifier	performance	assessment/evaluation	in	multiple	points	of	operation,	comparison,	
and selection is the ROC analysis. ROC was the methodology used for detecting radar signals 
during World War II and turned out to be profitable for the classifier evaluation. It uses the 
Cartesian coordinate system with the y-axis representing the TPR (true positive rate) and 
the x-axis representing the RPR (false positive rate). The two axes make the ROC’s plane as 
the single point on the plane that can visualize the fundamental tradeoff between the true 
positive and false positive, representing the discrete classifier performance. Similarly, a single 
point of operation in a scoring classifier set is also established as a point on the ROC plane. 
The TPR of 1 and the FPR of 0, that is, (0,1), shows the perfect operating point, where all in-
stances are correctly classified. The (1,0) is a point with the TPR of 0 and the FPR of 1, which 
is the worst operating point, having all instances classified incorrectly. The point correlation 
factor of (0,0) represents a classifier that will often predict a 0 class yielding neither positives 
nor negatives. The (1,1) point on the plane represents the classifier that would always gener-
ate or predict class 1. To obtain the ROC analysis curve, all the possible operating points of 
the scoring classifiers on the plane are joined with the line segments. Therefore, visuals dis-
play the performance of the classifier independent on the obtained cutoff values. The curve 

F−Measure=Precision*Recall Prec
ision+Recall 
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shows the entire range of various operating points, which have subsequent varying levels 
of the tradeoff of the TPRs and FPRs in a single plot. The scoring classifier performance 
that relies only on its scoring function element can be indicated graphically using the ROC 
curve. The scoring expression captures the knowledge regarding the relationship between 
attributes and class values. It is significant to find all possible operating points of a classifier 
score to produce the ROC curve, based on the generated ratings for the whole dataset domain 
(Cichosz, 2014).

1.3.4 Kappa statistic

The kappa statistic takes the expected model into consideration by subtracting it from pre-
dictor’s successes. It represents the results as a part of the total for a perfect predictor model. 
Its measure of performance is more robust than the simple calculation of percent agreement, 
because it considers the agreement possibility is occurring by chance. The agreement level 
between the predicted and observed dataset classification, as well as agreement correction 
that arises by chance, is done using the Kappa statistic. It does not consider the costs, similar 
to the plain success rate (Hall, Witten, & Frank, 2011).
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Where P0 is observed agreement and defined as

P
TP TN

TP TN FP FN0 = +
+ + +

 (1.10)

and Pe measures the probability of random agreement (Yang & Zhou, 2015). Overall random 
agreement probability is the probability that they agreed on either Yes or No, that is,

P P Pe YES NO= + (1.11)

where

P
TP FP

TP TN FP FN
TP FN

TP TN FP FN
*YES = +

+ + +
+

+ + +
 (1.12)

P
FN TN

TP TN FP FN
FP TN

TP TN FP FN
*NO = +

+ + +
+

+ + +
 (1.13)

For evaluators in complete agreement, k 1= . Otherwise, no agreement in evaluators other 
than the chance expectation, that is, pe, k = 1. The kappa value can be negative, which means 
that there is no actual agreement or there is worse than a random agreement between the two 
raters.

k=po−pe1−pe=1−1−po1−pe

P0=TP+TNTP+TN+FP+FN

Pe=PYES+PNO

PYES=TP+FPTP+TN+FP+FN*T
P+FNTP+TN+FP+FN

PNO=FN+TNTP+TN+FP+FN*F
P+TNTP+TN+FP+FN

k=1
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1.3.5 What is measured

Performance measures are sometimes called evaluation measures. But, the measurements 
need not be scalars; an ROC curve is also counted as a measurement in this context. The 
suitability of any of these depends on how performance is defined related to the question 
of experimental objective. It is crucial not to confuse performance measures and experimental 
objectives. There is often a difference between the two. For example, in machine learning the 
situation is generally more tangible, and our experimental objective (accuracy) is something 
we can measure on unseen data. But there might be several unknown factors for which we 
should account. For instance, the model may need to operate in diverse operating contexts with 
different class distributions. Although assessing accuracy in future contexts is our experimen-
tal objective, the fact that we are anticipating the widest possible range of class distributions 
means that the evaluation measure we must utilize in our test data is not accuracy but average 
recall. The example reveals that if we select accuracy as the evaluation measure, we are mak-
ing an implicit hypothesis in which the class distribution of the test set is representative of the 
operating context of the model to be deployed. Hence, it is good practice to record adequate 
information to be able to replicate the contingency table if required. Enough set of measure-
ments can be true positive rate, true negative rate, false positive rate, false negative rate, the 
class distribution, and the size of the test set. Precision and recall is generally reported in the 
information retrieval literature. The combination of precision and recall, which is the F-measure, is 
insensitive to the number of true negatives. This is not a deficit of the F-measure; quite the con-
trary, it is beneficial in domains where negatives abound, and it might be easy to achieve high 
accuracy by always predicting negative. Hence, if you choose F-measure as an evaluation 
measure, an implicit claim that true negatives are not relevant for your operating context is 
achievable. Another evaluation measure is the predicted positive rate, which is the number of 
positive predictions in proportion to the number of instances. Although the predicted posi-
tive rate does not tell us much about the classification performance of the classifier, it gives us 
what the classifier estimates to be the class distribution. In some cases, AUC might be a good 
evaluation measure since it is linearly related to the expected accuracy (Flach, 2012).

1.3.6 How they are measured

The evaluation measures discussed so far are calculated from a confusion matrix. The is-
sues are (1) which data to base our measurements on, and (2) how to evaluate the predictable 
uncertainty related to each measurement. How do we get k independent estimates of accu-
racy? In practice, the quantity of labeled data available is generally too small to set aside a vali-
dation sample since it would leave an inadequate quantity of training data. Instead, a widely 
adopted method known as k-fold cross-validation is utilized to develop the labeled data both for 
model selection and for training. If we have sufficient data, we can sample k independent test 
sets of size n and evaluate accuracy on each of them. If we are assessing a learning algorithm 
rather than a given model, we should keep training data that needs to be apart from the test 
data. If we do not have much data, the cross-validation (CV) procedure is generally applied. In 
CV the data is randomly partitioned into k parts or “folds”; use one-fold for testing, train a 
model on the remaining k − 1 folds, and assess it on the test fold. This procedure is repeated 
k times until each fold has been employed for testing once. Cross-validation is conventionally 
applied with k = 10, although this is somewhat arbitrary. Alternatively, we can set k = n and 
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train on all but one test instance, repeated n times; this is known as leave-one-out cross-vali-
dation. If the learning algorithm is sensitive to the class distribution, stratified cross-validation 
should be applied to achieve roughly the same class distribution in each fold (Flach, 2012).

The special case of k-fold cross-validation, where k = m, is leave-one-out cross-validation, 
because at each iteration exactly one instance is left out of the training sample. The average 
leave-one-out error is an almost unbiased estimate of the average error of an algorithm and 
can be employed to obtain simple agreements for the algorithms. Generally, the leave-one-
out error is very expensive to calculate, because it needs training k times on samples of size 
m − 1, but for some algorithms it admits a very effective calculation. Moreover, k-fold cross-
validation is typically utilized for performance evaluation in model selection. In that case, 
the full labeled sample is split into k random folds without any difference between train-
ing and test samples for a fixed parameter setting. The performance reported in the k-fold  
cross-validation on the full sample as well as the standard deviation of the errors is measured 
on each fold (Mohri et al., 2018).

1.3.7 How to interpret estimates

Once we have estimates of a related evaluation measure for the models or learning tech-
niques, we can use them to choose the best one. The main problem is how to deal with the 
intrinsic ambiguity in these estimates. Confidence intervals and significance tests are the key 
concepts to be discussed. Note that confidence intervals are statements about estimates rather than 
statements about the true value of the evaluation measure. The p-value is used for significance 
testing. The idea of significance testing can be extended to learning algorithms evaluated in 
cross-validation. For a pair of algorithms, we estimate the difference in accuracy on each fold. 
The p-value is estimated using the normal distribution, and the null hypothesis is rejected if 
the p-value is below significance level. Sometimes uncertainty in the process produces a bell-
shaped sampling distribution, similar to the normal distribution but slightly more heavy-
tailed. This distribution is called the t-distribution. The extent to which the t-distribution is 
more heavy-tailed than the normal distribution is regulated by the number of degrees of free-
dom. The whole procedure is known as the paired t-test (Flach, 2012).

1.3.8 k-Fold cross-validation in scikit-learn

In most practical applications, the available examples are divided into three sets. The first 
set is employed for training the model and the second is employed as a validation set for 
model selection. After the best model is selected, the performance of the output predictor is 
tested on the third set (test set) (Shalev-Shwartz	&	Ben-David,	2014).

The validation procedure defined so far assumes there are a lot of data, and we can sample 
a new validation set. But in some cases, the amount of data is not sufficient, and we do not 
want to “waste” data on validation. The k-fold cross-validation method is considered to yield 
an accurate estimate of the true error without wasting too much data. In k-fold cross valida-
tion the original training set is divided into k subsets (folds) of size m/k. For each fold, the 
model is trained on the combination of the other folds, and then the error of its output is 
calculated employing the fold. Finally, the average of all these errors is the estimate of the 
true error. The special case k = m, where m is the number of examples, is called leave-one-out 
(LOO). k-Fold cross-validation is often used for model selection (or parameter tuning), and 
once the best parameter is chosen, the algorithm is retrained using this parameter on the en-
tire training set (Shalev-Shwartz	&	Ben-David,	2014). A pseudocode of k-fold cross-validation 
for model selection is given in the following.
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from sklearn.model_selection import cross_val_score
from sklearn.datasets import load_iris
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
iris = load_iris()
clf = LinearDiscriminantAnalysis(solver = “svd”, store_covariance = True)
scores = cross_val_score(clf, iris.data, iris.target, cv = 5)
scores.mean()

1.3.9 How to choose the right algorithm

To choose the right algorithm among the different algorithms, we must consider the goal. 
If you are trying to forecast or predict a target value, then you need to investigate supervised 
learning. If not, then unsupervised learning is the best solution. If the supervised learning is 
chosen, what is the target value? If it is a discrete value, then classification must be utilized; if 
the target values are a continuous number of values, then regression must be used. In chapter 
3, supervised learning techniques, such as classification and regression and clustering, will 
be explained. The second thing you should consider is your data. Are the features nominal 
or continuous? Are there missing values in the features? Are there outliers in the data? All of 
these features about your data can help you narrow the algorithm selection process. More-
over, there is no single answer to what the best algorithm is or what will give you the best 
results. You should try several algorithms and check their performance. There are other ma-
chine learning tools, which can be utilized to enhance the performance of a machine learning 
technique (Harrington, 2012).

1.4 The Python machine learning environment

Now we can discuss the programming language to implement machine learning algo-
rithms. A programming language must be understandable by a wide range of people. More-
over, the programming language should have libraries written for a number of tasks. A pro-
gramming language with an active developer community is needed. Python is the best choice 
for these reasons, and it is a great language for machine learning for a large number of reasons. 
First, Python has clear syntax. The clear syntax of Python has earned it the name executable 
pseudo-code. The default installation of Python already includes high-level data types, such as 
lists, tuples, dictionaries, sets, and queues. You can program in any way you are familiar with, 
such as object-oriented, procedural, and functional. With Python it is easy to process and ma-
nipulate text that makes it perfect for processing nonnumeric data. A large number of people 
and organizations use Python, so there is ample development and documentation. Python is 
popular and many examples are available, which makes learning fast. Moreover, the popular-
ity means that there are lots of modules available for many applications. Python is popular 
in the scientific and financial communities as well. A number of scientific libraries, such as 
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SciPy and NumPy, allow you to do vector and matrix operations. Furthermore, the scientific 
libraries SciPy and NumPy are compiled using lower-level languages like C, which make 
computations much faster. The scientific tools in Python work well with a plotting tool called 
Matplotlib,	which	can	plot	2D	and	3D	and	can	handle	most	types	of	plots	commonly	used	in	
the scientific world. A new module for Python, called Pylab, seeks to combine NumPy, SciPy, 
and Matplotlib into one environment and installation (Harrington, 2012).

Python is an interpreted language, which means the source code of a Python program is 
converted into bytecode that is then executed by the Python virtual machine. Python is differ-
ent from major compiled languages, such as C and C + +, as Python code is not required to be 
built and linked like code for these languages. This distinction makes for two important points:

•	 Python code is fast to develop: As the code is not needed to be compiled and built, Python 
code can be readily changed and executed. This makes for a fast development cycle.

•	 Python code is not as fast in execution: Since the code is not directly compiled and 
executed and an additional layer of the Python virtual machine is responsible for 
execution, Python code runs a little slow as compared to conventional languages like C, 
C + +, etc.

Strengths
Python has steadily risen in the charts of widely used programming languages and, ac-

cording to several surveys and research, it is the fifth most important language in the world. 
Recently several surveys depicted Python to be the most popular language for machine learn-
ing and data science! We will compile a brief list of advantages that Python offers that will 
likely explain its popularity.

Easy to learn: Python is a relatively easy-to-learn language. Its syntax is simple for a begin-
ner	to	learn	and	understand.	When	compared	with	languages	like	C	or	Java,	there	is	minimal	
boilerplate code required in executing a Python program.

Supports multiple programming paradigms: Python is a multiparadigm, multipurpose 
programming language. It supports object-oriented programming, structured programming, 
functional programming, and even aspect-oriented programming. This versatility allows it to 
be used by a multitude of programmers.

Extensible: Extensibility of Python is one of its most important characteristics. Python 
has a huge number of modules easily available that can be readily installed and used. These 
modules cover every aspect of programming from data access to implementation of popular 
algorithms. This easy-to-extend feature ensures that a Python developer is more productive, 
as a large array of problems can be solved by available libraries.

Active open-source community: Python is open source and supported by a large devel-
oper community. This makes it robust and adaptive. The bugs encountered are easily fixed 
by the Python community. Being open source, developers can tinker with the Python source 
code if necessary.

1.4.1 Pitfalls

Although Python is a very popular programming language, it comes with its own share of 
pitfalls. One of the most important limitations it suffers is in terms of execution speed. Being 
an interpreted language, it is slow when compared to compiled languages. This limitation 
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can be a bit restrictive in scenarios where extremely high performance code is required. This 
is a major area of improvement for future implementations of Python, and every subsequent 
Python version addresses it. Although we have to admit it can never be as fast as a compiled 
language, we are convinced that it makes up for this deficiency by being super-efficient and 
effective in other departments.

You can install Python and the necessary libraries individually using a prepackaged Py-
thon distribution that comes with necessary libraries (i.e., Anaconda). Anaconda is a pack-
aged compilation of Python along with a whole suite of libraries, including core libraries 
that are widely used in data science. The main advantage of this distribution is that we do 
not need an elaborate setup and it works well on all flavors of operating systems and plat-
forms,	especially	Windows.	The	Anaconda	distribution	comes	with	a	wonderful	IDE,	Spyder	
(Scientific	Python	Development	Environment),	as	well	as	other	useful	utilities	 like	Jupyter	
Notebooks, the IPython console, and the excellent package management tool Conda (Sarkar 
et al., 2018).

1.4.2 Drawbacks

The	only	real	drawback	of	Python	is	that	it	is	not	as	fast	as	Java	or	C.	You	can,	however,	
call C-compiled programs from Python. This gives you the best of both worlds and allows 
you to incrementally develop a program. If the program is built in a modular fashion, you can 
first get it up and running in Python and then, to improve speed, start building portions of 
the code in C. The Boost C + + library makes this easy to do. Other tools, such as Cython and 
PyPy, allow you write typed versions of Python with performance gains over regular Python. 
If an idea for a program or application is flawed, then it will be flawed at low speed as well as 
high speed. If an idea is a bad idea, writing code can make it fast or scale (Harrington, 2012).

1.4.3 The NumPy library

NumPy is the backbone of machine learning in Python. It is one of the most important 
libraries in Python for numerical computations. It adds support to core Python for multi-
dimensional arrays (and matrices) and fast vectorized operations on these arrays. It is em-
ployed in almost all machine learning and scientific computing libraries. The extent of popu-
larity of NumPy is verified by the fact that major OS distributions, like Linux and MacOS, 
bundle NumPy as a default package instead of considering it as an add-on package (Sarkar 
et al., 2018).

1.4.4 Pandas

Pandas is a vital Python library for data manipulation, wrangling, and analysis. It functions 
as an intuitive and easy-to-use set of tools for execution operations on any kind of data. Pan-
das	allows	you	to	work	with	both	cross-sectional	data	and	time	series–based	data.	DataFrame	
is the most important and useful data structure that is employed for almost all types of data 
representation	and	manipulation	in	Pandas.	Unlike	NumPy	arrays,	a	DataFrame	can	contain	
heterogeneous	data.	Naturally,	tabular	data	are	characterized	by	means	of	DataFrames,	which	
are	analogous	to	Excel	sheets	or	SQL	tables.	This	is	really	beneficial	in	representing	raw	data-
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sets as well as processed feature sets in machine learning and data science. All the operations 
can	be	performed	along	the	axes,	rows,	and	columns	in	a	DataFrame	(Sarkar et al., 2018).

1.5 Summary

Models form the fundamental concept in machine learning since they comprise what is be-
ing learned from the data in order to solve a given task. There is a significant range of machine 
learning models that can be chosen. One motivation for this is the ubiquity of the tasks that 
machine learning aims to solve: classification, regression, clustering, and association discov-
ery, to name but a few. Examples of each of these tasks can be found in virtually every branch 
of science and engineering. Mathematicians, engineers, psychologists, computer scientists, 
and many others have discovered—and sometimes rediscovered—ways to solve these tasks. 
They have all brought their specific background to bear, and accordingly the principles creat-
ing these models are all different. This diversity is a good thing because it supports machine 
learning as a powerful and exciting discipline (Flach, 2012).

Machine learning is a technique utilizing valuable and informative features that create the 
right models to produce the right tasks. These tasks include binary and multiclass classifica-
tion, regression, clustering, and descriptive modeling. Models for the first few of these tasks 
are learned in a supervised fashion that need labeled training datasets. If you want to know 
how good the model is, you also need labeled test datasets separate from the training datas-
ets to assess your model on the dataset on which it was trained. A test dataset is required to 
expose any overfitting that occurs. Unsupervised learning, on the other hand, works with 
unlabeled datasets and, therefore, there are no test datasets as such. For example, to assess 
a specific partition of dataset into clusters, one can estimate the average distance from the 
cluster center. Other forms of unsupervised learning include learning associations and cat-
egorizing hidden variables, such as film genres. Predictive models whose outputs include the 
target variable and descriptive models that describe interesting structures in the dataset can 
be distinguished. Generally, predictive models are learned in a supervised manner whereas 
descriptive models are produced by unsupervised learning techniques (Flach, 2012).

Because this book is a practical machine learning book, we will focus on specific use cases, 
problems, and real-world case studies in subsequent chapters. It is crucial to realize formal 
descriptions, notions, and foundations related to learning algorithms, data management, 
model construction, assessment, and arrangement. Therefore, we try to cover all these fea-
tures, including problems relevant to data mining and machine learning workflows, so that 
you gain a foundational framework that can be utilized and you can tackle any of the real-
world problems we present in subsequent chapters. Moreover, we cover several interdisci-
plinary areas related to machine learning. This book mainly examines practical or applied 
machine learning for data analysis, so the focus of the chapters is the application of machine 
learning algorithms to solve real-world problems. Therefore, basic level of proficiency in Py-
thon and machine learning would be helpful. But, since this book considers different levels of 
expertise for numerous readers, chapters 2 and 3 explain the key aspects of machine learning 
and constructing machine learning pipelines. We will also discuss the usage of Python for 
building machine learning systems and the main tools and frameworks naturally utilized to 
solve machine learning problems. There will be lots of code snippets, examples, and multiple 
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case studies. We utilize Python 3 and present all our examples with related code files for a 
more interactive experience. You can try all the examples yourself as you go through the book 
and adopt them in solving your own real-world problems.

The role of features in machine learning has been discussed. There is no model without 
features,	and	occasionally	a	single	feature	is	sufficient	to	create	a	model.	Data	does	not	always	
exist with ready-made features, and generally we must construct or transform features. Be-
cause of this, machine learning is generally known as an iterative process in which we have 
extracted or selected the right features after we have created the model, and if the model does 
not achieve good performance we need to analyze its performance to realize in what ways 
the features must be enhanced. Hence in the next chapter we talk about preprocessing, which 
includes dimension reduction, feature extraction, feature selection, and feature transforma-
tion. In chapter 3, several machine learning techniques are explained. Classification examples 
for healthcare are given in chapter 4 and other classification examples are given in chapter 5. 
Regression (forecasting) examples are presented in chapter 6, and chapter 7 is dedicated to 
unsupervised learning (clustering) examples.
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2
Data preprocessing

2.1 Introduction

In machine learning, whether the algorithm is classification or regression, data are used as 
inputs and fed to the learner for decision-making. Ideally, there is no need for feature extrac-
tion or selection as a separate process; the classifier (or regressor) must use any features, 
removing the irrelevant ones. But there are many reasons why we are concerned with reduc-
ing dimensionality as an independent preprocessing step:

•	 In	most	learning	algorithms	the	complexity	is	based	on	the	number	of	input	dimensions,	
as well as on the size of the data sample, and for reduced memory and computation, we 
are	interested	in	reducing	the	dimensionality	of	the	problem.	Dimension	reduction	also	
reduces the complexity of the learning algorithm during testing.

•	 If	an	input	is	not	informative,	we	can	save	the	cost	by	extracting	it.
•	 Simple	models	are	more	robust	on	small	datasets.	Simple	models	have	less	variance;	that	

is, they diverge less reliant on specific samples, including outliers, noise, etc.
•	 If	data	can	be	represented	with	fewer	features,	we	can	gain	a	better	idea	of	the	process	

that motivates the data, and this allocates knowledge extraction.
•	 If	data	can	be	described	by	fewer	dimensions	without	loss	of	information,	it	can	be	

plotted and analyzed visually for structure and outliers.

The	complexity	of	any	learner	depends	on	the	quantity	of	inputs.	This	affects	both	space	
and	time	complexity	and	the	required	number	of	training	examples	to	train	such	a	learner	
(Alpaydin, 2014).	In	this	chapter,	we	discuss	feature	selection	methods,	which	choose	a	subset	
of informative features while pruning the rest, and feature extraction methods, which form 
fewer new features from the original inputs and dimension reduction techniques.

In	 situations	 where	 the	 data	 have	 a	 huge	 number	 of	 features,	 it	 is	 always	 necessary	 to	
decrease its dimension or to find a lower-dimensional depiction conserving some of its prop-
erties. The crucial arguments for dimensionality reduction (or manifold learning) techniques 
are:

Computational: to compress the original data as a preprocessing step to speed up succeed-
ing operations on the data.

Visualization:	to	visualize	the	data	for	tentative	analysis	by	mapping	the	input	data	into	
two- or three-dimensional spaces.
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Feature extraction: to confidently produce a smaller and more efficient, informative, or 
valuable	set	of	features.

The	benefits	of	dimensionality reduction are generally represented via simulated data, 
such	as	the	Swiss	roll	dataset.	Dimensionality	reduction	can	be	represented	as	follows.

Consider	a	sample	S	=	(x1,. . ., xm), a feature mapping Φ: X → RN, and the data matrix 
X ∈ RN × m defined as (Φ(x1),. . .,Φ(xm)). The ith	data	point	is	represented	by	xi	=	Φ(xi), or 
the ith	column	of	X,	which	is	an	N-dimensional	vector.	Dimensionality	reduction	methods	
generally aim to find, for k & N, a k-dimensional representation of the data, Y ∈ Rk × m, 
that is in some way faithful to the original representation X. In this chapter we will discuss 
several	methods	that	address	this	problem.	We	first	present	the	most	generally	employed	
dimensionality	 reduction	 technique	 known	 as	 principal	 component	 analysis	 (PCA).We	
then	 introduce	 a	 kernelized	 version	 of	 PCA	 (KPCA)	 and	 show	 the	 connection	 between	
KPCA and manifold learning algorithms (Mohri, Rostamizadeh, & Talwalkar, 2018; 
Subasi,	2019).

This chapter explains different feature extraction methods and dimension reduction tech-
niques	for	data	analysis	by	giving	diverse	examples	in	Python.	Furthermore,	in	this	chapter,	
principal component analysis (PCA), independent component analysis (ICA), linear discrimi-
nant	analysis	(LDA),	entropy,	and	statistical	values	are	introduced	as	dimension	reduction	
techniques. The aim of this chapter is to assist researchers in choosing an appropriate prepro-
cessing technique for data analysis. Therefore, the fundamental preprocessing methods that 
are utilized for the classification of data are discussed in this chapter. Toward the end of each 
section,	appropriate	Python	functions	with	various	data	applications	will	be	demonstrated	
with	an	example.	Most	of	the	examples	are	taken	from	Python–scikit-learn	library	(https://
scikit-learn.org/stable/) and then adapted.

2.2 Feature extraction and transformation

There	 are	 a	 lot	 of	 possibilities	 in	 machine	 learning	 when	 playing	 with	 the	 features.	 In	
signal	processing	and	text	classification	in	general,	the	biomedical	signals	or	documents	do	
not	 come	 with	 built-in	 features;	 rather,	 they	 must	 be	 constructed	 by	 the	 developer	 of	 the	
machine learning algorithm. This feature construction (or extraction) procedure is critical for 
the	accomplishment	of	a	machine	learning	algorithm.	Extracting	informative	and	valuable	
features	 in	 a	 biomedical	 signal	 analysis	 is	 a	 wisely	 engineered	 depiction	 that	 manages	 to	
amplify the “signal” and attenuate the “noise” related to classification tasks. Nevertheless, it 
is	easy	to	comprehend	problems	in	which	this	would	be	the	wrong	thing	to	do,	for	example,	if	
we	aim	to	train	a	classifier	to	differentiate	between	normal	and	abnormal	biomedical	signals.	
It is most natural to construct a model in terms of the given features. But we are allowed to 
modify	the	features	as	we	see	fit,	or	even	to	produce	new	features.	For	example,	real-valued	
features	generally	comprise	redundant	features	that	can	be	eliminated	by	discretization.	One	
attractive and multidimensional characteristic of features is that they may cooperate in sev-
eral	ways.	Occasionally	such	interaction	can	be	exploited,	sometimes	it	can	be	ignored,	and	
sometimes	it	creates	a	challenge.	There	are	additional	ways	where	features	can	be	correlated	
(Flach,	2012).

https://scikit-learn.org/stable/
https://scikit-learn.org/stable/
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2.2.1 Types of features

Consider	two	features,	one	describing	a	person’s	age	and	the	other	their	house	number.	
Both	features	map	into	the	integers,	but	the	way	we	utilize	those	features	can	be	rather	dif-
ferent.	Calculating	the	average	age	of	a	group	of	people	is	meaningful,	but	an	average	house	
number	is	perhaps	not	beneficial!	These,	in	turn,	depend	on	whether	the	feature	values	are	
represented on a meaningful scale.	In	spite	of	appearances,	house	numbers	are	not	actually	
integers	but	ordinals.	They	can	be	employed	to	determine	that	number	10’s	neighbors	are	
number	8	and	number	12,	but	we	cannot	assume	that	the	distance	between	8	and	10	is	the	same	
as	the	distance	between	10	and	12.	Because	of	the	lack	of	a	linear	scale,	it	is	not	meaningful	to	
add	or	subtract	house	numbers,	which	prevents	operations	such	as	averaging	(Flach,	2012).

2.2.2 Statistical features

Numerous	statistical	features	can	be	extracted	from	each	subsample	data	point,	as	they	are	
the	main	distinguishing	values	to	describe	the	distribution	of	the	data.	The	features	are	the	
minimum, maximum, mean, median, mode, standard deviation, variance, first quartile, third 
quartile, and interquartile range (IQR) of the data vector (Subasi,	2019). The varieties of calcu-
lations on features are generally stated as statistics or aggregates. Three main types are shape 
statistics, statistics of dispersion, and statistics of central tendency.	 Each	 of	 these	 can	 be	
represented	either	as	a	tangible	property	of	a	given	sample	(sample	statistics)	or	a	hypothetical	
property of an unknown population. The statistical values—namely, mean, standard deviation, 
skewness, and kurtosis—are generally utilized to reduce the dimension of data. The first and 
second-order	statistics	are	critical	in	data	analysis.	On	the	other	hand,	second-order	statistics	
are	not	enough	for	many	time	series	data.	Hence,	higher-order	statistics	should	also	be	used	for	
a	better	description	of	the	data.	Although	the	first	and	second-order	statistics	designate	mean	
and variance, the higher-order statistics designate higher-order moments (Mendel,	1991). If 
X(n)	is	a	random	process,	the	moments	of	X(n)	can	be	represented	as	the	coefficients	in	Taylor	
series expansion of the moment producing function (Kutlu & Kuntalp, 2012; Subasi,	2019).

( ) ( ) ( )= + m i E X n X n i,2 (2.1)

φ ( ) ( )=  w E jwxexpx (2.2)

If discrete time series has zero mean, then the moments are defined as:

( ) ( ) ( ) ( )= + ⋅ + m i j E X n X n i X n j, ,3 (2.3)

( ) ( ) ( ) ( ) ( )= + ⋅ + ⋅ + m i j k E X n X n i X n j X n k, , ,4 (2.4)

where	E[•]	is	the	expected	value	of	the	random	process	X(•)	(Kutlu & Kuntalp, 2012).
Higher-order	statistics	(HOS)	denote	the	cumulants	with	orders	of	three	and	higher-order-

computed	numbers,	which	are	linear	combinations	of	lower-order	moments	and	lower-order	
cumulants. The moments and cumulants are calculated and then employed as features under 

m2i=EXn,Xn+i

φxw=Eexpjwx

m3i,j=EXn,Xn+i⋅Xn+j

m4i,j,k=EXn,Xn+i⋅Xn+j⋅Xn+k



30 2. Data preprocessing

 

the	assumption	that	the	time	series	samples	are	random	variables	taken	from	an	unknown	
distribution,	P(x).	The	moment	about	zero,	µn(0)	(raw	moment),	of	a	continuous	distribution,	
P(x), is mathematically represented in the following equation:

µµ ( ) ( )= ∫0 x P xn
n

 (2.5)

In	the	case	of	time	series,	discrete	distribution	of	P(x)	describes	the	moment	as	given	in	 
Eq. (2.6)

µµ ( ) ( )= ∑0 x P xn
n

 (2.6)

Moments	can	be	taken	about	a	point,	a,	in	which	case	Eq.	(2.1)	is	calculated	as	shown	in	
Eq. (2.7)

µµ ( ) ( )= ∑ −( )a x a P xn
n

 (2.7)

The first moment, µ1, characterizes the mean; the second moment, µ2, characterizes the 
variance; and the third moment, µ3,	the	skewness	of	the	distribution	that	computes	the	asym-
metry	degree.	The	fourth-order	moment	is	kurtosis,	measuring	the	distribution	peakedness.	
Central	 moments	 are	 moments	 taken	 from	 the	 distribution	 mean.	 The	 cumulants,	 kn, of a 
distribution	are	 taken	 from	the	probability	density	 function,	P(x). The higher-order cumu-
lants	are	revealed	to	be	linear	combinations	of	the	moments	(Begg, Lai, & Palaniswami, 2008; 
Subasi,	2019).	Supposing	raw	moments,	 the	first	 four	cumulants	can	be	characterized	evi-
dently as given in Eq. (2.8)
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The most significant statistics of central tendency are the mean,

∑µ =
=

1
M

y
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M

j	 (2.9)

the median, and the mode (Flach,	2012).
The second type of calculation on features are statistics of dispersion (spread), which are the 

average squared deviation from the mean (variance), and its square root (standard deviation).

∑σ µ= −
=M
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j

M

j

1

2

 (2.10)

Variance	and	standard	deviation	mainly	measure	 the	same	 thing,	but	 the	 latter	has	 the	
benefit	that	it	is	represented	on	the	same	scale	as	the	feature	itself.	A	simpler	dispersion	sta-
tistic is the range,	 which	 is	 the	 difference	 between	 maximum	 and	 minimum	 value.	 Other	

µn0=∫xnPx

µn0=∑xnPx

µna=∑(x−a)nPx

k1=µ1k2=µ2−µ12k3=2µ13−3µ1µ2+µ3k4

=−6µ14+12µ12µ2−3µ22−4µ1µ3+µ4

µ=1M∑j=1Myj

σ=1M∑j=1M(yj−µ)2
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statistics of dispersion are the percentiles. The p-th percentile is the value such that p percent 
of	the	instances	fall	below	it.	If	we	have	100	instances,	the	80th	percentile	is	the	value	of	the	
81st instance in a list of increasing values. If p is a multiple of 25, the percentiles are also 
called quartiles. Percentiles and quartiles are special cases of quantiles.	Once	we	have	quan-
tiles,	we	can	measure	dispersion	as	the	distance	between	different	quantiles.	For	instance,	the	
interquartile range	is	the	difference	between	the	third	and	first	quartile	(i.e.,	the	75th	and	25th	
percentile).

The	 skew	 and	 “peakedness”	 of	 a	 distribution	 are	 measured	 by	 skewness	 and	 kurtosis,	
which are the third and fourth central moment	 of	 the	 sample.	 Obviously,	 the	 first	 central	
moment is the average deviation from the mean, and the second central moment is the aver-
age squared deviation from the mean, called the variance. The third central moment m3 might 
be	negative	or	positive.	Skewness is defined as

∑ϕ
µ

σ
=

−

=M
y1 ( )

,
j

M
j

1

3

3 (2.11)

where σ	is	the	sample’s	standard	deviation.	A	positive	value	of	skewness	indicates	the	right-
skewed	 distribution	 whereas	 negative	 skewness	 indicates	 the	 left-skewed	 case.	 Kurtosis is 
defined as

∑φ
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σ
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j
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4

4 (2.12)

Positive	excess	kurtosis	 indicates	 that	 the	distribution	 is	more	 sharply	peaked	 than	 the	
normal	distribution	(Flach,	2012).

Meanwhile,	several	feature	extraction	methods	yield	a	feature	vector	that	is	too	big	to	be	
used as an input to a classifier. By using first, second, third, and fourth-order cumulants, 
the	reduced	feature	sets	can	be	calculated.	The	capability	of	 transforming	a	set	of	coeffi-
cients into a reduced feature set designates one of the critical steps in any learning task, as 
this	reduced	feature	set	characterizes	the	behavior	of	the	time	series	data	in	a	better	way	
(Subasi,	2019).

=1M∑j=1M(yj−µ)3σ3,

φ=1M∑j=1M(yj−µ)4σ4

Example 2.1
The following Python code is used to calculate the statistical values, such as mean, median, 

standard deviation, skewness, and kurtosis of a vector. Note that this example is adapted from 
Python–scikit-learn.
# descriptive statistics
import scipy as sp
import scipy.stats as stats
import numpy as np
from matplotlib import pyplot as plt
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2.2.3 Structured features

It is generally implicitly supposed that an instance is a vector of feature values. This states 
that	 there	 is	 no	 other	 information	 existing	 about	 an	 instance	 apart	 from	 the	 information	
extracted	by	its	feature	values.	Defining	an	instance	with	its	vector	of	feature	values	is	called	
an abstraction,	which	is	the	result	of	filtering	out	redundant	information.	Defining	an	e-mail	
as	a	vector	of	word	frequencies	is	an	example	of	an	abstraction.	But	occasionally	it	is	essen-
tial	to	circumvent	such	abstractions	and	keep	more	information	about	an	instance	that	can	
be	taken	by	a	finite	vector	of	feature	values.	For	instance,	an	e-mail	can	be	represented	as	a	
long string, or as a sequence of words and punctuation marks, or as a tree that captures the 
HTML	mark-up,	and	so	on.	Features	that	work	on	such	structured	instance	spaces	are	called	
structured features. The significant characteristic of structured features is that they involve 
local variables	 that	denote	objects	other	 than	 the	 instance	 itself.	Nevertheless,	 it	 is	possible	
to employ other forms of aggregation	over	 local	variables.	Structured	 features	can	be	built	
either prior to learning a model or simultaneously with it. The first scenario is often called 
propositionalisation	because	the	features	can	be	seen	as	a	translation	from	first-order	logic	to	

from sklearn.datasets.samples_generator import make_blobs
#Create a dataset
X, y	=	make_blobs(n_samples	=	300, centers	=	4, cluster_std	=	0.60, random_
state	=	0)
plt.scatter(X[:,0], X[:,1])

X_mean	=	sp.mean(X[:,1])
print(‘Mean	=	‘,X_mean)

X_mean	=	np.mean(X[:,1])
print(‘Mean	=	‘,X_mean)

X_SD	=	sp.std(X[:,1])
print(‘SD	=	‘,X_SD)
X_SD	=	np.std(X[:,1])
print(‘SD	=	‘,X_SD)

X_median	=	sp.median(X[:,1])
print(‘Median	=	‘,X_median)
X_median	=	np.median(X[:,1])
print(‘Median	=	‘,X_median)

X_skewness	=	stats.skew(X[:,1])
print(‘Skewness	=	‘,X_skewness)

X_kurtosis	=	stats.kurtosis(X[:,1])
print(‘Kurtosis	=	‘,X_kurtosis)
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propositional	 logic	 without	 local	 variables.	 The	 main	 challenge	 with	 propositionalisation	
approaches	is	how	to	deal	with	combinatorial	explosion	of	the	number	of	potential	features	
(Flach,	2012).

2.2.4 Feature transformations

The	objective	of	feature transformations	is	to	improve	the	effectiveness	of	a	feature	by	elimi-
nating,	changing,	or	adding	information.	The	best-known	feature	transformations	are	those	
that turn a feature of one type into another of the next type down this list. Nevertheless, 
there are also transformations that change the scale of quantitative features or add a scale (or 
order) to ordinal, categorical, and Boolean features. The simplest feature transformations are 
entirely deductive in the sense that they achieve a well-defined result that does not need to 
make any choices. Binarization transforms a categorical feature into a set of Boolean features, 
one for each value of the categorical feature. This loses information since the values of a 
single	categorical	feature	are	mutually	exclusive	but	are	sometimes	required	if	a	model	can-
not handle more than two feature values. Unordering trivially turns an ordinal feature into a 
categorical	one	by	removing	the	ordering	of	the	feature	values.	This	is	generally	needed,	as	
most learning models cannot handle ordinal features directly. An interesting alternative is to 
add	a	scale	to	the	feature	by	means	of	calibration	(Flach,	2012).

The sklearn.preprocessing package provides several custom utility functions and trans-
former classes to transform raw feature vectors into a representation that is more appropriate 
for	the	downstream	estimators.	Usually,	learning	algorithms	benefit	from	standardization	of	
the	dataset.	If	there	are	some	outliers	in	the	set,	scalers,	robust	transformers,	and	normalizers	
are more appropriate.

2.2.5 Thresholding and discretization

Thresholding	converts	an	ordinal	or	a	quantitative	feature	into	a	Boolean	feature	by	find-
ing	a	feature	value	to	divide.	Such	thresholds	can	be	chosen	in	a	supervised	or	unsupervised	
way. Unsupervised thresholding characteristically includes the computing of some statistic 
over the data, while supervised thresholding requires sorting the data on the feature value 
and	passing	through	this	ordering	to	optimize	a	specific	objective	function,	such	as	informa-
tion	gain.	If	thresholding	can	be	generalized	to	numerous	thresholds,	one	of	the	mostly	uti-
lized nondeductive feature transformations is reached. In discretization a quantitative feature 
is converted into an ordinal feature. Every ordinal value is denoted as a bin and related to an 
interval of the original quantitative feature (Flach,	2012).

2.2.6 Data manipulation

There are two main approaches to transforming dissimilar features into the same scale: 
standardization and normalization. These terms are generally employed rather loosely in 
diverse	areas,	 and	 their	meanings	 should	be	derived	 from	 the	context.	Generally,	normal-
ization	denotes	the	rescaling	of	features	to	a	range	of	[0,	1]	that	is	a	special	case	of	min-max	
scaling.	To	normalize	the	data,	the	min-max	scaling	can	simply	be	applied	to	every	feature	
column (Raschka, 2015).
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2.2.7 Standardization

Standardization of datasets is a well-known requirement for a variety of machine learn-
ing algorithms implemented in scikit-learn. They may not achieve a good performance if the 
individual	features	do	not	more	or	less	look	like	standard	normally	distributed	data,	which	
is	Gaussian	with	zero mean and unit variance.	 In	practice	the	shape	of	 the	distribution	is	
generally	ignored	and	the	data	are	just	transformed	to	center	by	removing	the	mean	value	
of	each	feature,	and	then	scaled	by	dividing	nonconstant	features	by	their	standard	devia-
tion.	The	preprocessing	module	further	presents	a	utility	class	StandardScaler	that	utilizes	the	
Transformer API to evaluate the mean and standard deviation on a training set in a way that 
the	same	transformation	can	be	later	utilized	on	the	testing	set	(scikit-learn,	n.d.).

Example 2.2
The following Python code is used to represent the min-max scaling process, which is realized 

in scikit-learn. Note that this example is adapted from Python–scikit-learn. An alternative standard-
ization	 is	 scaling	 features	 to	 lie	between	a	given	minimum	and	maximum	value,	often	between	
0	and	1,	or	so	that	the	maximum	absolute	value	of	each	feature	is	scaled	to	unit	size.	This	can	be	
achieved	 using	 MinMaxScaler	 or	 MaxAbsScaler,	 respectively.	 The	 motivation	 to	 use	 this	 scaling	
includes	robustness	 to	very	small	 standard	deviations	of	 features	and	preserving	zero	entries	 in	
sparse	data.	Here	is	an	example	to	scale	a	toy	data	matrix	to	the	[0,	1]	range.
from sklearn import preprocessing
import numpy as np
X_train	=	np.array([[ 1., -1., 2.],
       [ 2., 0., 0.],
       [ 0., 1., -1.]])
print(‘Original Matrix:\n’,X_train)
min_max_scaler	=	preprocessing.MinMaxScaler()
X_train_minmax	=	min_max_scaler.fit_transform(X_train)
print(‘Scaled Matrix:\n’,X_train_minmax)

Example 2.3
The following Python code is used to represent the simple scaling process, which is realized in 

scikit-learn. Note that this example is adapted from Python–scikit-learn. The function scale pro-
vides a quick and easy way to perform this operation on a single array-like dataset:
from sklearn import preprocessing
import numpy as np
X_train	=	np.array([[	1.,	-1.,	2.],
	 	 	 	 	 [	2.,	0.,	0.],
	 	 	 	 	 [	0.,	1.,	-1.]])
X_scaled	=	preprocessing.scale(X_train)
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Normalization utilizing the min-max scaling is a generally employed method that is suit-
able	once	the	values	in	a	bounded	interval	are	needed.	Standardization	can	be	more	practical	
for several machine learning techniques since various linear models initialize the weights to 0 
or small random values close to 0. By means of standardization, the feature columns are cen-
tered at mean 0 with standard deviation 1 in a way that the feature columns produce a normal 
distribution.	Moreover,	 standardization	keeps	valuable	 information	about	 the	outliers	and	
makes the algorithm less sensitive to them in contrast to min-max scaling that scales the data 
to	a	limited	range	of	values.	Like	MinMaxScaler,	standardization	is	also	implemented	as	a	
class	StandardScaler	in	scikit-learn.	It	is	also	imperative	to	highlight	that	the	StandardScaler	
can fit only when on the training data and to utilize those parameters to transform the test set 
or any new data point (Raschka, 2015).

X_scaled
#%%
#Scaled	data	has	zero	mean	and	unit	variance:

X_scaled.mean(axis	=	0)
#%%
X_scaled.std(axis	=	0)

Example 2.4
The following Python code is used to represent the scaling process, which is realized in scikit-

learn.	The	preprocessing	module	further	provides	a	utility	class	StandardScaler	 that	 implements	
the	Transformer	API	to	compute	the	mean	and	standard	deviation	on	a	training	set	so	as	to	be	able	
to	later	reapply	the	same	transformation	on	the	testing	set.	This	class	is	hence	suitable	for	use	in	
the early steps of a sklearn.pipeline.Pipeline. Note that this example is adapted from Python–scikit-
learn.	StandardScaler	can	be	used	as	follows:
from sklearn import preprocessing
import numpy as np
X_train	=	np.array([[ 2., -2., 5.],
       [ 4., 0., 0.],
       [ 0., 2., -4.]])
print(‘Original Matrix:\n’,X_train)
scaler	=	preprocessing.StandardScaler().fit(X_train)
scaler
print(‘Scalar Mean:’,scaler.mean_)
print(‘Scalar:’,scaler.scale_)
X_train_scaled	=	scaler.transform(X_train)
print(‘Scaled Matrix:\n’,X_train_scaled)
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Using	 the	 preceding	 code,	 we	 loaded	 the	 StandardScaler	 class	 from	 the	 preprocessing	
module	and	 initialized	a	new	StandardScaler	object.	Using	 the	fit	method,	StandardScaler	
estimated the parameters µ (sample mean) and σ (standard deviation) for each feature 
dimension from the training data. By calling the transform method, we then standardized the 
training data using those estimated parameters µ and σ. Note that we used the same scaling 
parameters	to	standardize	the	test	set	so	that	both	the	values	in	the	training	and	test	dataset	
are	comparable	to	each	other	(Raschka, 2015).	Scikit-learn	also	implements	a	large	variety	of	
different	performance	metrics	that	are	available	via	the	metrics	module.

Example 2.5
The following Python code is used to represent the scaling process, which is realized in scikit-

learn.	The	StandardScaler	is	suitable	for	use	in	the	early	steps	of	a	sklearn.pipeline.Pipeline.	In	this	
example we create the dataset using the sklearn.datasets.samples_generator. Note that this example 
is	adapted	from	Python–scikit-learn.	StandardScaler	can	be	used	as	follows:

from matplotlib import pyplot as plt
from sklearn.datasets.samples_generator import make_blobs
from sklearn import preprocessing
import numpy as np
#Create a dataset
X, y	=	make_blobs(n_samples	=	100, centers	=	4, cluster_std	=	0.60, random_
state	=	0)
plt.scatter(X[:,0], X[:,1])

print(‘Original Matrix:\n’,X)
scaler	=	preprocessing.StandardScaler().fit(X)
scaler

print(‘Scalar Mean:’,scaler.mean_)
print(‘Scalar:’,scaler.scale_)
X_scaled	=	scaler.transform(X)
print(‘Scaled Matrix:\n’,X_scaled)

Another transformation is the nonlinear transformation. Two categories of transforma-
tions	 are	 available:	 quantile	 transforms	 and	 power	 transforms.	 Both	 quantile	 and	 power	
transforms	 are	 based	 on	 monotonic	 transformations	 of	 the	 features	 and	 thus	 preserve	 the	
rank of the values along each feature. QuantileTransformer and quantile_transform provide a 
nonparametric	transformation	to	map	the	data	to	a	uniform	distribution	with	values	between	
0 and 1.
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Example 2.6
The following Python code is used to represent the QuantileTransformer process, which is real-

ized in scikit-learn. In this example we employ the Iris dataset that exists in sklearn.datasets, and the 
scatter plot is also drawn in two dimensions. Note that this example is adapted from Python–scikit-
learn.	QuantileTransformer	can	be	used	as	follows:
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
from sklearn import preprocessing

iris	=	load_iris()
X, y	=	iris.data, iris.target

X	=	iris.data[:, :2] # we only take the first two features.
y	=	iris.target

plt.figure(2, figsize	=	(8, 6))
plt.clf()

#%%
#Transform data
quantile_transformer	=	preprocessing.QuantileTransformer(random_state	=	0)
X_trans	=	quantile_transformer.fit_transform(X)
np.percentile(X[:, 0], [0, 25, 50, 75, 100])

np.percentile(X_trans[:, 0], [0, 25, 50, 75, 100])
#%%
# Plot the original data points
plt.scatter(X[:, 0], X[:, 1], c	=	y, cmap	=	plt.cm.Set1,
          edgecolor	=	‘k’)
plt.xlabel(‘Sepal length’)
plt.ylabel(‘Sepal width’)
plt.title(‘Original data points’)
plt.xticks(())
plt.yticks(())

#%%
# Plot the transformed data points
plt.scatter(X_trans[:, 0], X[:, 1], c	=	y, cmap	=	plt.cm.Set1,
          edgecolor	=	‘k’)
plt.xlabel(‘Sepal length’)
plt.ylabel(‘Sepal width’)
plt.title(‘Transformed data points’)
plt.xticks(())
plt.yticks(())
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Example 2.7
This example is the modification of the Example 2.6 where we use the QuantileTransformer 

again. In this example, scatter plot is drawn in three dimensions.
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
from mpl_toolkits.mplot3d import Axes3D
from sklearn.model_selection import train_test_split
from sklearn import preprocessing

iris	=	load_iris()
X, y	=	iris.data, iris.target

X	=	iris.data[:, :3] # we only take the first two features.
y	=	iris.target

plt.figure(3, figsize	=	(8, 6))
plt.clf()

#%%
#Transform data
quantile_transformer	=	preprocessing.QuantileTransformer(random_state	=	0)
X_trans	=	quantile_transformer.fit_transform(X)

np.percentile(X[:, 0], [0, 25, 50, 75, 100])
np.percentile(X_trans[:, 0], [0, 25, 50, 75, 100])

#%%
# Plot the original data points
fig	=	plt.figure(1, figsize	=	(8, 6))
ax	=	Axes3D(fig, elev	=	-150, azim	=	110)
ax.scatter(X[:, 0], X[:, 1], X[:, 2], c	=	y,
          cmap	=	plt.cm.Set1, edgecolor	=	‘k’, s	=	40)
ax.set_title(‘Original data points’)
ax.set_xlabel(‘Sepal length’)
ax.w_xaxis.set_ticklabels([])
ax.set_ylabel(‘Sepal width’)
ax.w_yaxis.set_ticklabels([])
ax.set_zlabel(‘Sepal height’)
ax.w_zaxis.set_ticklabels([])

plt.show()
#%%
# Plot the transformed data points

fig	=	plt.figure(1, figsize	=	(8, 6))
ax	=	Axes3D(fig, elev	=	-150, azim	=	110)
ax.scatter(X_trans[:, 0], X_trans[:, 1], X_trans[:, 2], c	=	y,
          cmap	=	plt.cm.Set1, edgecolor	=	‘k’, s	=	40)
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2.2.8 Normalization and calibration

Thresholding and discretization are feature transformations that eliminate the measure of 
a quantitative feature. If adapting the scale of a quantitative feature is done in an unsuper-
vised manner, it is generally termed normalization,	while	calibration	utilizes	the	supervised	
approaches. Feature normalization is mostly needed to eliminate the effect of several quantita-
tive	features	measured	on	different	scales.	If	the	features	are	normally	distributed,	it	can	be	
converted into z-scores	 by	 centering	 on	 the	 mean	 and	 dividing	 by	 the	 standard	 deviation.	
Feature calibration is known as a supervised feature transformation adding a meaningful mea-
sure	carrying	class	information	to	arbitrary	features	(Flach,	2012).

ax.set_title(‘Transformed data points’)
ax.set_xlabel(‘Sepal length’)
ax.w_xaxis.set_ticklabels([])
ax.set_ylabel(‘Sepal width’)
ax.w_yaxis.set_ticklabels([])
ax.set_zlabel(‘Sepal height’)
ax.w_zaxis.set_ticklabels([])

plt.show()

Example 2.8
The following Python code is used to represent the normalization process, which is realized in 

scikit-learn.	In	this	example	we	utilize	the	Iris	dataset,	which	exists	in	sklearn.datasets,	and	3-D	scatter	
plot	is	also	drawn	before	and	after	normalization	using	preprocessing.normalize. Note that this exam-
ple is adapted from Python–scikit-learn. Normalization is a process of scaling individual samples to 
have	unit	norm.	This	process	can	be	useful	if	you	plan	to	use	a	quadratic	form	such	as	the	dot-product	
or any other kernel to quantify the similarity of any pair of samples. The function normalize provides 
a quick and easy way to perform this operation on several datasets, either using the l1 or l2 norms.
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
from mpl_toolkits.mplot3d import Axes3D
from sklearn.model_selection import train_test_split
from sklearn import preprocessing

iris	=	load_iris()
X, y	=	iris.data, iris.target

X	=	iris.data[:, :3] # we only take the first two features.
y	=	iris.target

plt.figure(3, figsize	=	(8, 6))
plt.clf()

#%%
# Plot the original data points
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2.2.9 Incomplete features

Missing	feature	values	at	training	time	produces	problems.	First,	a	missing	feature	value	
might	be	correlated	with	the	target	variable.	These	features	must	be	designated	as	“missing”	
value	since	a	tree	model	can	split	on	it,	but	 this	would	not	be	the	case	for	a	 linear	model.	
Imputation	is	a	process	of	filling	in	the	missing	values.	This	process	can	be	implemented	by	
utilizing	the	per-class	means,	medians,	or	modes	over	the	observed	values	of	the	feature.	A	
more	complicated	way	is	to	find	the	feature	correlation	by	creating	a	predictive	model	for	
each incomplete feature and employ that model to “predict” the missing value (Flach,	2012).

For	a	variety	of	reasons,	numerous	real-world	datasets	include	missing	values,	generally	
encoded	as	blanks,	NaNs,	or	other	placeholders.	Such	datasets,	however,	are	incompatible	
with scikit-learn estimators that assume that all values in an array are numerical and that all 
have and hold meaning. A simple approach to employ incomplete datasets is to discard entire 

# Plot the original data points
fig	=	plt.figure(1, figsize	=	(8, 6))
ax	=	Axes3D(fig, elev	=	-150, azim	=	110)
ax.scatter(X[:, 0], X[:, 1], X[:, 2], c	=	y,
          cmap	=	plt.cm.Set1, edgecolor	=	‘k’, s	=	40)
ax.set_title(‘Original data points’)
ax.set_xlabel(‘Sepal length’)
ax.w_xaxis.set_ticklabels([])
ax.set_ylabel(‘Sepal width’)
ax.w_yaxis.set_ticklabels([])
ax.set_zlabel(‘Sepal height’)
ax.w_zaxis.set_ticklabels([])

plt.show()
#%%
X_normalized	=	preprocessing.normalize(X, norm	=	‘l2’)
# Plot the normalized data points
fig	=	plt.figure(1, figsize	=	(8, 6))
ax	=	Axes3D(fig, elev	=	-150, azim	=	110)
ax.scatter(X_normalized[:, 0], X_normalized[:, 1], X_normalized[:, 2], 
c	=	y,
          cmap	=	plt.cm.Set1, edgecolor	=	‘k’, s	=	40)
ax.set_title(‘Transformed data points’)
ax.set_xlabel(‘Sepal length’)
ax.w_xaxis.set_ticklabels([])
ax.set_ylabel(‘Sepal width’)
ax.w_yaxis.set_ticklabels([])
ax.set_zlabel(‘Sepal height’)
ax.w_zaxis.set_ticklabels([])
plt.show()
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rows and/or columns containing missing values. Nevertheless, this comes at the price of los-
ing	data	that	might	be	important	(even	though	incomplete).	A	better	strategy	is	to	impute	the	
missing values, that is, to infer them from the known part of the data. The MissingIndicator 
transformer	 is	helpful	 to	 transform	a	dataset	 into	related	binary	matrix	demonstrating	the	
existence	of	missing	values	in	the	dataset.	This	transformation	is	beneficial	in	combination	
with	imputation.	Once	utilizing	imputation,	keeping	the	information	about	which	values	had	
been	missing	can	be	informative.	NaN	is	generally	employed	as	the	placeholder	for	missing	
values.	But	 it	 enforces	 the	data	 type	 to	be	float.	The	parameter	missing_values	allows	 for	
identifying	other	placeholders,	such	as	integer.	In	the	following	example,	-1	will	be	used	as	
missing values (scikit-learn, n.d.).

Example 2.9
The following Python code is used to represent the imputation, a process of filling in the missing 

values in scikit-learn. In this example we utilize the Iris dataset, which exists in sklearn.datasets, 
and	the	3-D	scatter	plot	is	also	drawn	before	and	after	imputation	using	SimpleImputer,	MissingIn-
dicator. Note that this example is adapted from Python–scikit-learn.
import numpy as np
from sklearn.datasets import load_iris
from sklearn.impute import SimpleImputer, MissingIndicator
from sklearn.model_selection import train_test_split
from sklearn.pipeline import FeatureUnion, make_pipeline
from sklearn.tree import DecisionTreeClassifier
X, y	=	load_iris(return_X_y	=	True)
mask	=	np.random.randint(0, 2, size	=	X.shape).astype(np.bool)
X[mask]	=	np.nan
X_train, X_test, y_train, _	=	train_test_split(X, y, test_size	=	100,ran-
dom_state	=	0)

#%%
“”“Now a FeatureUnion is created. All features will be imputed utilizing 
SimpleImputer,
in order to enable classifiers to work with this data. Moreover, it adds 
the
indicator variables from MissingIndicator.""''
transformer	=	FeatureUnion(
            transformer_list	=	[
            (‘features’, SimpleImputer(strategy	=	‘mean’)),
          (‘indicators’, MissingIndicator())])
transformer	=	transformer.fit(X_train, y_train)
results	=	transformer.transform(X_test)
results.shape

#%%%
“”“Of course, the transformer cannot be utilized to make any predictions.
this should be wrapped in a Pipeline with a classifier (e.g., a 
DecisionTreeClassifier)
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2.2.10 Feature extraction methods

Feature	extraction	deals	with	the	problem	of	finding	the	most	informative,	distinctive,	and	
reduced set of features, to improve the success of data storage and processing. Important 
feature	vectors	remain	the	most	common	and	suitable	signal	representation	for	the	classifica-
tion	problems.	Numerous	scientists	 in	diverse	areas,	who	are	 interested	in	data	modelling	
and	classification	are	combining	their	effort	to	enhance	the	problem	of	feature	extraction.	The	
current	advances	in	both	data	analysis	and	machine	learning	fields	made	it	possible	to	create	
a	recognition	system,	which	can	achieve	tasks	 that	could	not	be	accomplished	in	 the	past.	
Feature	extraction	lies	at	the	center	of	these	advancements	with	applications	in	data	analysis	
(Guyon,	Gunn,	Nikravesh,	&	Zadeh,	2006; Subasi,	2019).

In feature extraction,	we	are	concerned	about	finding	a	new	set	of	k dimensions, which are 
combinations	of	the	original	d dimensions. The widely known and most commonly utilized 
feature extraction methods are principal component analysis and linear discriminant analysis, 
unsupervised and supervised learning techniques. Principal component analysis is consider-
ably	similar	 to	two	other	unsupervised	linear	methods,	 factor analysis and multidimensional 
scaling.	When	we	have	not	one	but	two	sets	of	observed	variables,	canonical correlation analysis 
can	 be	 utilized	 to	 find	 the	 joint	 features,	 which	 explain	 the	 dependency	 between	 the	 two	
(Alpaydin, 2014).

Conventional	classifiers	do	not	contain	a	process	to	deal	with	class	boundaries.	Therefore,	
if	the	input	variables	(number	of	features)	are	big	as	compared	to	the	number	of	training	data,	
class	boundaries	may	not	overlap.	In	such	situations,	the	generalization	ability	of	the	classi-
fier	may	not	be	sufficient.	Hence,	to	improve	the	generalization	ability,	usually	a	small	set	of	
features	from	the	original	input	variables	are	formed	by	feature	extraction,	dimension	reduc-
tion, or feature selection. The most efficient characteristic in creating a model with high gen-
eralization	capability	is	to	utilize	informative	and	distinctive	sets	of	features.	Nevertheless,	as	
there	is	no	effective	way	of	finding	an	original	set	of	features	for	a	certain	classification	prob-
lem,	it	is	essential	to	find	a	set	of	original	features	by	trial	and	error.	If	the	number	of	features	
is	so	big	and	every	feature	has	an	insignificant	effect	on	the	classification,	it	is	more	appropri-
ate to transform the set of features into a reduced set of features. In data analysis, raw data are 
transformed	into	a	set	of	features	by	means	of	a	linear	transformation.	If	every	feature	in	the	
original	set	of	features	has	an	effect	on	the	classification,	the	set	is	reduced	by	feature	extrac-
tion, feature selection, or dimension reduction. By feature selection or dimension reduction, 
ineffective or redundant features are removed in a way that the higher generalization perfor-
mance	and	faster	classification	by	the	initial	set	of	features	can	be	accomplished	(Abe,	2010; 
Subasi,	2019).

For	 efficient	 classification,	 an	 accurate	 feature	 extraction	 technique	 is	 needed	 to	 extract	
informative and distinctive sets of features from the original dataset. In essence, if the 

to be able to make predictions.""''
clf	=	make_pipeline(transformer, DecisionTreeClassifier())
clf	=	clf.fit(X_train, y_train)
results	=	clf.predict(X_test)
results.shape
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extracted features do not exactly represent the data used and are not relevant, a classification 
algorithm	using	such	features	may	have	problems	describing	the	classes	of	the	features	(Siuly	
et	al.Siuly,	Li,	&	Zhang,	2016).	Accordingly,	the	classification	performance	can	be	poor.	One	of	
the	critical	steps	in	the	classification	of	biomedical	signals	is	the	feature	extraction.	Hence,	the	
biomedical	signals,	composed	of	several	data	points,	and	informative	and	distinctive	features	
can	be	extracted	by	employing	different	feature	extraction	methods.	These	informative	and	
distinctive	parameters	describe	the	behavior	of	the	biomedical	signals,	which	may	designate	
a	specific	action	or	activity.	The	signal	patterns	utilized	in	biomedical	signal	analysis	can	be	
characterized	by	frequencies	and	amplitudes.	These	features	can	be	extracted	utilizing	diverse	
feature extraction algorithms, which are another crucial step in signal processing to simplify 
the succeeding stage for classification (Graimann,	Allison,	&	Pfurtscheller,	2009). As all wave-
forms	have	limited	duration	and	frequency,	efficient	decomposition	of	the	biomedical	signals	
is required for the integration of time, frequency, and space dimensions. Biomedical signals 
can	be	decomposed	using	time-frequency	(TF)	methods	that	can	detect	changes	in	both	time	
and frequency (Kevric	&	Subasi,	2017; Sanei,	2013; Subasi,	2019).

It	is	important	to	deal	with	smaller	data	that	describe	appropriate	features	of	the	signals	to	
achieve	a	better	performance.	Features	are	typically	collected	into	a	feature	vector	by	trans-
forming	signals	into	a	related	feature	vector	known	as	feature	extraction.	Distinguishing	fea-
tures	of	a	signal	are	analyzed	by	a	signal	classification	framework,	and	depending	on	those	
distinguishing features, class of the signal is decided (Siuly	et	al.,	2016). The feature extraction 
techniques	can	be	categorized	into	four	groups:	parametric	methods,	nonparametric	meth-
ods,	 eigenvector	 methods,	 and	 time-frequency	 methods.	 The	 model-based	 or	 parametric	
methods produce a signal model with known functional form and then estimate the param-
eters in the produced model. The autoregressive (AR) model, moving average (MA) model, 
autoregressive-moving average (ARMA) model, and Lyapunov exponents are popular para-
metric	methods.	The	AR	model	is	suitable	to	represent	spectra	with	narrow	peaks	(Kay,	1993; 
Kay	&	Marple,	1981; Proakis & Manolakiss; Stoica	&	Moses,	1997). The nonparametric meth-
ods	are	based	on	 the	descriptions	of	power	spectral	density	 (PSD)	 to	deliver	spectral	esti-
mates. Two well-known, nonparametric methods are the periodogram and the correlogram; 
these	provide	a	practically	high	resolution	for	adequately	long	data	lengths,	but	they	have	
poor spectral estimation since their variance is high and does not decrease with increasing 
data length. Eigenvector methods are used to estimate the frequencies and powers of signals 
from	noise-corrupted	measurements.	These	methods	are	produced	by	eigen	decomposition	
of the correlation matrix of the noise-corrupted signal. The eigenvector methods, such as the 
Pisarenko,	 minimum-norm,	 and	 multiple	 signal	 classification	 (MUSIC)	 are	 the	 best	 fitting	
to	signals,	which	are	supposed	to	be	composed	of	several	sinusoids	suppressed	with	noise	
(Proakis & Manolakis, 2007; Stoica	&	Moses,	1997).	The	time-frequency	methods	are	broadly	
used	in	biomedical	signal	processing	and	analysis.	Time–frequency	methods,	such	as	short-
time	Fourier	transform	(STFT),	wavelet	transform	(WT),	discrete	wavelet	transform	(DWT),	
stationary	wavelet	transform	(SWT),	and	wavelet	packet	decomposition	(WPD)	decompose	
signals	in	both	time	and	frequency	domain	(Siuly	et	al.,	2016).	Short	time	Fourier	transform	
(STFT),	 Wigner-Ville	 distribution,	 Cohen	 class	 kernel	 functions,	 wavelet	 transform	 (WT),	
discrete	 wavelet	 transform	 (DWT),	 stationary	 wavelet	 transform	 (SWT),	 wavelet	 packet	
decomposition	 (WPD),	 dual	 tree	 complex	 wavelet	 transform	 (DT-CWT),	 tunable	 Q	 wave-
let	transform	(TQWT),	empirical	wavelet	transform	(EWT),	empirical	mode	decomposition	
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(EMD),	 ensemble	 EMD	 (EEMD),	 variational	 mode	 decomposition	 (VMD),	 and	 complete	
EEMD	(CEEMD)	are	widely	known	time-frequency	methods	(Subasi,	2019).

The purpose of the feature extraction is to extract features from the original signal to achieve 
reliable	classification.	Feature	extraction	is	the	most	critical	step	of	the	biomedical	signal	clas-
sification,	as	the	classification	performance	may	be	degraded	if	the	features	are	not	extracted	
in	a	suitable	way.	The	feature	extraction	step	must	reduce	the	original	data	to	a	lower	dimen-
sion	that	contains	most	of	the	valuable	information	included	in	the	original	vector.	Therefore,	
it	is	crucial	to	find	the	key	features	that	describe	the	whole	dataset,	based	on	the	nature	of	that	
dataset.	Diverse	statistical	 features	can	be	extracted	from	each	subsample	data	point	since	
they	are	the	most	characteristic	values	to	define	the	distribution	of	the	biomedical	signals.	The	
features	can	be	the	minimum,	maximum,	mean,	median,	mode,	standard	deviation,	variance,	
first	quartile,	 third	quartile,	 and	 interquartile	 range	 (IQR)	of	 the	biomedical	 signals	 (Siuly	
et al., 2016; Subasi,	2019).

In	recent	decades,	several	feature	extraction	algorithms	have	been	broadly	employed	in	
data	analysis.	The	performance	of	a	classifier	is	reliant	on	the	nature	of	the	data	to	be	classi-
fied.	There	is	no	single	classifier	that	operates	best	on	all	given	problems.	Several	real-world	
tests	have	been	applied	to	compare	classifier	performance	and	to	recognize	the	characteris-
tics of data that determine the performance of the classifier. The total classification accuracy 
and confusion matrix are widely known methods to evaluate the performance of a classifica-
tion	system.	Recently,	receiver	operating	characteristic	(ROC)	curves	have	been	employed	to	
assess	the	trade-off	between	true-	and	false-positive	rates	of	a	given	classification	algorithm	
(Siuly	et	al.,	2016; Subasi,	2019).

2.2.11 Feature extraction using wavelet transform

Each transform provides additional information, which normally reveals a new under-
standing	about	the	original	waveform.	Several	time-frequency	methods	do	not	fully	solve	the	
time-frequency	problem.	The	wavelet	 transform	characterizes	one	more	way	of	describing	
the	time-frequency	characteristics	of	a	waveform.	But	the	waveform	can	be	split	 into	scale	
segments rather than time sections (Semmlow,	 2004).	 Wavelets	 consist	 of	 two	 parameters	
of which one is for scaling in time and another for sliding in time. A wavelet is an oscil-
lating function with energy concentrated in time for enhanced representation of transient 
signals.	 The	 bandpass	 filter	 characteristic	 is	 just	 one	 of	 several	 mathematical	 properties	 a	
wavelet	function	must	have.	Wavelet	analysis	tries	to	achieve	satisfactory	localization	in	both	
time	and	frequency.	Sliding	and	scaling,	two	new	degrees	of	freedom,	allow	the	analysis	of	
the	fine	structures	and	global	waveforms	in	signals.	A	multiresolution	analysis	characterizes	
the important idea of analyzing signals at different scales with a growing level of resolution 
(Sörnmo	&	Laguna,	2005). Comprehensive descriptions of wavelet analysis using mathemat-
ics	can	be	found	in	several	good	books,	which	also	include	the	topic	of	filter	banks	(Basseville 
&	Nikiforov,	1993; Gustafsson,	2000).

2.2.11.1 The continuous wavelet transform (CWT)
A family of wavelets ψs,τ(t)	is	characterized	by	sliding	and	scaling	the	mother	wavelet	ψ(t) 

with the continuous-valued parameters τ and s,
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where the factor s1/  makes sure that all scaled functions contain the same energy. The 
wavelet expands for s > 1 and contracts for 0 < s < 1.

The	probing	function	ψs,τ(t)	always	has	an	oscillatory	form.	For	s	=	1	and	τ	=	0,	it	takes	on	
its natural form, called the mother wavelet ψ1,0(t) ≡ ψ(t), together with several of its family 
members	created	by	contraction	and	dilation.	If	a	wavelet	is	contracted	to	a	smaller	time	scale,	
that	makes	 it	more	 localized	 in	 time	and	 less	 localized	 in	 frequency	because	 the	 resultant	
bandpass	frequency	response	has	increased	bandwidth	and	has	moved	to	higher	frequencies.	
The	continuous	wavelet	transform	(CWT)	w(s,τ) of a continuous-time signal x(t) is identified 
by	comparing	the	signal	x(t)	to	the	probing	function	ψs,τ(t):
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creating two-dimensional mapping onto the time-scale domain. As the last equation represents 
the	convolution	between	the	signal	x(t) and a filter with impulse response ψ −t s s( / )/ , the 
CWT	can	be	viewed	as	a	linear	filter.	As	the	CWT	decomposes	the	waveform	into	coefficients	
of	two	variables	s and τ,	we	need	to	perform	a	double	integration	to	reconstruct	the	original	
waveform from the wavelet coefficients (Bodenstein,	Schneider,	&	Malsburg,	1985):
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and Ψ(f)	represents	the	Fourier	transform	of	ψ(t). The simplest wavelet is the Haar wavelet, 

a	member	of	the	Walsh	basis	functions.	Another	popular	wavelet	is	the	Mexican	hat	wavelet,	
defined	by	the	equation:

ψ ( )( ) = − −t t e1 2 t2 2

 (2.17)

The	Morlet	wavelet,	named	after	a	pioneer	of	wavelet	analysis,	is	given	by	the	equation:
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A	wide	variety	of	wavelets	have	been	suggested,	each	one	possessing	some	feature	par-
ticularly	suitable	for	certain	applications.	Wavelets	provide	a	trade-off	between	time	and	fre-
quency localization. However, they do not occur at an exact time or frequency. More precisely, 
they	are	not	exactly	contained	in	either	time	or	frequency	but	rather	well	contained	in	both.	
These	 ranges	are	also	associated	with	 the	 time	and	 frequency	 resolution	of	 the	CWT.	The	
shorter	wavelet	time	range	delivers	an	improved	capability	to	isolate	local	time	events	but	at	
the	cost	of	frequency	resolution,	because	the	wavelet	only	responds	to	high-frequency	com-
ponents.	On	the	other	hand,	the	CWT	delivers	enhanced	frequency	resolution	for	the	longer	

ψs,τ(t)=1sψt−τs

1/s

w(s,τ)=∫−∞+∞x(t)ψs,τ(t)dt

ψ(−t/s)/s

x(t)=1Cψ∫−∞∞∫0∞w(s,τ)ψs
,τ(t)dτdss2,

Cψ=∫0∞|Ψ(f)|2|f|df<∞,

ψt=1−2t2e−t2

ψ(t)=e−t2cosπ2ln2t
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wavelet	length.	This	integrated	compromise	between	time	and	frequency	resolution	makes	
CWT	appropriate	for	analyzing	signals	that	contain	fast-changing	(high-frequency)	compo-
nents	covered	by	slowly	changing	(low	frequency)	ones	(Semmlow,	2004; Subasi,	2019).

2.2.11.2 The discrete wavelet transform (DWT)
The	only	major	problem	of	CWT	is	its	infinite	redundancy,	as	it	generates	countless	coef-

ficients	 than	 are	 really	 needed	 to	 precisely	 describe	 the	 original	 signal.	 This	 redundancy	
becomes	expensive	only	if	we	need	to	reconstruct	the	original	signal,	because	all	coefficients	
will	 be	 utilized	 making	 the	 calculation	 struggle	 rather	 unnecessary.	 The	 discrete	 wavelet	
transform	(DWT)	generally	produces	the	coefficient	frugality	by	limiting	the	variation	in	scale	
and sliding to powers of 2; thus, it is sometimes termed as the dyadic wavelet transform, hav-
ing	the	same	abbreviation	(DWT).	Nevertheless,	we	can	still	precisely	form	the	original	signal	
from the discrete coefficients of the dyadic wavelet transform (Bodenstein	et	al.,	1985). If the 
chosen	wavelet	belongs	to	an	orthogonal	family,	the	DWT	even	represents	a	nonredundant	
bilateral	transform	(Semmlow,	2004).

Dyadic	sampling	of	the	two	wavelet	parameters	is	defined	as,

Example 2.10
The	following	Python	code	is	used	to	extract	the	ECG	signal	features	utilizing	continuous	wave-

let	transform	(CWT).
#======================================================================
# Continuous wavelet transform
#	=====================================================================
import numpy as np
import matplotlib.pyplot as plt
import pywt
import pywt.data

ecg	=	pywt.data.ecg()
plt.plot(ecg)
plt.xlabel(“Samples”)
plt.ylabel(“ECG in mV”)
plt.show()

#Continuous wavelet transform.
from scipy import signal
import matplotlib.pyplot as plt
widths	=	np.arange(1, 31)
cwtmatr	=	signal.cwt(ecg, signal.ricker, widths)
plt.imshow(cwtmatr, extent	=	[-1, 1, 31, 1], cmap	=	‘PRGn’, aspect	=	‘auto’,
           vmax	=	abs(cwtmatr).max(), vmin	=	-abs(cwtmatr).max())
plt.show()
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τ= =− −s k2 , 2 ,j j
	 (2.19)

where j and k	are	both	integers.	Therefore,	the	discretized	probing	function	becomes:

ψ ψ ( )( ) = −t jt k2 2j k
j

,
/2

 (2.20)

Inserting Eq. (2.20) into Eq. (2.14),	we	get	the	discrete	wavelet	transform	(DWT):

∫ω ψ=
−∞

∞

x t t dt( ) ( )j k j k, ,
 (2.21)

The	original	signal	is	recovered	by	the	inverse	DWT,	or	the	wavelet	series	expansion

∑∑ ω ψ=
=−∞

∞

=−∞

∞

x t t( ) ( )j k j k

kj

, ,

 (2.22)

where ψj,k(t)	is	a	set	of	orthonormal	basis	functions.	The	wavelet	series	expansion	character-
izes the sum over two indices, j and k,	that	are	related	to	scaling	and	sliding	of	the	basis	func-
tions ψj,k(t).

Here, we present a new concept known as the scaling function that simplifies the applica-
tion	and	calculation	of	the	DWT.	The	calculation	of	the	finest	resolution	is	done	at	first,	fol-
lowed	by	the	calculation	of	the	coarser	resolutions	by	means	of	a	smoothed	form	of	the	original	
waveform	rather	than	the	original	waveform	itself.	This	smoothed	form	is	obtained	employ-
ing the scaling function, which is sometimes called the smoothing function (Semmlow,	2004; 
Subasi,	2019).

s=2
−j,τ=k2

−j,

ψj,kt=2j/2ψ2jt−k

wj,k=∫−∞∞x(t)ψj,k(t)dt

x(t)=∑j=−∞∞∑k=−∞∞wj,kψj,k(t)

Example 2.11
The	following	Python	code	is	used	to	extract	the	ECG	signal	features	utilizing	discrete	wavelet	

transform	(DWT)	with	6-level	decomposition.	It	prints	and	then	plots	the	approximate	and	detailed	
coefficients.
#	=====================================================================
#	=====================================================================
# Discrete wavelet transform
#	=====================================================================
#
# Created on Sat Sep 14 23:20:26 2019
#
# @author: asubasi
#	=====================================================================
print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
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from scipy import signal
from scipy.misc import electrocardiogram

ecg	=	electrocardiogram()
fs	=	360
time	=	np.arange(ecg.size) / fs
plt.plot(time, ecg)
plt.xlabel(“time in s”)
plt.ylabel(“ECG in mV”)
plt.xlim(9, 10.2)
plt.ylim(-1, 1.5)
plt.show()
#%%

import numpy as np
import matplotlib.pyplot as plt

import pywt
import pywt.data

ecg	=	pywt.data.ecg()
mode	=	pywt.Modes.sp1DWT	=	1
#db1	=	pywt.Wavelet(‘db1’)
waveletname	=	‘db1’
#waveletname	=	‘sym5’
coeff	=	pywt.wavedec(ecg, waveletname, level	=	6)
cA6,cD6,cD5,cD4, cD3, cD2, cD1	=	coeff

print(‘cA1\n’,cD1)
print(‘cA2\n’,cD2)
print(‘cA3\n’,cD3)
print(‘cA4\n’,cD4)
print(‘cA5\n’,cD5)
print(‘cD5\n’,cD6)
print(‘cD5\n’,cA6)
fig, ax	=	plt.subplots(figsize	=	(6,1))
ax.set_title(“Original ECG Signal: ”)
ax.plot(ecg)
plt.show()

#%%
fig, axarr	=	plt.subplots(nrows	=	7, ncols	=	1, figsize	=	(9,9))
axarr[0].plot(cD1, ‘r’)
axarr[0].set_ylabel(“cD1”, fontsize	=	14, rotation	=	90)

axarr[1].plot(cD2, ‘r’)
axarr[1].set_ylabel(“cD2”, fontsize	=	14, rotation	=	90)
axarr[2].plot(cD3, ‘r’)
axarr[2].set_ylabel(“cD3”, fontsize	=	14, rotation	=	90)
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2.2.11.3 The stationary wavelet transform (SWT)
The	 stationary	 wavelet	 transform	 (SWT)	 calculates	 all	 the	 decimated	 discrete	 wavelet	

transforms	(DWTs)	for	a	given	signal	at	one	time.	More	specifically,	for	level	1,	the	SWT	is	
accomplished	by	convolving	the	signal	with	the	suitable	filters	as	in	the	DWT	but	without	
using	down-sampling.	Then	the	detail	and	approximation	coefficients	at	level	1	will	be	the	
same	as	the	signal	length.	The	general	step	j	convolves	the	approximation	coefficients	at	level	
j	−1,	with	suitable	filters	without	down-sampling,	to	yield	the	detail	and	approximation	coef-
ficients	at	level	j	(Zhang	et	al.,	2015).

DWT	is	a	decomposition	of	the	signal	x(t)	that	can	be	considered	as	a	successive	band-pass	
filtering	and	down-sampling;	x(t)	=	x0(t) is decomposed into two parts: y1(t) presents the high 
frequent parts of x0(t) and x1(t)	presents	the	 low	frequent	parts.	The	DWT	is	computation-
ally	 faster	 and	 can	 be	 realized	 by	 consecutive	 filter	 banks.	 Unfortunately,	 the	 DWT	 is	 not	
shift-invariant once employed with discrete time series x(t). If the input time series x(t) is 
shifted,	the	resulting	coefficients	may	become	totally	different.	The	stationary	wavelet	trans-
form (Nason	&	Silverman,	1995)	has	no	such	issues.	Mainly,	the	SWT	is	DWT,	but	the	down-
sampling	step	is	replaced	by	an	up-sampling	(Sudakov	et	al.,	2017; Subasi,	2019).

axarr[3].plot(cD4, ‘r’)
axarr[3].set_ylabel(“cD4”, fontsize	=	14, rotation	=	90)

axarr[4].plot(cD5, ‘r’)
axarr[4].set_ylabel(“cD5”, fontsize	=	14, rotation	=	90)

axarr[5].plot(cD6, ‘r’)
axarr[5].set_ylabel(“cD6”, fontsize	=	14, rotation	=	90)

axarr[6].plot(cA6, ‘r’)
axarr[6].set_ylabel(“cA6”, fontsize	=	14, rotation	=	90)

axarr[1].set_yticklabels([])
axarr[0].set_title(“Coefficients”, fontsize	=	14)
plt.tight_layout()
plt.show()

Example 2.12
The	following	Python	code	is	used	to	extract	the	ECG	signal	features	utilizing	stationary	wavelet	

transform	(SWT)	with	5-level	decomposition.	It	prints	and	then	plots	the	approximate	and	detailed	
coefficients.
#	=====================================================================
# Stationary wavelet transform
#	=====================================================================
"""
Created on Sat Sep 14 23:20:26 2019
@author: asubasi
“”’’
print(__doc__)
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import numpy as np
import matplotlib.pyplot as plt
from scipy import signal
from scipy.misc import electrocardiogram

ecg	=	electrocardiogram()
fs	=	360
time	=	np.arange(ecg.size) / fs
plt.plot(time, ecg)
plt.xlabel(“time in s”)
plt.ylabel(“ECG in mV”)
plt.xlim(9, 10.2)
plt.ylim(-1, 1.5)
plt.show()
#%%

import pywt
import matplotlib.pyplot as plt
import numpy as np

#db1	=	pywt.Wavelet(‘db1’)
waveletname	=	‘db1’
#waveletname	=	‘sym5’
coeffs	=	pywt.swt(ecg, waveletname, level	=	5)
print(‘cA1\n’,coeffs[0][0])
print(‘cA2\n’,coeffs[1][0])
print(‘cA3\n’,coeffs[2][0])
print(‘cA4\n’,coeffs[3][0])
print(‘cA5\n’,coeffs[4][0])

print(‘cD5\n’,coeffs[4][1])
print(‘cD4\n’,coeffs[3][1])
print(‘cD3\n’,coeffs[2][1])
print(‘cD2\n’,coeffs[1][1])
print(‘cD1\n’,coeffs[0][1])

fig, ax	=	plt.subplots(figsize	=	(6,1))
ax.set_title(“Original ECG Signal: ”)
ax.plot(ecg)
plt.show()

#%%
fig, axarr	=	plt.subplots(nrows	=	5, ncols	=	2, figsize	=	(6,6))

axarr[0, 0].plot(coeffs[0][0], ‘r’)
axarr[0, 1].plot(coeffs[0][1], ‘g’)
axarr[0, 0].set_ylabel(“Level {}”.format(1), fontsize	=	14, rotation	=	90)
axarr[1, 0].plot(coeffs[1][0], ‘r’)
axarr[1, 1].plot(coeffs[1][1], ‘g’)
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2.2.11.4 The wavelet packet decomposition (WPD)
The	wavelet	transform	achieves	better	time	resolution	of	a	signal	by	decomposing	it	into	a	

set	of	basic	functions.	The	wavelet	packet	decomposition	(WPD)	is	identified	as	the	extension	
of	the	DWT,	in	which	the	low	frequency	components—namely,	approximations—are	decom-
posed.	On	the	other	hand,	WPD	uses	both	the	approximations	(low	frequency	components)	and	
the details (high-frequency components) (Daubechies,	1990; Learned	&	Willsky,	1995; Unser & 
Aldroubi,	1996).	DWT	and	WPD	differ	 from	each	other	since	WPD	splits	both	 the	 low	and	
high-frequency	components	into	their	sublevels.	Consequently,	WPD	produces	an	enhanced	
frequency	resolution	for	a	decomposed	signal.	WPD	is	considered	as	a	continuous	time	wave-
let	transform,	which	is	established	at	various	frequencies	at	each	scale	or	level.	The	wavelet	
packet	decomposition	is	helpful	to	combine	different	levels	of	decomposition	for	building	the	
original signal (Kutlu & Kuntalp, 2012).	The	decomposition	of	WPD	is	realized	in	two	steps.	
In	the	first	step,	the	filter/down-sampling	cascade	is	modified.	In	the	WPD	structure	at	each	
level	of	the	cascade	both	branches	(approximation	and	detailed	coefficients)	are	further	filtered	
and down-sampled. In the second step, the tree is modified such that the most appropriate 
decomposition	of	a	given	signal	is	chosen,	applying	an	entropy-based	criterion.	This	procedure	
is known as pruning of a decomposition tree (Blinowska	&	Zygierewicz,	2011; Subasi,	2019).

axarr[1, 0].set_ylabel(“Level {}”.format(2), fontsize	=	14, rotation	=	90)

axarr[2, 0].plot(coeffs[2][0], ‘r’)
axarr[2, 1].plot(coeffs[2][1], ‘g’)
axarr[2, 0].set_ylabel(“Level {}”.format(3), fontsize	=	14, rotation	=	90)

axarr[3, 0].plot(coeffs[3][0], ‘r’)
axarr[3, 1].plot(coeffs[3][1], ‘g’)
axarr[3, 0].set_ylabel(“Level {}”.format(4), fontsize	=	14, rotation	=	90)

axarr[4, 0].plot(coeffs[4][0], ‘r’)
axarr[4, 1].plot(coeffs[4][1], ‘g’)
axarr[4, 0].set_ylabel(“Level {}”.format(5), fontsize	=	14, rotation	=	90)

axarr[1, 0].set_yticklabels([])
axarr[0, 0].set_title(“Approximation coefficients”, fontsize	=	14)
axarr[0, 1].set_title(“Detail coefficients”, fontsize	=	14)
axarr[0, 1].set_yticklabels([])
plt.tight_layout()
plt.show()

Example 2.13
The	following	Python	code	is	used	to	extract	the	ECG	signal	features	utilizing	wavelet	packed	

decomposition	(WPD)	with	5-level	decomposition.	Then	it	plots	the	approximate	and	detailed	coef-
ficients.
#	=====================================================================
# Wavelet packed decomposition (WPD)
#	=====================================================================
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“”“
Created on Sat Sep 14 23:20:26 2019
@author: asubasi
“”’’

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt

from scipy import signal
from scipy.misc import electrocardiogram

ecg	=	electrocardiogram()
fs	=	360
time	=	np.arange(ecg.size) / fs
plt.plot(time, ecg)
plt.xlabel(“time in s”)
plt.ylabel(“ECG in mV”)
plt.xlim(9, 10.2)
plt.ylim(-1, 1.5)
plt.show()
#%%
import pywt
import matplotlib.pyplot as plt
import numpy as np

#waveletname	=	‘db1’
waveletname	=	pywt.Wavelet(‘db1’)
fig, ax	=	plt.subplots(figsize	=	(6,1))
ax.set_title(“Original ECG Signal: ”)
ax.plot(ecg)
plt.show()

fig, axarr	=	plt.subplots(nrows	=	5, ncols	=	2, figsize	=	(6,6))
wp=	pywt.WaveletPacket(ecg, waveletname, mode	=	‘symmetric’, maxlevel	=	6)
axarr[0, 0].plot(wp[‘a’].data, ‘r’)
axarr[0, 1].plot(wp[‘d’].data, ‘g’)
axarr[0, 0].set_ylabel(“Level {}”.format(1), fontsize	=	14, rotation	=	90)

axarr[1, 0].plot(wp[‘aa’].data, ‘r’)
axarr[1, 1].plot(wp[‘dd’].data, ‘g’)
axarr[1, 0].set_ylabel(“Level {}”.format(2), fontsize	=	14, rotation	=	90)

axarr[2, 0].plot(wp[‘aaa’].data, ‘r’)
axarr[2, 1].plot(wp[‘ddd’].data, ‘g’)
axarr[2, 0].set_ylabel(“Level {}”.format(3), fontsize	=	14, rotation	=	90)
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2.3 Dimension reduction

Dimension	reduction	is	a	process	to	reduce	the	dimension	of	the	original	feature	vector,	
while keeping the most distinctive information and removing the remaining unrelated infor-
mation, for decreasing the computational time in a classifier (Phinyomark et al., 2013). Most 
of the feature extraction approaches produce redundant features. Actually, to enhance the 
performance of a classifier and accomplish a minimum classification error, some types of 
feature	selection/reduction	approaches,	which	yield	a	new	set	of	features,	should	be	used.	
Numerous techniques are used for dimension reduction and feature selection to accom-
plish	a	better	classification	accuracy	(Wołczowski	&	Zdunek,	2017). In feature selection and 
dimension	reduction,	the	minimum	subset	of	features	must	be	chosen	from	the	original	set	
of	features	that	realizes	the	maximum	generalization	ability.	To	realize	this,	the	generaliza-
tion	ability	of	a	subset	of	features	must	be	estimated	during	the	process	of	feature	selection	
(Abe,	2010; Subasi,	2019).

The	dimension	of	data	may	be	needed	to	analyze	the	data	to	accomplish	more	accurate	
results.	A	small	number	of	parameters	are	used	to	reduce	the	dimension	of	the	data	in	dif-
ferent	ways.	Moreover,	 the	 features	or	dimensions	must	be	minimized	 for	 realizing	better	
classification	accuracy.	For	example,	the	wavelet-based	time	frequency	approaches	generate	
wavelet	coefficients	to	describe	the	distribution	of	a	signal	energy	in	both	time	and	frequency	
domains,	and	they	describe	the	biomedical	signals	with	a	set	of	wavelet	coefficients.	As	the	
wavelet-based	feature	extraction	tools	yield	the	feature	vector	that	has	too	big	of	a	size	to	be	
employed	as	an	input	to	a	classifier,	a	dimension	reduction	technique	should	be	utilized	to	
extract	a	smaller	number	of	features	from	the	wavelet	coefficients.	Recently	various	dimen-
sion reduction methods, such as Lyapunov exponents, low or higher-order statistics, and 
entropies,	have	been	employed	for	dimension	reduction.	Approximate	entropy,	which	 is	a	
measure	of	complexity,	can	be	applied	to	a	noisy	dataset	and	is	superior	to	spectral	entropy,	
Kolmogorov–Sinai	entropy,	and	fractal	dimension.	Sample	entropy	presents	less	dependence	
on	data	 length.	Fuzzy	entropy	 is	another	measure	 for	complexity	and	originated	from	the	
fuzzy set theory. Another way of reducing dimension is to employ first, second, third, and 

axarr[3, 0].plot(wp[‘aaaa’].data, ‘r’)
axarr[3, 1].plot(wp[‘dddd’].data, ‘g’)
axarr[3, 0].set_ylabel(“Level {}”.format(4), fontsize	=	14, rotation	=	90)

axarr[4, 0].plot(wp[‘aaaaa’].data, ‘r’)
axarr[4, 1].plot(wp[‘ddddd’].data, ‘g’)
axarr[4, 0].set_ylabel(“Level {}”.format(5), fontsize	=	14, rotation	=	90)

axarr[1, 0].set_yticklabels([])
axarr[0, 0].set_title(“Approximation coefficients”, fontsize	=	14)
axarr[0, 1].set_title(“Detail coefficients”, fontsize	=	14)
axarr[0, 1].set_yticklabels([])
plt.tight_layout()
plt.show()
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fourth-order	statistics	of	the	sub-bands;	the	reduced	feature	set	 is	calculated	from	the	sub-
bands	of	the	time-frequency	decomposition	(Subasi,	2019).

Dimension	 reduction	 is	 another	 alternative	 to	 feature	 selection;	 for	 instance,	 principal	
component analysis (PCA) is used efficiently in various studies. Like feature selection it 
yields a low-dimensional representation, which helps to create lower capacity predictors to 
improve generalization. But unlike feature selection it may keep information from all the 
original	input	variables.	In	essence,	these	methods	are	purely	unsupervised,	and	they	may	
remove	low	variance	variations	that	are	highly	predictive	of	the	target	 label	or	keep	some	
with	high	variance	but	are	irrelevant	for	the	classification	task	at	hand.	It	is	possible	to	com-
bine	dimension	reduction	with	a	feature	extraction	algorithm	to	be	utilized	on	the	reduced	
dimensions in order to select those most appropriate for classification or vice versa (Bengio 
et al., 2006; Subasi,	2019).

Generally,	 a	 subset	 of	 the	 original	 feature	 set	 can	 achieve	 better	 classification	 accuracy	
than if all the features were used. The reason is that the existence of redundant features with 
reduced discriminative power may confuse the classifier. Thus the feature selection is of ulti-
mate significance in producing a more accurate model. There are numerous existing methods 
for	feature	selection	of	an	optimal	set	of	features	to	describe	the	problem	(Begg et al., 2008; 
Subasi,	2019).

Feature	extraction	transforms	the	data	in	the	high-dimensional	space	to	a	lower	dimen-
sional	 space.	 The	 data	 transformation	 may	 be	 linear,	 as	 in	 principal	 component	 analy-
sis	 (PCA),	 but	 many	 nonlinear	 dimension	 reduction	 techniques	 also	 exist.	 Dimension	
reduction	 can	 be	 done	 by	 linear	 discriminant	 analysis,	 principal	 component	 analysis,	
independent	 component	 analysis,	 etc.	 These	 approaches	 will	 be	 defined	 to	 make	 our	
understanding	 clear	 about	 dimension	 reduction.	 For	 two-dimensional	 non-Gaussian	
data set, PCA extracts component with maximal variance and ICA extracts component 
with	 maximal	 independence.	 ICA	 considers	 signal	 elements	 as	 random	 variables	 with	
Gaussian	distribution	and	minimized	second-order	statistics.	Clearly,	for	any	non-Gauss-
ian	distribution,	largest	variances	would	not	correspond	to	PCA	basis	vectors.	ICA	mini-
mizes	both	second-order	and	higher-order	dependencies	in	the	input	data	and	attempts	to	
find	the	basis	for	which	the	data	(when	projected	onto	them)	are	statistically	independent.	
LDA	finds	the	vectors	in	the	underlying	space	that	best	discriminate	among	classes	(Delac	
et al., 2005; Subasi,	2019).

Dimension	reduction	is	a	method	for	taking	data	from	a	high-dimensional	space	and	map-
ping	 it	 into	 a	 new	 space	 that	 has	 considerably	 less	 dimension.	 This	 procedure	 is	 directly	
relevant to the idea of compression. There are many reasons to reduce the dimension of the 
data.	First,	high-dimensional	data	require	computational	challenges.	Furthermore,	in	some	
circumstances	high	dimensionality	may	lead	to	poor	generalization	abilities	of	the	learning	
algorithm.	 Finally,	 dimension	 reduction	 can	 be	 employed	 for	 interpretability	 of	 the	 data,	
for finding meaningful structure of the data, and for illustration purposes. In this chapter, 
popular	 dimension	 reduction	 techniques	 are	 described.	 In	 these	 techniques,	 the	 reduction	
is	 accomplished	 by	 using	 a	 linear	 transformation	 to	 the	 original	 data	 (Shalev-Shwartz	 &	
Ben-David,	2014).

Large	datasets,	as	well	as	data	containing	many	features,	produce	computational	prob-
lems in the training of predictive models. Methods for reducing the data dimension of a 
dataset, such as K-means clustering, reduces the feature dimension,	or	number	features,	of	a	
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dataset. A conventional approach for dimension reduction, principal component analysis 
(PCA), often utilized for general data analysis is a comparatively poor tool for reducing 
the feature dimension of predictive modeling data. However, PCA shows a fundamental 
mathematical archetype, the matrix factorization,	which	offers	a	valuable	way	of	organiz-
ing	our	thinking	about	a	wide	collection	of	significant	learning	models	(Watt,	Borhani,	&	
Katsaggelos, 2016).

Once	we	start	extracting	features	or	attributes	from	raw	data	samples,	sometimes	feature	
space	contains	huge	numbers	of	features.	This	causes	various	challenges,	including	analyz-
ing and visualizing data with thousands or millions of features that make the feature space 
very	complex,	causing	problems	related	to	training	models,	memory,	and	space	constraints.	
This	is	known	as	the	“curse	of	dimensionality.”	Unsupervised	techniques	can	also	be	utilized	
in	these	circumstances	in	which	we	reduce	the	number	of	features	or	attributes	for	each	data	
sample.	These	techniques	decrease	the	number	of	feature	variables	by	extracting	or	selecting	
a	set	of	principal	or	representative	features.	There	are	numerous	popular	algorithms	available	
for	dimensionality	reduction,	such	as	principal	component	analysis	(PCA),	nearest	neighbors,	
and discriminant analysis (Sarkar,	Bali,	&	Sharma,	2018).

2.3.1 Feature construction and selection

New	features	 can	be	constructed	 from	different	original	 features.	A	new	 feature	can	be	
built	from	two	Boolean	or	categorical	features	by	producing	their	Cartesian	product.	When	
the	new	features	have	been	produced	it	is	easy	to	choose	an	appropriate	subset	of	them	before	
learning. This will speed up learning and prevent overfitting. There are many methods for 
feature selection. The filter method scores features utilizing a specific metric, and then the 
top-scoring	features	are	chosen.	Several	metrics	can	be	employed	for	feature	scoring,	such	as	
information gain, the χ2 statistic, and the correlation coefficient. The main disadvantage of 
a	simple	filter	method	is	not	to	take	into	account	a	redundancy	between	features.	Moreover,	
feature filters do not distinguish dependencies among features since they are uniquely depen-
dent	on	marginal	distributions	(Flach,	2012).

Feature selection is concerned with finding k of the d dimensions, which give us the most 
informative features, and we discard the other (d − k) dimensions. In subset selection, we are 
concerned	about	finding	the	best	subset	of	the	set	of	features.	The	best	subset	includes	the	
least	number	of	dimensions,	which	contribute	to	accuracy	the	most.	The	remaining,	unim-
portant	dimensions	will	be	discarded.	A	suitable	error	function	can	be	utilized	in	both	classifi-
cation	and	regression	problems.	There	are	two	main	approaches.	Forward selection starts with 
no	variables	and	adds	them	one	by	one,	at	each	step	adding	the	one	that	decreases	the	error	
the most until any further additions do not decrease the error. Backward selection starts with 
all	variables	and	removes	them	one	by	one,	at	each	step	removing	the	one	that	decreases	the	
error	the	most	until	any	further	removal	increases	the	error	significantly.	In	both	cases,	check-
ing	the	error	has	to	be	done	on	a	validation	set	apart	from	the	training	set	since	the	general	
accuracy	will	be	tested.	Usually	lower	training	error	is	achieved	with	more	features,	but	not	
necessarily lower validation error. To decrease complexity, we may decide to remove a feature 
if	its	elimination	produces	only	a	minor	increase	in	error.	Subset	selection	is	supervised	in	that	
outputs	are	employed	by	the	classifier	or	regressor	to	evaluate	the	error,	but	it	can	be	utilized	
with any classification or regression method (Alpaydin, 2014).



56 2. Data preprocessing

 

2.3.2 Univariate feature selection

Univariate	feature	selection	performs	feature	selection	by	selecting	the	best	features	based	
on	univariate	statistical	 tests.	 It	 is	a	preprocessing	step	 to	an	estimator.	Scikit-learn	 imple-
ments	feature	selection	routines	as	objects	that	implement	the	transform	method.

•	 SelectKBest	removes	all	but	the	k	highest-scoring	features.
•	 SelectPercentile	removes	all	but	a	user-specified,	highest-scoring	percentage	of	features.
•	 These	use	common	univariate	statistical	tests	for	each	feature:	false	positive	rate	

SelectFpr, false discovery rate SelectFdr, or family wise error SelectFwe.
•	 GenericUnivariateSelect	allows	univariate	feature	selection	with	a	configurable	strategy.	

This	allows	selection	of	the	best	univariate	selection	strategy	with	hyper-parameter	
search estimator.

These	objects	take	as	input	a	scoring	function	that	returns	univariate	scores	and	p-values	
(or only scores for SelectKBest and SelectPercentile):

•	 For	regression:	f_regression,	mutual_info_regression
•	 For	classification:	chi2,	f_classif,	mutual_info_classif

The	methods	based	on	F-test	estimate	the	degree	of	linear	dependency	between	two	ran-
dom	 variables.	 On	 the	 other	 hand,	 mutual	 information	 methods	 can	 capture	 any	 kind	 of	
statistical	dependency,	but	being	nonparametric,	they	require	more	samples	for	accurate	esti-
mation (scikit-learn, n.d.).

Example 2.14
The following Python code is used to represent the feature selection process, which is realized 

in scikit-learn. In this example we utilize the Iris dataset, which exists in sklearn.datasets and select 
features	using	sklearn.feature_selection.SelectKBest.	The	number	of	features	are	determined	by	k	
value, and there are two in this example. Note that this example is adapted from Python–scikit-
learn.
#	=====================================================================
# Univariate feature selection
#	=====================================================================
“”’’
Created on Sat Sep 14 23:20:26 2019
@author: asubasi
“”’’

from sklearn.datasets import load_iris
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import chi2
iris	=	load_iris()
X, y	=	iris.data, iris.target
print(X)
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Example 2.15
The following Python code is showing univariate feature selection process, which is realized in 

scikit-learn. In this example we utilize the Breast Cancer dataset, which exists in sklearn.datasets, 
and	select	features	using	sklearn.feature_selection.SelectPercentile	and	sklearn.feature_selection.f_
classif. Note that this example is adapted from Python–scikit-learn. Noisy (noninformative) features 
are	added	to	the	Breast	Cancer	data	and	univariate	feature	selection	is	utilized.	For	every	feature,	
the	p-values	for	the	univariate	feature	selection	and	the	corresponding	weights	of	an	SVM	are	plot-
ted.	The	univariate	feature	selection	chooses	the	informative	features,	and	these	have	larger	SVM	
weights. Among the total sets of features, only the first four features are important and informative, 
and	they	have	the	highest	score	with	univariate	feature	selection.	The	SVM	assigns	a	bigger	weight	
to	one	of	these	features	but	also	chooses	many	of	the	noninformative	features.	Utilizing	univariate	
feature	selection	before	the	SVM	raises	the	SVM	weight	attributed	to	the	important	and	informative	
features accordingly improves the performance.
#	=====================================================================
# Univariate feature selection
#	=====================================================================
“”’’
Created on Fri Oct 4 00:16:28 2019
@author: asubasi
“”’’

print(__doc__)

import numpy as np
import matplotlib.pyplot as plt

from sklearn import datasets, svm
from sklearn.feature_selection import SelectPercentile, f_classif
# ######################################################################
#######
# Import some data to play with

# The Breast Cancer dataset
Breast_Cancer	=	datasets.load_breast_cancer()
# Some noisy data not correlated
E	=	np.random.uniform(0, 0.1, size	=	(len(Breast_Cancer.data), 20))

X.shape

#%%
X_new	=	SelectKBest(chi2, k	=	2).fit_transform(X, y)
print(X_new)
X_new.shape
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# Add the noisy data to the informative features
X	=	np.hstack((Breast_Cancer.data, E))
y	=	Breast_Cancer.target
plt.figure(1)
plt.clf()
X_indices	=	np.arange(X.shape[-1])
# ######################################################################
#######
# Univariate feature selection with F-test for feature scoring
# We use the default selection function: the 10% most significant features
selector	=	SelectPercentile(f_classif, percentile	=	10)
selector.fit(X, y)
scores	=	-np.log10(selector.pvalues_)
scores /=	scores.max()
plt.bar(X_indices - .45, scores, width	=	.2,
 label	=	r’Univariate score ($-Log(p_{value})$)’, color	=	‘darkorange’,
 edgecolor	=	‘black’)
# ######################################################################
#######
# Compare to the weights of an SVM
clf	=	svm.SVC(kernel	=	‘linear’)
clf.fit(X, y)

svm_weights	=	(clf.coef_ ** 2).sum(axis	=	0)
svm_weights /=	svm_weights.max()

plt.bar(X_indices - .25, svm_weights, width	=	.2, label	=	‘SVM weight’,
          color	=	‘navy’, edgecolor	=	‘black’)

clf_selected	=	svm.SVC(kernel	=	‘linear’)
clf_selected.fit(selector.transform(X), y)

svm_weights_selected	=	(clf_selected.coef_ ** 2).sum(axis	=	0)
svm_weights_selected /=	svm_weights_selected.max()

plt.bar(X_indices[selector.get_support()] - .05, svm_weights_selected,
 width	=	.2, label	=	‘SVM weights after selection’, color	=	‘c’,
 edgecolor	=	‘black’)

plt.title(“Comparing feature selection”)
plt.xlabel(‘Feature number’)
plt.yticks(())
plt.axis(‘tight’)
plt.legend(loc	=	‘upper right’)
plt.show()
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Example 2.16
The following Python code is showing univariate feature selection process, which is realized in 

scikit-learn.	In	this	example	we	utilize	the	breast	cancer	dataset,	which	exists	in	sklearn.datasets.	We	
show	how	to	perform	univariate	feature	selection	before	running	SVC	(support	vector	classifier)	to	
enhance	the	model	performance.	It	is	seen	from	the	figure	that	our	model	achieves	best	performance	
when all of the features are utilized. Note that this example is adapted from Python–scikit-learn.
#	=====================================================================
# SVM-Anova: SVM with univariate feature selection
#	=====================================================================
“”’’
Created on Fri Oct 4 14:24:39 2019
@author: asubasi
“”’’
print(__doc__)
import numpy as np
import matplotlib.pyplot as plt
from sklearn.feature_selection import SelectPercentile, chi2
from sklearn.model_selection import cross_val_score
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
from sklearn import datasets
# ######################################################################
#######
# Import some data to play with

Breast_Cancer	=	datasets.load_breast_cancer()
X	=	Breast_Cancer.data
y	=	Breast_Cancer.target

# ######################################################################
#######
# Create a feature-selection transform, a scaler and an instance of SVM 
that we
# combine together to have an full-blown estimator
clf	=	Pipeline([(‘anova’, SelectPercentile(chi2)),
          (‘scaler’, StandardScaler()),
          (‘svc’, SVC(gamma	=	“auto”))])
# ######################################################################
#######
# Plot the cross-validation score as a function of percentile of features
score_means	=	list()
score_stds	=	list()
percentiles	=	(1, 3, 6, 10, 15, 20, 30, 40, 60, 80, 100)
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2.3.3 Recursive feature elimination

For	a	machine	learning	model,	which	designates	weights	to	features	(e.g.,	the	coefficients	
of	a	linear	model),	recursive	feature	elimination	(RFE)	is	utilized	to	select	features	by	recur-
sively considering smaller and smaller sets of features. At first the machine learning model is 
trained on the initial set of features, and the significance of each feature is taken either through 
a	 coef_	 attribute	 or	 through	 a	 feature_importances_	 attribute.	 Then,	 the	 least	 informative 

for percentile in percentiles:
 clf.set_params(anova__percentile	=	percentile)
 this_scores	=	cross_val_score(clf, X, y, cv	=	5)
 score_means.append(this_scores.mean())
 score_stds.append(this_scores.std())

plt.errorbar(percentiles, score_means, np.array(score_stds))
plt.title(
  ‘Performance of the SVM-Anova varying the percentile of features 
selected’)
plt.xticks(np.linspace(0, 100, 11, endpoint	=	True))
plt.xlabel(‘Percentile’)
plt.ylabel(‘Accuracy Score’)
plt.axis(‘tight’)
plt.show()

Example 2.17
The following Python code is used to represent the recursive feature elimination with cross-

validation process, which is realized in scikit-learn. In this example we utilize the Breast Cancer 
dataset,	which	exists	in	sklearn.datasets	and	select	features	using	sklearn.feature_selection.RFECV,	
and	we	use	a	recursive	feature	elimination	with	automatic	tuning	of	the	number	of	features	selected	
with	cross-validation.	RFECV	performs	RFE	in	a	cross-validation	loop	to	find	the	optimal	number	
of features. Note that this example is adapted from Python–scikit-learn.
#	=====================================================================
# Recursive feature elimination with cross-validation
#	=====================================================================
“”’’
Created on Thu Oct 3 23:42:44 2019
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features are removed from the current set of features. This process is recursively repeated on 
the	pruned	set	until	the	optimum	number	of	features	are	selected	(scikit-learn,	n.d.).

2.3.4 Feature selection from a model

SelectFromModel	 is	 a	 meta-transformer,	 which	 can	 be	 utilized	 along	 with	 any	 model	
that	has	a	coef_	or	feature_importances_	attribute	after	fitting.	The	features	are	considered	
insignificant	and	deleted	if	 the	related	coef_	or	feature_importances_	values	are	below	the	
required threshold parameter. Apart from identifying the threshold numerically, there are 
built-in	heuristics	 for	finding	a	 threshold	using	a	string	argument.	Available	heuristics	are	
“mean,”	“median,”	and	float	multiples	like	“0.1*mean”	(scikit-learn,	n.d.).

@author: asubasi
“”’’
print(__doc__)
import matplotlib.pyplot as plt
from sklearn.svm import SVC
from sklearn.model_selection import StratifiedKFold
from sklearn.feature_selection import RFECV
from sklearn.datasets import load_breast_cancer
Breast_Cancer	=	load_breast_cancer()

X	=	Breast_Cancer.data
y	=	Breast_Cancer.target

# Create the RFE object and compute a cross-validated score.
svc	=	SVC(kernel	=	“linear”)
# The “accuracy” scoring is proportional to the number of correct
# classifications
rfecv	=	RFECV(estimator	=	svc, step	=	1, cv	=	StratifiedKFold(2),
     scoring	=	‘accuracy’)
rfecv.fit(X, y)

print(“Optimal number of features : %d” % rfecv.n_features_)
# Plot number of features VS. cross-validation scores
plt.figure()
plt.xlabel(“Number of features selected”)
plt.ylabel(“Cross validation score (nb of correct classifications)”)
plt.plot(range(1, len(rfecv.grid_scores_) + 1), rfecv.grid_scores_)
plt.show()
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2.3.5 Principle component analysis (PCA)

Principal component analysis (PCA)	is	an	algebraic	feature-building	method	in	which	new	
features	are	constructed	as	linear	combinations	of	the	given	features.	The	first	principal	com-
ponent	is	specified	by	the	direction	of	maximum	variance	in	the	data;	the	second	principal	
component is the direction of maximum variance orthogonal to the first component, and so 
on (Flach,	2012). PCA is an unsupervised technique in that does not utilize the output infor-
mation, and the criterion is to maximize the variance. The principal component w1 computes 
the	sample	after	projection	on	to	w1	so	that	the	difference	between	the	sample	points	becomes	
most apparent (Alpaydin, 2014).	 PCA	 is	 a	 subdivision	 of	 statistics	 known	 as	 multivariate	
analysis. As the name implies, multivariate analysis deals with the analysis of multiple vari-
ables	 or	 measurements.	 Multivariate	 data	 can	 be	 denoted	 in	 M-dimensional	 space,	 where	
each	spatial	dimension	contains	one	signal.	Generally,	multivariate	analysis	aims	to	produce	
results	 that	consider	the	relationship	between	the	multiple	variables,	as	well	as	within	the	
variables,	 and	uses	 tools	 that	work	on	all	 the	data.	The	key	 issue	of	multivariate	analysis	
is	 to	 find	 transformations	 of	 the	 multivariate	 data,	 which	 produces	 a	 smaller	 dataset.	 For	
example,	 it	may	 include	related	 information	 in	a	multidimensional	variable,	which	can	be	
characterized	by	using	less	dimensions	(i.e.,	variables),	and	the	reduced	set	of	variables	may	
be	more	meaningful	than	the	original	dataset.	Transformations,	which	reduce	the	dimension	

Example 2.18
The following Python code is used to represent the feature selection from a model process, 

which	is	realized	in	scikit-learn.	In	this	example	we	utilize	the	breast	cancer	dataset,	which	exists	in	
sklearn.datasets	and	select	features	using	sklearn.feature_selection.SelectFromModel.	Note	that	this	
example is adapted from Python–scikit-learn.
#	====================================================================
# Feature selection from a model
#	====================================================================
from sklearn.ensemble import ExtraTreesClassifier
from sklearn.feature_selection import SelectFromModel
from sklearn import datasets
Breast_Cancer	=	datasets.load_breast_cancer()
X	=	Breast_Cancer.data
y	=	Breast_Cancer.target
X.shape
#%%
clf	=	ExtraTreesClassifier(n_estimators	=	50)
clf	=	clf.fit(X, y)
clf.feature_importances_
model	=	SelectFromModel(clf, prefit	=	True)
X_new	=	model.transform(X)
X_new.shape
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of	a	multivariable	dataset,	convert	one	set	of	variables	into	a	new	set	to	yield	new	variables,	
which	are	relatively	small	as	compared	to	the	original	data.	Since	the	values	of	these	variables	
are	relatively	small,	they	may	not	comprise	much	beneficial	information	to	the	overall	dataset	
and,	hence,	can	be	removed.	With	a	suitable	transformation,	a	big	number	of	variables	that	
contribute	only	marginally	to	the	total	information	can	be	removed.	The	data	transformation	
used	to	accomplish	a	new	set	of	variables	is	a	linear	function,	as	linear	transformations	are	
simpler	to	estimate.	As	a	linear	transformation,	this	procedure	can	be	represented	as	a	rota-
tion	and	perhaps	scaling	of	the	original	dataset	in	M-dimensional	space.	In	PCA,	the	objec-
tive	is	to	transform	the	dataset	to	produce	a	new	set	of	variables	(principal	components)	that	
are uncorrelated. The aim is to reduce the dimension of the data, not necessarily to produce 
more	meaningful	variables.	PCA	can	reduce	the	number	of	variables	in	a	dataset	without	loss	
of	information	and	find	new	variables	with	better	meaning.	It	transforms	a	set	of	correlated	
variables	 into	a	new	set	of	uncorrelated	variables.	 If	 the	variables	 in	a	dataset	are	already	
uncorrelated,	PCA	is	impractical.	Furthermore,	the	principal	components	are	orthogonal	and	
are	well-organized	in	terms	of	the	variability	they	describe	(Semmlow,	2004; Subasi,	2019).

In	big	datasets	with	lots	of	features,	it	may	be	more	appropriate	to	find	a	smaller	and	more	
compact	 feature	 representation	using	a	 feature	 transformation.	One	 technique	 is	 to	utilize	
PCA	 that	 employs	 a	 projection	 to	 the	 features	 to	 yield	 a	 reduced	 representation.	Assume	
that the training set contains n training examples, that is, { }=X x x x, , ..., j1 2 , then the algo-
rithm produces principal components Pk	that	are	linear	combinations	of	the	original	features	
X (Begg et al., 2008).	This	can	be	written	as

= + + +... .1 1 2 2Pk a x a x a xk k n kn (2.23)

where ∑ =a 1
i

ki
2 .

The principal component vectors are formed in a way that are orthogonal to each other 
and, for this reason, have the highest variance (principal components). Usually, the training 
data	are	first	normalized	to	zero	mean	and	unit	variance	before	employing	the	PCA	algorithm	
(Begg et al., 2008; Subasi,	2019).

Dimension	reduction	usually	transforms	a	high-dimensional	space	to	a	lower-dimensional	
space with minimum information loss. The process is known as feature extraction. The PCA is 
a well-known feature extraction method and allows the elimination of the second-order cor-
relation	between	given	random	processes.	The	PCA	linearly	transforms	a	high-dimensional	
input	vector	into	a	lower-dimensional	one	whose	components	are	uncorrelated	by	comput-
ing the eigenvectors of the covariance matrix of the input signal. The PCA normally utilizes 
the optimization of some information criterion, such as the maximization of the variance of 
the	projected	signal	or	the	minimization	of	the	reconstruction	error.	The	goal	of	the	PCA	is	to	
extract m orthonormal directions wi ∈ Rn, i	=1,	2,	...,	M,	in	the	input	space	that	interpret	for	the	
minimum	variance	of	the	signal.	Subsequently,	an	input	vector	x	∈ Rn is transformed into a 
lower	M-dimensional	space	without	losing	vital	intrinsic	information.	The	vector	x	can	be	rep-
resented	by	being	projected	onto	the	M-dimensional	subspace	spanned	by	wi using the inner 
products xTwi. This produces the dimension reduction (Du	&	Swamy,	2006; Subasi,	2019).

PCA is a method to decompose a multichannel signal into components that are linearly 
independent, that is, temporally and spatially uncorrelated. The samples from all channels 

 X=x1,x2,...,xj

Pk=ak1x1+ak2x2+...+anxkn.

∑iaki2=1
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are	treated	at	a	given	time	interval	as	a	point	in	the	space	of	dimension	equal	to	the	number	
of	channels.	The	original	time	series	can	be	enhanced	as	a	linear	combination	of	these	com-
ponents	to	produce	a	reduction	in	data	dimension	by	neglecting	the	smallest	variance.	PCA	
can	be	realized	by	means	of	the	singular	value	decomposition	(SVD)	algorithm	(Blinowska 
&	Zygierewicz,	2011). At this step, the PCA is employed to reduce the dimensionality of the 
dataset	and	to	yield	less	numbers	of	uncorrelated	variables	that	are	used	as	features	for	bet-
ter	classification	of	data.	Generally,	 the	recorded	multichannel	signals	are	huge	in	number,	
comprehending a large amount of redundant information, and are highly correlated. The 
PCA	is	beneficial	to	transforming	a	number	of	correlated	variables	into	a	smaller	number	of	
uncorrelated	variables,	termed	principal	components.	The	principal	components	describe	the	
most	informative	data	carried	by	the	original	signals	to	deliver	the	discriminative	information	
about	those	signals.	Hence,	the	PCA	features	work	better	in	different	signal	classification	(Siuly	
et al., 2016; Subasi,	2019).	Feature	selection	is	a	practical	and	universal	scheme	for	reducing	
the	dimension	of	the	feature	space	once	working	on	predictive	modeling	problems.	Principal	
component	analysis	(PCA)	is	a	common	dimension	reduction	technique	and	works	by	trans-
forming	the	data	into	an	appropriate	lower-dimensional	feature	subspace	(Watt	et	al.,	2016).

PCA	is	one	of	scikit-learn’s	transformer	classes,	in	which	the	model	using	the	training	data	
is	fitted	before	both	the	 training	data	and	the	 test	data	are	 transformed	utilizing	the	same	
model parameters.

Example 2.19
The following Python code is used to represent the dimension reduction using PCA, which is 

realized in scikit-learn. In this example we utilize the Iris dataset, which exists in sklearn.datasets, 
and reduce dimension using sklearn.decomposition.PCA. PCA is utilized to decompose a multi-
variate dataset in a set of successive orthogonal components, which represent a maximum amount 
of	the	variance.	In	scikit-learn,	PCA	is	 implemented	as	a	decomposition	object,	which	is	sklearn.
decomposition.PCA,	and	can	be	employed	on	new	data	 to	project	 it	on	 these	components.	PCA	
centers	but	does	not	scale	 the	 input	data	 for	each	feature	before	utilizing	the	SVD.	The	optional	
parameter	whiten	=	True	makes	it	possible	to	project	the	data	onto	the	singular	space	while	scaling	
each component to unit variance. This is generally helpful if the models downstream make strong 
assumptions on the isotropy of the signal. Below is an example of the Iris dataset, which is com-
prised	of	four	features	projected	on	the	two	dimensions	that	explain	the	most	variance.	Note	that	
this example is adapted from Python–scikit-learn.
#	=====================================================================
# Principal component analysis (PCA)
#	=====================================================================
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.decomposition import PCA

iris	=	datasets.load_iris()
X	=	iris.data
y	=	iris.target
target_names	=	iris.target_names
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pca	=	PCA(n_components	=	2)
X_r	=	pca.fit(X).transform(X)
# Percentage of variance explained for each components
print(‘explained variance ratio (first two components): %s’
          % str(pca.explained_variance_ratio_))
#%%
#	=====================================================================
# 2D presentation
#	=====================================================================
# Plot the original data points
plt.figure(2, figsize	=	(6, 5))
plt.clf()
plt.scatter(X[:, 0], X[:, 1], c	=	y, cmap	=	plt.cm.Set1,
 edgecolor	=	‘k’)
plt.xlabel(‘Sepal length’)
plt.ylabel(‘Sepal width’)
plt.title(‘Original data points’)
plt.xticks(())
plt.yticks(())

#%%
plt.figure()
colors	=	[‘navy’, ‘turquoise’, ‘darkorange’]
lw	=	2

for color, i, target_name in zip(colors, [0, 1, 2], target_names):
 plt.scatter(X_r[y	 ==	i, 0], X_r[y	 ==	i, 1], color	 =	color, alpha	 =	.8, 
lw	=	lw,
          label	=	target_name)
plt.legend(loc	=	‘best’, shadow	=	False, scatterpoints	=	1)
plt.title(‘PCA of IRIS dataset’)
Below is an example of the iris dataset, which is projected on the 3 
dimensions that explain most variance.
#%%
#	=====================================================================
# #3D presentation
#	=====================================================================
import numpy as np
import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
from sklearn.datasets import load_iris
from mpl_toolkits.mplot3d import Axes3D
from sklearn import preprocessing
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iris	=	load_iris()
X, y	=	iris.data, iris.target

X	=	iris.data
y	=	iris.target

plt.figure(3, figsize	=	(8, 6))
plt.clf()

#%%
# Plot the original data points
fig	=	plt.figure(1, figsize	=	(6, 5))
ax	=	Axes3D(fig, elev	=	-150, azim	=	110)
ax.scatter(X[:, 0], X[:, 1], X[:, 2], c	=	y,
   cmap	=	plt.cm.Set1, edgecolor	=	‘k’, s	=	40)
ax.set_title(‘Original data points’)
ax.set_xlabel(‘Sepal length’)
ax.w_xaxis.set_ticklabels([])
ax.set_ylabel(‘Sepal width’)
ax.w_yaxis.set_ticklabels([])
ax.set_zlabel(‘Sepal height’)
ax.w_zaxis.set_ticklabels([])
plt.show()
#%%
#Transform data
pca	=	PCA(n_components	=	3)
X_PCA	=	pca.fit(X).transform(X)
# Plot the PCA transformed data points
fig	=	plt.figure(1, figsize	=	(6, 5))
ax	=	Axes3D(fig, elev	=	-150, azim	=	110)
ax.scatter(X_PCA[:, 0], X_PCA[:, 1], X_PCA[:, 2], c	=	y,
  cmap	=	plt.cm.Set1, edgecolor	=	‘k’, s	=	40)
ax.set_title(‘PCA of IRIS dataset’)
ax.set_xlabel(‘PCA1’)
ax.w_xaxis.set_ticklabels([])
ax.set_ylabel(‘PCA2’)
ax.w_yaxis.set_ticklabels([])
ax.set_zlabel(‘PCA3’)
ax.w_zaxis.set_ticklabels([])
plt.show()
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2.3.6 Incremental PCA

Incremental principal component analysis (IPCA) is naturally employed as an alternative 
to	PCA	once	the	dataset	to	be	decomposed	is	too	large	to	fit	in	memory.	IPCA	constructs	a	
low-rank approximation for the input data utilizing an amount of memory that is indepen-
dent	of	the	number	of	input	data	samples.	It	is	still	dependent	on	the	input	data	features,	but	
changing	the	batch	size	allows	for	control	of	memory	usage.	The	example	given	below	helps	
as	a	visual	check	that	IPCA	can	find	a	similar	projection	of	the	data	to	PCA	while	only	pro-
cessing a few samples at a time (scikit-learn, n.d.)

Example 2.20
The following Python code is used to represent the dimension reduction using incremental PCA, 

which is realized in scikit-learn. In this example we utilize the Breast Cancer dataset, which exists in 
sklearn.datasets, and reduce dimension using sklearn.decomposition.IncrementalPCA. Incremental 
PCA is utilized to decompose a multivariate dataset in a set of successive orthogonal components, 
which represent a maximum amount of the variance. In scikit-learn, PCA is implemented as a de-
composition	object,	which	is	sklearn.decomposition.IncrementalPCA	and	can	be	employed	on	new	
data	 to	project	 it	onto	 these	components.	Note	 that	 this	example	 is	adapted	 from	Python–scikit-
learn.
#	=====================================================================
# Incremental PCA with breast cancer dataset
#	=====================================================================
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.decomposition import PCA, IncrementalPCA
from sklearn import datasets
# ######################################################################
#######
# Import some data to play with

Breast_Cancer	=	datasets.load_breast_cancer()
X	=	Breast_Cancer.data
y	=	Breast_Cancer.target

n_components	=	2
ipca	=	IncrementalPCA(n_components	=	n_components, batch_size	=	10)
X_ipca	=	ipca.fit_transform(X)

pca	=	PCA(n_components	=	n_components)
X_pca	=	pca.fit_transform(X)

colors	=	[‘navy’, ‘turquoise’, ‘darkorange’]

for X_transformed, title in [(X_ipca, “Incremental PCA”), (X_pca, “PCA”)]:
  plt.figure(figsize	=	(8, 8))
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2.3.7 Kernel principal component analysis

Most	of	the	machine	learning	algorithms	can	make	assumptions	about	the	linear	separa-
bility	of	the	input	data.	Nevertheless,	if	we	are	dealing	with	nonlinear	problems	that	can	be	
encountered rather frequently in real-world applications, linear transformation techniques 
for	dimensionality	reduction,	such	as	PCA	and	LDA,	may	not	be	the	best	choice.	In	this	case,	
a	kernelized	version	of	PCA,	or	kernel	PCA,	can	be	more	suitable.	Using	kernel	PCA,	the	data	
that	is	not	linearly	separable	can	be	transformed	onto	a	new,	lower-dimensional	subspace,	
which is appropriate for linear classifiers (Raschka, 2015).	Scikit-learn	has	 implementation	
of	the	kernel	PCA	class	in	the	sklearn.decomposition	submodule.	The	usage	is	similar	to	the	
standard	PCA	class,	and	the	kernel	can	be	specified	via	the	kernel	parameter.

          for color, i, target_name in zip(colors, [0, 1, 2], 
Breast_Cancer.target_names):
          plt.scatter(X_transformed[y	==	i, 0], X_transformed[y	==	
i, 1],
          color	=	color, lw	=	2, label	=	target_name)
          if “Incremental” in title:
          err	=	np.abs(np.abs(X_pca) - np.abs(X_ipca)).mean()
          plt.title(title + “ of iris dataset\nMean absolute un-
signed error ”
          “%.6f” % err)
          else:
          plt.title(title + “ of iris dataset”)
          plt.legend(loc	=	“best”, shadow	=	False, scatterpoints	=	1)
          plt.axis([-1000, 2000, -500, 500])
plt.show()

Example 2.21
The following Python code is used to represent the dimension reduction using incremental PCA, 

which is realized in scikit-learn. In this example we utilize the Iris dataset, which exists in sklearn.
datasets, and reduce dimension using sklearn.decomposition.KernelPCA. Kernel PCA is utilized 
when	the	data	is	not	linearly	separable.	The	linearly	inseparable	data	can	be	transformed	onto	a	
new,	lower-dimensional	subspace,	which	is	appropriate	for	linear	classifiers.	In	scikit-learn,	PCA	is	
implemented	as	a	decomposition	object,	which	is	sklearn.decomposition.IncrementalPCA,	and	can	
be	employed	on	new	data	to	project	it	on	these	components.	Note	that	this	example	is	adapted	from	
Python–scikit-learn.
#	=====================================================================
# Kernel PCA example
#	=====================================================================
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.decomposition import PCA, KernelPCA
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iris	=	datasets.load_iris()
X	=	iris.data
y	=	iris.target
target_names	=	iris.target_names

pca	=	PCA(n_components	=	2)
X_pca	=	pca.fit(X).transform(X)

kpca	=	KernelPCA(kernel	=	“rbf”, fit_inverse_transform	=	True, gamma	=	10)
X_kpca	=	kpca.fit_transform(X)

# Percentage of variance explained for each components
print(‘explained variance ratio (first two components): %s’
 % str(pca.explained_variance_ratio_))
#%%
# Plot the original data points
plt.figure(2, figsize	=	(8, 6))
plt.clf()

plt.scatter(X[:, 0], X[:, 1], c	=	y, cmap	=	plt.cm.Set1,
 edgecolor	=	‘k’)
plt.xlabel(‘Sepal length’)
plt.ylabel(‘Sepal width’)
plt.title(‘Original data points’)
plt.xticks(())
plt.yticks(())

#%%
#Plot PCA applied Iris Data
plt.figure()
colors	=	[‘navy’, ‘turquoise’, ‘darkorange’]
lw	=	2
for color, i, target_name in zip(colors, [0, 1, 2], target_names):
 plt.scatter(X_pca[y	==	i, 0], X_pca[y	==	i, 1], color	=	color, alpha	=	.8, 
lw	=	lw,
 label	=	target_name)
plt.legend(loc	=	‘best’, shadow	=	False, scatterpoints	=	1)
plt.title(‘PCA of IRIS dataset’)
#%%
#Plot Kernel PCA applied Iris Data
plt.figure()
for color, i, target_name in zip(colors, [0, 1, 2], target_names):
 plt.scatter(X_kpca[y	==	i, 0], X_kpca[y	==	i, 1], alpha	=	.8, color	=	color,
  label	=	target_name)
plt.legend(loc	=	‘best’, shadow	=	False, scatterpoints	=	1)
plt.title(‘KPCA of IRIS dataset’)
plt.show()
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2.3.8 Neighborhood components analysis

Principal	component	analysis	(PCA)	is	used	to	identify	the	combination	of	principal	com-
ponents,	which	interpret	the	most	variance	in	the	data.	Neighborhood	components	analysis	
(NCA)	tries	to	find	a	feature	space	such	that	a	stochastic	nearest	neighbor	algorithm	will	give	
the	best	accuracy.	Like	LDA,	it	is	a	supervised	method.	NCA	applies	a	clustering	of	the	data,	
which	is	visually	meaningful	in	spite	of	the	large	reduction	in	dimension.	NCA	can	be	uti-
lized	to	accomplish	supervised	dimensionality	reduction.	The	input	data	are	projected	onto	a	
linear	subspace	composed	of	the	directions	that	minimize	the	NCA	objective.	The	anticipated	
dimensionality	can	be	set	employing	the	parameter	n_components	(scikit-learn,	n.d.).

Example 2.22
This example compares different (linear) dimensionality reduction methods applied on the Iris 

dataset, which exists in sklearn. datasets. The dataset contains 50 samples of each class. Moreover 
this example compares the dimensionality reduction with PCA (sklearn.decomposition.PCA), 
sparse	PCA	(sklearn.decomposi-tion.SparsePCA),	and	NCA	(NeighborhoodComponentsAnalysis)	
applied	on	the	Iris	dataset.	PCA	is	utilized	for	these	data	to	identify	the	combination	of	attributes	
(principal components, or direc¬tions in the feature space), which comprise the most variance in 
the	data.	Here	the	different	samples	are	plotted	on	the	first	two	principal	components.	Sparse	PCA	
is another method, which employs the lasso (elastic net) to produce modified principal components 
with	sparse	loadings.	NCA	tries	to	find	a	feature	space	such	that	a	stochastic	nearest	neighbor	algo-
rithm	will	give	the	best	accuracy.	It	is	a	supervised	technique	and	requires	a	clustering	of	the	data,	
which is visually meaningful de¬spite the large reduction in dimension. Note that this example is 
adapted from Python–scikit-learn. (scikit-learn, n.d.).
#	=====================================================================
# Dimensionality reduction with PCA, sparse PCA, and NCA
#	=====================================================================
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.decomposition import PCA
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.neighbors import (KNeighborsClassifier,
          NeighborhoodComponentsAnalysis)
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import SparsePCA

n_neighbors	=	3
random_state	=	0
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# Load Iris dataset
iris	=	datasets.load_iris()
X	=	iris.data
y	=	iris.target
target_names	=	iris.target_names
# Split into train/test
X_train, X_test, y_train, y_test	=	\
  train_test_split(X, y, test_size	=	0.5, stratify	=	y,
       random_state	=	random_state)

dim	=	len(X[0])
n_classes	=	len(np.unique(y))

# Reduce dimension to 2 with PCA
pca	=	make_pipeline(StandardScaler(),
          PCA(n_components	=	2, random_state	=	random_state))

# Reduce dimension to 2 with Sparce PCA
spca	=	make_pipeline(StandardScaler(),SparsePCA(n_components	=	2,
       normalize_components	=	True, random_state	=	0))
# Reduce dimension to 2 with NeighborhoodComponentAnalysis
nca	=	make_pipeline(StandardScaler(),
        NeighborhoodComponentsAnalysis(n_components	=	2,
          random_state	=	random_state))

# Use a nearest neighbor classifier to evaluate the methods
knn	=	KNeighborsClassifier(n_neighbors	=	n_neighbors)

# Make a list of the methods to be compared
dim_reduction_methods	=	[(‘PCA’, pca), (‘Sparce PCA’, spca), (‘NCA’, nca)]

# plt.figure()
for i, (name, model) in enumerate(dim_reduction_methods):
  plt.figure()
 # plt.subplot(1, 3, i + 1, aspect	=	1)

  # Fit the method’s model
  model.fit(X_train, y_train)

  # Fit a nearest neighbor classifier on the embedded training set
 knn.fit(model.transform(X_train), y_train)

  # Compute the nearest neighbor accuracy on the embedded test set
 acc_knn	=	knn.score(model.transform(X_test), y_test)

 # Embed the data set in 2 dimensions using the fitted model
 X_embedded	=	model.transform(X)
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2.3.9 Independent component analysis

Independent component analysis (ICA) is a statistical modeling technique as an exten-
sion	of	the	PCA.	The	ICA	was	originally	introduced	for	blind	source	separation	(BSS)	and	
then	modified	for	dimension	reduction	and	feature	extraction.	The	ICA	can	be	used	for	BSS,	
dimension	reduction,	feature	extraction,	and	signal	detection.	While	the	undercomplete	ICA	
can	be	used	for	feature	extraction,	the	overcomplete	ICA	can	be	used	for	dimension	reduc-
tion	based	on	multiscale	and	redundant	basis	sets	(Du	&	Swamy,	2006). The idea of ICA is 
to	decompose	the	signals	into	their	fundamental	independent	components.	The	joint	source	
signals are assumed independent from each other, and this notion plays a crucial role in 
denoising and separating the signals (Sanei	&	Chambers,	2013; Subasi,	2019).

ICA is a statistical signal processing method that decomposes a multichannel signal into 
components	that	are	statistically	independent.	The	objective	of	the	ICA	is	to	estimate

=y W XT (2.24)

such	that	the	components	of	y	must	be	statistically	independent.	The	higher-order	statistics	
of the original signals are needed to estimate the signal, rather than the second-order moment 
or	covariance	of	the	samples	as	used	in	the	PCA.	The	Cramer–Rao	bound	is	utilized	to	esti-
mate	the	source	signals	in	the	ICA	based	on	the	assumption	that	all	independent	components	
have finite variance (Du	&	Swamy,	2006). To find the independent components in the light 
of	the	central	limit	theorem,	components	of	least	Gaussian	distributions	should	be	found.	To	
realize this method, the heuristic, which assumes that the needed independent components 
should	have	identical	distributions,	must	be	followed	(Hyvärinen	&	Oja,	2000; Subasi,	2019). 
Independent component analysis is implemented in scikit-learn using the Fast ICA algo-
rithm.	 Since	 the	 ICA	 model	 does	 not	 contain	 a	 noise	 term,	 for	 the	 model	 to	 be	 accurate,	
whitening	can	be	useful.	This	can	be	achieved	internally	utilizing	the	whiten	argument	or	
manually using one of the PCA variants. It is naturally employed to separate mixed signals 
(blind source separation) (scikit-learn, n.d.)

y=WTX

  # Plot the projected points and show the evaluation score
 plt.scatter(X_embedded[:, 0], X_embedded[:, 1], c	=	y, s	=	30, cmap	=	‘Set1’)
  plt.title(“{}, KNN (k	=	{})\nTest accuracy	=	{:.2f}”.format(name,
 n_neighbors,
acc_knn))
plt.show()

Example 2.23
The	following	Python	code	illustrates	visually	in	the	feature	space	a	comparison	by	results	uti-

lizing two different component analysis methods, namely PCA and ICA. Representing ICA in the 
feature space provides the view of “geometric ICA.” ICA is an algorithm that finds directions in 
the	feature	space	related	to	the	projections	with	high	non-Gaussianity.	These	directions	need	not	
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be	orthogonal	in	the	original	feature	space,	but	they	are	orthogonal	in	the	denoised	feature	space,	
where all directions are related to the same variance. PCA, on the other hand, finds orthogonal 
directions in the raw feature space that are related to directions looking for maximum variance. In 
this	example,	independent	sources	are	simulated	utilizing	a	highly	non-Gaussian	process,	with	a	
low	number	of	degrees	of	freedom	(top	left	figure).	They	are	combined	to	produce	observations	(top	
right	figure).	In	this	raw	observation	space,	directions	described	by	PCA	are	shown	by	green	vec-
tors.	The	signal	is	shown	in	the	PCA	space,	after	whitening	by	the	variance	related	to	the	PCA	vec-
tors	(lower	left).	ICA	is	responsible	for	finding	a	rotation	in	this	space	to	determine	the	directions	of	
the	largest	non-Gaussianity	(lower	right).	Note	that	this	example	is	taken	from	Python–scikit-learn.
#	=====================================================================
# FastICA on 2D point clouds
#	=====================================================================
# Authors: Alexandre Gramfort, Gael Varoquaux
# License: BSD 3 clause
import numpy as np
import matplotlib.pyplot as plt
from sklearn.decomposition import PCA, FastICA
# ######################################################################
#######
# Generate sample data
rng	=	np.random.RandomState(42)
S	=	rng.standard_t(1.5, size	=	(20000, 2))
S[:, 0] *=	2.

# Mix data
A	=	np.array([[1, 1], [0, 2]]) # Mixing matrix

X	=	np.dot(S, A.T) # Generate observations

pca	=	PCA()
S_pca_	=	pca.fit(X).transform(X)

ica	=	FastICA(random_state	=	rng)
S_ica_	=	ica.fit(X).transform(X) # Estimate the sources

S_ica_ /=	S_ica_.std(axis	=	0)
# ######################################################################
#######
# Plot results
def plot_samples(S, axis_list	=	None):
 plt.scatter(S[:, 0], S[:, 1], s	=	2, marker	=	‘o’, zorder	=	10,
   color	=	‘steelblue’, alpha	=	0.5)
   if axis_list is not None:
   colors	=	[‘green’, ‘red’]
   for color, axis in zip(colors, axis_list):
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ICA is utilized to estimate sources given noisy measurements. Imagine three instru-
ments playing instantaneously and three microphones recording the mixed signals. ICA is 
employed	to	recover	the	sources,	that	is,	what	is	played	by	each	instrument.	Notably,	PCA	
fails	 at	 recovering	 our	 instruments	 because	 the	 relevant	 signals	 reflect	 non-Gaussian	 pro-
cesses (scikit-learn, n.d.)

    axis /=	axis.std()
            x_axis, y_axis	=	axis
            # Trick to get legend to work
            plt.plot(0.1 * x_axis, 0.1 * y_axis, linewidth	=	2, color	=	color)
            plt.quiver(0, 0, x_axis, y_axis, zorder	=	11, width	=	0.01, scale	=	6,
            color	=	color)
            plt.hlines(0, -3, 3)
            plt.vlines(0, -3, 3)
            plt.xlim(-3, 3)
            plt.ylim(-3, 3)
            plt.xlabel(‘x’)
            plt.ylabel(‘y’)
plt.figure()
plt.subplot(2, 2, 1)
plot_samples(S / S.std())
plt.title(‘True Independent Sources’)

axis_list	=	[pca.components_.T, ica.mixing_]
plt.subplot(2, 2, 2)
plot_samples(X / np.std(X), axis_list	=	axis_list)
legend	=	plt.legend([‘PCA’, ‘ICA’], loc	=	‘upper right’)
legend.set_zorder(100)

plt.title(‘Observations’)

plt.subplot(2, 2, 3)
plot_samples(S_pca_ / np.std(S_pca_, axis	=	0))
plt.title(‘PCA recovered signals’)

plt.subplot(2, 2, 4)
plot_samples(S_ica_ / np.std(S_ica_))
plt.title(‘ICA recovered signals’)

plt.subplots_adjust(0.09, 0.04, 0.94, 0.94, 0.26, 0.36)
plt.show()
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Example 2.24
Blind source separation using FastICA: The following Python code is used to represent dimen-

sion reduction using ICA, which is realized in scikit-learn. ICA is employed to evaluate sources 
given noisy measurements. Imagine three instruments playing simultaneously and three micro-
phones recording the mixed signals. ICA is employed to recover the sources, that is, what is played 
by	each	instrument.	Notably,	PCA	fails	at	recovering	our	instruments	as	the	associated	signals	re-
flect	non-Gaussian	processes.	In	this	example	we	utilize	the	combination	of	three	different	signals	
with	an	additive	noise	component	and	utilize	sklearn.decomposition.FastICA	to	separate	sources.	
In	scikit-learn,	fast	ICA	is	implemented	as	a	decomposition	object,	which	is	sklearn.decomposition.
FastICA	and	can	be	employed	to	separate	signal	sources.	Note	that	this	example	is	adapted	from	
Python–scikit-learn.
#	=====================================================================
# Blind source separation using FastICA
#	=====================================================================
import numpy as np
import matplotlib.pyplot as plt
from scipy import signal
from sklearn.decomposition import FastICA, PCA
# ######################################################################
#######
# Generate sample data
np.random.seed(0)
n_samples	=	2000
time	=	np.linspace(0, 8, n_samples)

s1	=	np.sin(2 * time) # Signal 1 : sinusoidal signal
s2	=	np.sign(np.sin(3 * time)) # Signal 2 : square signal
s3	=	signal.sawtooth(2 * np.pi * time) # Signal 3: saw tooth signal

S	=	np.c_[s1, s2, s3]
S	+=	0.2 * np.random.normal(size	=	S.shape) # Add noise

S /=	S.std(axis	=	0) # Standardize data
# Mix data
A	=	np.array([[1, 1, 1], [0.5, 2, 1.0], [1.5, 1.0, 2.0]]) # Mixing matrix
X	=	np.dot(S, A.T) # Generate observations

# Compute ICA
ica	=	FastICA(n_components	=	3)
S_	=	ica.fit_transform(X) # Reconstruct signals
A_	=	ica.mixing_ # Get estimated mixing matrix

# We can ‘prove’ that the ICA model applies by reverting the unmixing.
assert np.allclose(X, np.dot(S_, A_.T) + ica.mean_)
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2.3.10 Linear discriminant analysis (LDA)

Linear discriminant analysis	(LDA)	is	a	supervised	technique	for	dimensionality	reduction	
in	classification	problems.

PCA is extensively employed for feature extraction. As a modification of PCA, kernel PCA 
has	been	taking	extensive	acceptance.	As	the	PCA	does	not	utilize	class	information,	the	first	
principal	component	is	not	effectively	important	for	class	separation.	On	the	other	hand,	LDA	
looks	for	the	axis	that	maximally	splits	training	data	projected	on	this	axis	into	two	classes.	
Applications	of	LDA	are	limited	to	cases	in	which	each	class	consists	of	one	cluster,	and	they	
are not closely overlapped. By proper selection of kernels and their parameter values, kernel 
discriminant	analysis	(KDA)	eliminates	the	limitation	of	LDA.	It	can	be	extended	to	multi-
class	problems	as	well.	KDA	is	utilized	as	criteria	for	feature	selection	and	kernel	selection	as	
well as feature extraction (Abe,	2010; Subasi,	2019).

Among	 dimension	 reduction	 methods,	 LDA	 is	 well-known	 and	 extensively	 used.	 LDA	
aims	 to	maximize	 the	 ratio	of	 the	between-class	 scatter	 and	 total	data	 scatter	 in	projected	
space,	and	the	label	of	each	data	is	needed.	Nevertheless,	in	real	applications,	the	labeled	data	
are	rare	and	unlabeled	data	are	in	large	quantity,	so	LDA	is	difficult	to	apply	under	such	cases	
(Subasi,	2019; Wang,	Lu,	Gu,	Du,	&	Yang,	2016).

# For comparison, compute PCA
pca	=	PCA(n_components	=	3)
H	=	pca.fit_transform(X) # Reconstruct signals based on orthogonal compo-
nents

# ######################################################################
#######

# Plot results
plt.figure(2, figsize	=	(8, 6))
models	=	[X, S, S_, H]
names	=	[‘Observations (mixed signal)’,
   ‘True Sources’,
   ‘ICA recovered signals’,
   ‘PCA recovered signals’]
colors	=	[‘red’, ‘steelblue’, ‘orange’]
#colors	=	[‘navy’, ‘turquoise’, ‘darkorange’]
for ii, (model, name) in enumerate(zip(models, names), 1):
   plt.subplot(4, 1, ii)
   plt.title(name)
   for sig, color in zip(model.T, colors):
      plt.plot(sig, color	=	color)
plt.subplots_adjust(0.09, 0.04, 0.94, 0.94, 0.26, 0.46)
plt.show()
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Example 2.25
The	following	Python	code	uses	LDA	for	dimension	reduction.	Below	is	an	example	of	the	iris	

dataset	that	consists	of	four	features	projected	on	the	two	dimensions,	which	explain	most	variance.	
The	Iris	dataset	 includes	three	types	of	Iris	flowers	(Setosa,	Versicolour,	and	Virginica)	with	four	
attributes:	sepal	length,	sepal	width,	petal	length,	and	petal	width.	LDA	finds	attributes	that	con-
stitute	the	most	variance	“between	classes.”	LDA,	in	contrast	to	PCA,	is	a	particularly	supervised	
method	using	known	class	labels.	In	this	example	we	utilize	the	sklearn.discriminant_analysis.Lin-
earDiscriminantAnalysis	to	reduce	the	dimension.	In	scikit-learn,	LDA	is	implemented	as	a	discrim-
inant_analysis	object,	which	is	sklearn.discriminant_analysis.LinearDiscriminantAnalysis	and	can	
be	employed	to	reduce	the	dimension.	Note	that	this	example	is	adapted	from	Python–scikit-learn.
#	====================================================================
# LDA 2D projection of Iris dataset
#	====================================================================
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis

iris	=	datasets.load_iris()
X	=	iris.data
y	=	iris.target
target_names	=	iris.target_names

lda	=	LinearDiscriminantAnalysis(n_components	=	2)
X_r2	=	lda.fit(X, y).transform(X)

# Percentage of variance explained for each components
print(‘explained variance ratio (first two components): %s’
  % str(lda.explained_variance_ratio_))
#%%
#	=====================================================================
# 2D presentation
#	=====================================================================
# Plot the original Iris data points
plt.figure(2, figsize	=	(6, 5))
colors	=	[‘turquoise’, ‘blue’, ‘red’]
for color, i, target_name in zip(colors, [0, 1, 2], target_names):
 plt.scatter(X[y	==	i, 0], X[y	==	i, 1], alpha	=	.8, color	=	color,
    label	=	target_name)
plt.legend(loc	=	‘best’, shadow	=	False, scatterpoints	=	1)
plt.title(‘Original IRIS dataset’)
plt.xlabel(‘Sepal length’)
plt.ylabel(‘Sepal width’)



78 2. Data preprocessing

 

2.3.11 Entropy

Entropy	is	a	degree	of	uncertainty.	The	level	of	chaos	in	the	data	can	be	calculated	using	
entropy of the system. Higher entropy indicates higher uncertainty and a more chaotic sys-
tem. Entropy is given as
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where px	 is	 the	 probability	 density	 function	 (PDF)	 of	 signal	 x(n).	 Generally,	 the	 distribu-
tion	can	be	a	joint	PDF	once	the	data	channels	are	jointly	treated.	Even	though	this	measure	
is	employed	for	a	single-channel	signal,	 it	can	be	easily	extended	to	multichannel	or	even	
multidimensional	signals.	Therefore,	normally,	the	distribution	can	be	a	joint	PDF	once	the	
multichannel	 signals	are	 jointly	 treated.	On	 the	other	hand,	 the	PDF	can	be	 replaced	by	a	
conditional	 PDF	 in	 places	 in	 which	 the	 incidence	 of	 an	 event	 is	 subject	 to	 another	 event.	
In	this	context,	the	entropy	is	termed	as	conditional	entropy.	Entropy	is	very	susceptible	to	
noise. Noise increases the uncertainty and noisy signals have higher entropy, even if the origi-
nal	signal	 is	well-ordered.	Entropy	is	utilized	in	the	computation	of	many	other	beneficial	
parameters,	such	as	mutual	information,	negentropy,	non-Gaussianity,	and	Kulback–Leibler	
divergence.	These	variables	are	comprehensively	used	in	the	estimation	of	the	degree	of	non-
linearity of the systems and correspondence of signals (Sanei,	2013).

xn∫minxmaxxPxlog1pxdx

plt.show()
#%%
#LDA applied Iris Data
plt.figure(2, figsize	=	(6, 5))
colors	=	[‘turquoise’, ‘blue’, ‘red’]
for color, i, target_name in zip(colors, [0, 1, 2], target_names):
   plt.scatter(X_r2[y	==	i, 0], X_r2[y	==	i, 1], alpha	=	.8, color	=	color,
   label	=	target_name)
plt.legend(loc	=	‘best’, shadow	=	False, scatterpoints	=	1)
plt.title(‘LDA applied IRIS dataset’)
plt.show()

Example 2.26
The	following	Python	code	uses	entropy	and	relative	entropy	for	dimension	reduction.	We	will	

utilize a sample dataset, which is produced randomly and contains four different centers. In this 
example we utilize the scipy.special.entr to find the entropy of a given vector. In scipy, entr is imple-
mented	as	a	special	object,	which	is	scipy.special.entr	and	can	be	employed	to	calculate	the	entropy.	
Similarly,	elementwise	function	scipy.special.rel_entr	is	utilized	for	computing	the	relative	entropy.
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2.4 Clustering for feature extraction and dimension reduction

K-means	clustering	reduces	the	data	dimension	by	finding	appropriate	representatives	or	
centroids for clusters, or groups, of data points. All elements of every cluster are then char-
acterized	by	 their	 cluster’s	 corresponding	centroid.	Thus	 the	problem	of	clustering	 is	par-
titioning data into clusters with similar characteristics, and with K-means especially this 

#	=====================================================================
# Entropy dimension reduction
#	=====================================================================
from matplotlib import pyplot as plt
from sklearn.datasets.samples_generator import make_blobs
from scipy import special

#Create a dataset
X, y	=	make_blobs(n_samples	=	300, centers	=	4, cluster_std	=	0.60, random_
state	=	0)

#%%
# Plot the original data points
plt.figure(2, figsize	=	(6, 5))
plt.clf()
plt.scatter(X[:, 0], X[:, 1], c	=	y, cmap	=	plt.cm.Set1,
     edgecolor	=	‘k’)
plt.xlabel(‘X’)
plt.ylabel(‘Y’)
plt.title(‘Original data points’)
plt.xticks(())
plt.yticks(())

#%%
#Calculate the Entropy of a vector
X_entropy	=	special.entr(X[:,1])
print(‘Entropy	=	‘,X_entropy)

#Elementwise function for computing relative entropy
#special.rel_entr(x, y)
X_rel_entr	=	special.rel_entr(X[:,0], X[:,1])
print(‘Relative Entropy	=	‘,X_rel_entr)
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characteristic	is	geometric	closeness	in	the	feature	space.	When	this	is	represented	clearly,	it	
can	be	employed	to	create	a	learning	problem	for	an	accurate	recovery	of	cluster	centroids,	
dropping	the	impractical	notion.	Denoting	by	ck the centroid of the kth cluster and Sk the set 
of	indices	of	the	subset	of	those	P data points, denoted x1 .. . xP,	belonging	to	this	cluster,	the	
points in the kth	cluster	must	lie	close	to	its	centroid,	which	might	be	written	mathematically	
as for all k	=	1	.. . K.	These	needed	relations	can	be	represented	more	appropriately	by	first	
stacking the centroids column-wise into the centroid matrix.

=C c c ····cK1 2 (2.26)

Then	designating	by	ek the kth	standard	basis	vector	(that	is	a	K × 1 vector with a 1 in the 
kth slot and zeros elsewhere), we may represent Cek	=	ck, and hence the relations in Eq. (2.26) 
may	be	represented	for	each	k as

≈ ∈xp p SkC for all .ke (2.27)

Next, to write these equations even more appropriately we stack the data column-wise 
into the data matrix X	=x1 x2   · · xP and produce a K × P assignment matrix W. The pth column 
of this matrix, represented as wp,	is	the	standard	basis	vector	related	to	the	cluster	to	which	
the pth	point	belongs,	that	is,	wp	=	ek if p ∈ Sk.	With	this	wp notation we can represent each 
equation in Eq. (2.27) as Cwp ≈ xp for all p ∈ Sk, or using matrix notation all K such relations 
simultaneously as

≈ XCW . (2.28)

We	can	forget	the	assumption	that	we	know	the	locations	of	cluster	centroids	as	well	as	
which points are assigned to them, that is, an accurate depiction of the centroid matrix C and 
assignment matrix W.	We	want	to	learn the correct values for these two matrices. In particular, 
we know that the ideal C and W fulfill the compact relationships depicted in Eq. (2.28), that 
is, that CW ≈ X or, in other words, that CW − X2F is small while W is composed of appro-
priately	 selected	standard	basis	vectors	associated	with	 the	data	points	 to	 their	 respective	
centroids.	Note	that	the	aim	is	nonconvex,	and	since	we	cannot	minimize	over	both	C and W 
at the same time, it is solved via alternating minimization,	that	is,	by	alternately	minimizing	the	
objective	function	over	one	of	the	variables	(C or W)	while	keeping	the	other	variable	fixed	
(Watt	et	al.,	2016).

C=c1 c2·· ··cK

Cek≍xp for all p ∈ Sk.

CW≍X.

Example 2.27
The	following	Python	code	presents	K-means	clustering.	We	will	utilize	the	Iris	dataset,	which	

includes	three	types	(classes)	of	Iris	flowers	(Setosa,	Versicolour,	and	Virginica)	with	four	attributes:	
sepal length, sepal width, petal length, and petal width. In this example we utilize the sklearn.
cluster.KMeans to find the clusters of the Iris dataset. In scikit-learn, K-means is implemented as 
a	cluster	object,	which	is	sklearn.cluster.KMeans,	and	employed	to	find	the	clusters.	Note	that	this	
example is adapted from Python–scikit-learn.
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#	=====================================================================
# K-means clustering
#	=====================================================================
from sklearn.datasets import load_iris
from sklearn.cluster import KMeans
from sklearn.svm import SVC
import numpy as np
iris	=	load_iris()
X	=	iris[‘data’]
y	=	iris[‘target’]

“”’’
sklearn.cluster.KMeans(n_clusters	 =	8, init	 =	‘k-means + +’, n_init	 =	10, 
max_iter	=	300, tol	=	0.0001,
precompute_distances	=	‘auto’, verbose	=	0, random_state	=	None, copy_x	=	True, 
n_jobs	=	None,
algorithm	=	‘auto’)
“”’’

kmeans	=	KMeans(n_clusters	=	3)
kmeans.fit(X)
y_kmeans	=	kmeans.predict(X)

plt.scatter(X[:, 0], X[:, 1], c	=	y_kmeans, s	=	50, cmap	=	‘viridis’)

centers	=	kmeans.cluster_centers_
plt.scatter(centers[:, 0], centers[:, 1], c	=	‘black’, s	=	200, alpha	=	0.5);

#%%
from sklearn.metrics import pairwise_distances_argmin

def find_clusters(X, n_clusters, rseed	=	2):
  # 1. Randomly choose clusters
   rng	=	np.random.RandomState(rseed)
  i	=	rng.permutation(X.shape[0])[:n_clusters]
   centers	=	X[i]

   while True:
    # 2a. Assign labels based on closest center
    labels	=	pairwise_distances_argmin(X, centers)

   # 2b. Find new centers from means of points
    new_centers	=	np.array([X[labels	==	i].mean(0)
          for i in range(n_clusters)])

  # 2c. Check for convergence
    if np.all(centers	==	new_centers):
      break
    centers	=	new_centers
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Example 2.28
The	following	Python	code	presents	Gaussian	mixture	model	for	clustering.	We	will	utilize	the	

Breast Cancer dataset, which includes two types (classes) of data (Malign and Benign) with 30 at-
tributes.	In	this	example	we	utilize	the	sklearn.mixture.GaussianMixture	to	find	the	clusters	of	the	
Iris	dataset.	In	scikit-learn,	K-means	is	implemented	as	a	cluster	object,	which	is	sklearn.mixture.
GaussianMixture	and	employed	to	find	the	clusters.	Note	that	this	example	is	adapted	from	Py-
thon–scikit-learn.
#	====================================================================
# Gaussian mixture model for clustering
#	====================================================================
import numpy as np
from matplotlib import pyplot as plt
from sklearn import datasets
# ######################################################################
#######
# Import some data to play with
Breast_Cancer	=	datasets.load_breast_cancer()
X	=	Breast_Cancer.data
y	=	Breast_Cancer.target

from sklearn.mixture import GaussianMixture
gmm	=	GaussianMixture(n_components	=	2).fit(X)
proba	=	gmm.predict_proba(X)
y_gmm	=	gmm.predict(X)

plt.scatter(X[:, 0], X[:, 1], c	=	y_gmm, s	=	50, cmap	=	‘viridis’)
centers	=	gmm.cluster_centers_
plt.scatter(centers[:, 0], centers[:, 1], c	=	‘black’, s	=	200, alpha	=	0.5);
#%%
from sklearn.metrics import pairwise_distances_argmin

          return centers, labels
centers, labels	=	find_clusters(X, 3)
plt.scatter(X[:, 0], X[:, 1], c	=	labels,
     s	=	50, cmap	=	‘viridis’);

#%%
centers, labels	=	find_clusters(X, 3, rseed	=	0)
plt.scatter(X[:, 0], X[:, 1], c	=	labels,
      s	=	50, cmap	=	‘viridis’);

#%%
labels	=	KMeans(3, random_state	=	0).fit_predict(X)
plt.scatter(X[:, 0], X[:, 1], c	=	labels,
     s	=	50, cmap	=	‘viridis’);
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Example 2.29
The	following	Python	code	presents	the	usage	of	K-means	clustering	as	a	feature	extractor.	We	

will	utilize	the	Iris	dataset,	which	includes	three	types	(classes)	of	Iris	flowers	(Setosa,	Versicolour,	
and	Virginica)	with	four	attributes:	sepal	length,	sepal	width,	petal	length,	and	petal	width.	In	this	
example we utilize the sklearn.cluster.KMeans to extract the features of the Iris dataset. In scikit-
learn,	K-means	is	implemented	as	a	cluster	object,	which	is	sklearn.cluster.KMeans	and	employed	
to extract the features. Note that this example is adapted from Python–scikit-learn.
#	=====================================================================
# K-means as a feature extractor
#	=====================================================================
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_iris
from sklearn.cluster import KMeans
from sklearn.svm import SVC
import numpy as np
iris	=	load_iris()
X	=	iris[‘data’]
y	=	iris[‘target’]

def find_clusters(X, n_clusters, rseed	=	2):
   # 1. Randomly choose clusters
  rng	=	np.random.RandomState(rseed)
   i	=	rng.permutation(X.shape[0])[:n_clusters]
  centers	=	X[i]

  while True:
   # 2a. Assign labels based on closest center
   labels	=	pairwise_distances_argmin(X, centers)
   # 2b. Find new centers from means of points
    new_centers	=	np.array([X[labels	==	i].mean(0)
          for i in range(n_clusters)])

    # 2c. Check for convergence
    if np.all(centers	==	new_centers):
     break
    centers	=	new_centers

  return centers, labels

centers, labels	=	find_clusters(X, 2)
plt.scatter(X[:, 0], X[:, 1], c	=	labels,
          s	=	50, cmap	=	‘viridis’);
#%%
centers, labels	=	find_clusters(X, 2, rseed	=	0)
plt.scatter(X[:, 0], X[:, 1], c	=	labels,
          s	=	50, cmap	=	‘viridis’);
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#%%
#Classify the original Iris data
Xtrain, Xtest, ytrain, ytest	=	train_test_split(X, y, test_size	=	0.3, ran-
dom_state	=	0)
svm	=	SVC().fit(Xtrain,ytrain)
ypred	=	svm.predict(Xtest)

#%%
from sklearn import metrics
print(‘Accuracy:’, np.round(metrics.accuracy_score(ytest,ypred),4))
print(‘Precision:’, np.round(metrics.precision_score(ytest,
          ypred,average	=	‘weighted’),4))
print(‘Recall:’, np.round(metrics.recall_score(ytest,ypred,
          average	=	‘weighted’),4))
print(‘F1 Score:’, np.round(metrics.f1_score(ytest,ypred,
          average	=	‘weighted’),4))
#print(‘AUC:’, np.round(metrics.roc_auc_score(ytest, ypred)))
print(‘Cohen Kappa Score:’, np.round(metrics.cohen_kappa_score(ytest, 
ypred)))
print(‘Matthews Corrcoef:’, np.round(metrics.matthews_corrcoef(ytest, 
ypred)))
print(‘\t\tClassification Report:\n’, metrics.classification_report(ypred, 
ytest))
#%%
from sklearn.metrics import confusion_matrix
from io import BytesIO #neded for ploting
import seaborn as sns; sns.set()
import matplotlib.pyplot as plt

mat	=	confusion_matrix(ytest, ypred)
sns.heatmap(mat.T, square	=	True, annot	=	True, fmt	=	‘d’, cbar	=	False)
plt.xlabel(‘true label’)
plt.ylabel(‘predicted label’);

plt.savefig(“Confusion.jpg”)
# Save SVG in a fake file object.
f	=	BytesIO()
plt.savefig(f, format	=	“svg”)

#%%
#Extract Features using K-Means and Then Classify
kmeans	=	KMeans(n_clusters	=	10).fit(X)
distances	 =	np.column_stack([np.sum((X - center)**2, axis	 =	1)**0.5 for 
center in kmeans.cluster_centers_])
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Xtrain, Xtest, ytrain, ytest	 =	 train_test_split(distances, y, test_
size	=	0.3, random_state	=	0)
svm	=	SVC().fit(Xtrain,ytrain)
ypred	=	svm.predict(Xtest)

#%%
from sklearn import metrics
print(‘Accuracy:’, np.round(metrics.accuracy_score(ytest,ypred),4))
print(‘Precision:’, np.round(metrics.precision_score(ytest,
          ypred,average	=	‘weighted’),4))
print(‘Recall:’, np.round(metrics.recall_score(ytest,ypred,
          average	=	‘weighted’),4))
print(‘F1 Score:’, np.round(metrics.f1_score(ytest,ypred,
          average	=	‘weighted’),4))
#print(‘AUC:’, np.round(metrics.roc_auc_score(ytest, ypred)))
print(‘Cohen Kappa Score:’, np.round(metrics.cohen_kappa_score(ytest, 
ypred)))
print(‘Matthews Corrcoef:’, np.round(metrics.matthews_corrcoef(ytest, 
ypred)))
print(‘\t\tClassification Report:\n’, metrics.classification_report(ypred, 
ytest))
#%%
from sklearn.metrics import confusion_matrix
from io import BytesIO #neded for plot
import seaborn as sns; sns.set()
import matplotlib.pyplot as plt

mat	=	confusion_matrix(ytest, ypred)
sns.heatmap(mat.T, square	=	True, annot	=	True, fmt	=	‘d’, cbar	=	False)
plt.xlabel(‘true label’)
plt.ylabel(‘predicted label’);

plt.savefig(“Confusion.jpg”)
# Save SVG in a fake file object.
f	=	BytesIO()
plt.savefig(f, format	=	“svg”)

Example 2.30
The	following	Python	code	presents	the	usage	of	Gaussian	mixture	model	as	a	feature	extractor.	

We	will	utilize	the	Breast	Cancer	dataset,	which	includes	two	types	(classes)	of	data	(Malign	and	
Benign)	with	30	attributes.	In	this	example	we	utilize	the	sklearn.mixture.GaussianMixture	to	ex-
tract	the	features	of	the	Breast	Cancer	dataset.	In	scikit-learn,	GaussianMixture	is	implemented	as	
a	mixture	object,	which	is	sklearn.mixture.GaussianMixture	and	employed	to	extract	the	features.	
Note that this example is adapted from Python–scikit-learn.
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#	=====================================================================
# Gaussian mixture model as a feature extractor
#	=====================================================================
from sklearn.model_selection import train_test_split
from sklearn.cluster import KMeans
from sklearn.svm import SVC
import numpy as np
from sklearn import datasets

# ######################################################################
#######
# Import Breast Cancer data to play with
Breast_Cancer	=	datasets.load_breast_cancer()
X	=	Breast_Cancer.data
y	=	Breast_Cancer.target

#%%
# Classify the original Breast Cancer Dataset
Xtrain, Xtest, ytrain, ytest	=	train_test_split(X, y, test_size	=	0.3, ran-
dom_state	=	0)
svm	=	SVC().fit(Xtrain,ytrain)
ypred	=	svm.predict(Xtest)

#%%
from sklearn import metrics
print(‘Accuracy:’, np.round(metrics.accuracy_score(ytest,ypred),4))
print(‘Precision:’, np.round(metrics.precision_score(ytest,
          ypred,average	=	‘weighted’),4))
print(‘Recall:’, np.round(metrics.recall_score(ytest,ypred,
          average	=	‘weighted’),4))
print(‘F1 Score:’, np.round(metrics.f1_score(ytest,ypred,
          average	=	‘weighted’),4))
#print(‘AUC:’, np.round(metrics.roc_auc_score(ytest, ypred)))
print(‘Cohen Kappa Score:’, np.round(metrics.cohen_kappa_score(ytest, 
ypred)))
print(‘Matthews Corrcoef:’, np.round(metrics.matthews_corrcoef(ytest, 
ypred)))
print(‘\t\tClassification Report:\n’, metrics.classification_report(ypred, 
ytest))
#%%
from sklearn.metrics import confusion_matrix
from io import BytesIO #neded for plot
import seaborn as sns; sns.set()
import matplotlib.pyplot as plt

mat	=	confusion_matrix(ytest, ypred)
sns.heatmap(mat.T, square	=	True, annot	=	True, fmt	=	‘d’, cbar	=	False)
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plt.xlabel(‘true label’)
plt.ylabel(‘predicted label’);
plt.savefig(“Confusion.jpg”)
# Save SVG in a fake file object.
f	=	BytesIO()
plt.savefig(f, format	=	“svg”)

#%%
# Extract Features Using Gaussian Mixture Model and then Classify
from sklearn.mixture import GaussianMixture
gmm	=	GaussianMixture(n_components	=	15).fit(X)
proba	=	gmm.predict_proba(X)
Xtrain, Xtest, ytrain, ytest	=	train_test_split(proba, y, test_size	=	0.3, 
random_state	=	0)
svm	=	SVC().fit(Xtrain,ytrain)
ypred	=	svm.predict(Xtest)

#%%
from sklearn import metrics
print(‘Accuracy:’, np.round(metrics.accuracy_score(ytest,ypred),4))
print(‘Precision:’, np.round(metrics.precision_score(ytest,
          ypred,average	=	‘weighted’),4))
print(‘Recall:’, np.round(metrics.recall_score(ytest,ypred,
          average	=	‘weighted’),4))
print(‘F1 Score:’, np.round(metrics.f1_score(ytest,ypred,
          average	=	‘weighted’),4))
#print(‘AUC:’, np.round(metrics.roc_auc_score(ytest, ypred)))
print(‘Cohen Kappa Score:’, np.round(metrics.cohen_kappa_score(ytest, 
ypred)))
print(‘Matthews Corrcoef:’, np.round(metrics.matthews_corrcoef(ytest, 
ypred)))
print(‘\t\tClassification Report:\n’, metrics.classification_report(ypred, 
ytest))

#%%
from sklearn.metrics import confusion_matrix
from io import BytesIO #neded for plot
import seaborn as sns; sns.set()
import matplotlib.pyplot as plt

mat	=	confusion_matrix(ytest, ypred)
sns.heatmap(mat.T, square	=	True, annot	=	True, fmt	=	‘d’, cbar	=	False)
plt.xlabel(‘true label’)
plt.ylabel(‘predicted label’);
plt.savefig(“Confusion.jpg”)
# Save SVG in a fake file object.
f	=	BytesIO()
plt.savefig(f, format	=	“svg”)
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3
Machine learning techniques

3.1 Introduction

A machine learning model is defined using certain parameters to produce a computer 
program by optimizing the parameters of the model using training data or past experience. 
Machine learning uses statistical analysis to generate models, as the key goal is to make infer-
ences from the training sample. In some cases, the training algorithm’s efficiency may be as 
critical as the accuracy of its classification. Machine learning techniques are used in various 
areas as a decision support system (Alpaydin, 2014).

Learning is an interdisciplinary phenomenon that covers many elements of mathematics, 
statistics, computer science, economics, physics, psychology, and neuroscience. Remarkably, 
all human activities are not related to intelligence, so there are some places where a machine 
can behave or respond better. There are some intelligent tasks that humans do not really per-
form and machines can accomplish better than humans. Nonetheless, because the structural 
behaviors and decision-making render it important to understand the system response and 
components for efficient decision-making, classical machine learning models in complex sys-
tems may not achieve the required intelligent response. There is a systemic understanding of 
every behavior, action, or decision. In contrast, from a systematic point of view, each activity 
can result from some other event or series of events. Those relationships are complicated and 
hard to comprehend. Two learning characteristics involve learning for predictable behavior 
in the environment and learning for unpredictable behavior in the system. It is necessary to 
look at learning concepts and models from the viewpoint of new expectations, because sys-
tems and machines are expected to behave intelligently even in a nonpredictive scenarios. 
These expectations make it essential to learn continuously and from several sources of infor-
mation. The essential part is the interpretation and adaptation of data for these systems and 
their efficient application (Kulkarni, 2012).

There are different types of learning techniques utilized for different purposes. Clustering 
methods can be used to separate and divide samples or objects into a number of classes; 
the user can only identify and feed the number of clusters into the clustering algorithm. 
Classification is similar to clustering except that a set of previously labeled data is used to 
train the classifier. Thus somehow the test data are categorized using the similarity of a cat-
egory of labeled data. In practice the goal is to find and identify a boundary between two or 
more classes based on their measured features. There is always an ambiguity about which 
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features are used and how those features are extracted and enhanced in clustering and clas-
sification. Over the last decades, many classification algorithms have been suggested. Linear 
discriminant analysis (LDA), naive Bayes (NB), k-nearest neighbors (k-NN), artificial neural 
networks (ANNs), support vector machines (SVMs), and decision tree algorithms are the 
most popular machine learning algorithms. Moreover there are many clustering algorithms, 
such as k-means, fuzzy c-means, dbscan, and optics, as well (Sanei, 2013; Subasi, 2019).

3.2 What is machine learning?

Machine learning is the study of computer algorithms to help formulate accurate predic-
tions and reactions in certain circumstances, or to act intelligently. Generally, machine learn-
ing is about learning to create better circumstances in the future based on what was learned 
in the past. Machines learn from existing information, knowledge, and experience; hence, 
machine learning is the development of programs that allow us to analyze data from different 
sources by selecting relevant data and utilizing those data to predict the behavior of the sys-
tem in similar or different scenarios. Machine learning also classifies objects and activities to 
support decisions for new input scenarios. The motivation for machine learning is that addi-
tional intelligence and learning is needed to address uncertain situations (Kulkarni, 2012).

3.2.1 Understanding machine learning

Machine learning became popular in the 1990s once researchers began making it a promi-
nent subfield of artificial intelligence (AI) because algorithms that borrow ideas from proba-
bility, statistics, and AI are more successful than fixed, rule-based models that require manual 
effort. Moreover, machine learning is a multidisciplinary field that has progressively evolved 
over time and is still evolving. Obviously, it evolved quickly since the 1990s with the discov-
ery of support vector machines, random forests, long short-term memory networks (LSTMs), 
and the progress of frameworks in both machine and deep learning that include scikit-learn, 
PyTorch, TensorFlow, and Theano. The rise of intelligent systems, including IBM Watson, 
DeepFace, and AlphaGo, began recently (Sarkar, Bali, & Sharma, 2018).

3.2.2 What makes machines learn?

There are many real-world problems that individuals, companies, and organizations are 
working to address for their benefit. It is beneficial to train machines under many conditions, 
and some of them are as follows:

•	 There	is	a	lack	of	enough	human	expertise	in	a	domain.
•	 Scenarios	and	behavior	are	continuously	changing.
•	 People	have	adequate	expertise	in	a	domain,	but	it	is	difficult	to	properly	explain	or	

transfer this skill into computational tasks, such as speech recognition, translation, scene 
recognition, cognitive tasks, and so on.

•	 Addressing	domain-specific	issues	on	a	massive	scale	comprising	data	with	too	many	
dynamic requirements and restrictions.
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Such situations are simple examples for which learning machines are more efficient at 
saving energy, time, and resources than trying to set up intelligent frameworks that can be 
constrained in efficiency, coverage, scope, and wisdom. With the existence of large volumes 
of historical data, the machine learning model can be utilized to accomplish tasks by making 
machines gain sufficient experience in analyzing data patterns over a period of time and then 
using this experience to solve problems by means of limited, labor-intensive intervention in 
the future. The main idea remains to solve problems for which machine learning methods can 
be conceptually easy to define (Sarkar et al., 2018).

The typical machine learning tasks can be described as follows:

•	 Classification or categorization: This characteristically includes a list of tasks or 
problems for which the machine should use data points or samples and allocate a specific 
category or class to every sample.

•	 Regression: These kinds of tasks typically include carrying out a prediction in a way that 
a real numerical value will be the output instead of a class or category for an input data 
point.

•	 Anomaly detection: This activity includes transferring event logs, transaction reports, 
and other data points in such a manner as to detect abnormal and anomalous patterns/
events that differ from normal behavior.

•	 Structured annotation: This generally includes doing some analysis on input data points 
and adding structured metadata as annotations to the original data that describe extra 
information and relations between the data elements.

•	 Translation: Automated machine translation functions are, of course, the hallmark of 
machine learning, allowing examples of input data belonging to a particular language to 
be translated into another language.

•	 Clustering or grouping: Clusters or groups are generally formed from input data 
samples utilizing machine learning by checking characteristic latent patterns, similarities, 
and relationships between the input data points themselves. Generally there is a lack of 
prelabeled or preannotated data for these tasks; hence they form a part of unsupervised 
machine learning (Sarkar et al., 2018).

3.2.3 Machine learning is a multidisciplinary field

Machine learning is generally considered to be a subfield of artificial intelligence, and even 
a subfield of computer science in some perspectives. Machine learning contains ideas that 
have been inherited over a period of time and adapted from several disciplines, rendering it 
a real multidisciplinary and interdisciplinary field. A crucial point to remember is that this 
is not a comprehensive list of fields or domains but rather a reflection of the key machine 
learning subject areas. The major fields or domains related to machine learning include the 
following:

•	 computer	science
•	 mathematics
•	 statistics
•	 artificial	intelligence
•	 data	mining
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•	 deep	learning
•	 data	science
•	 natural	language	processing

Data science is an extensive interdisciplinary field spanning all the other fields that are 
subfields within it. The idea behind data science is using methodologies, algorithms, and 
techniques to extract information from data and domain knowledge. Concepts of data mining 
and pattern recognition techniques, such as knowledge discovery of databases (KDD), developed 
after relational databases became prominent. These fields concentrate more on the capability 
and method of extracting information from big datasets. Machine learning derives concepts, 
which are more related to the analysis phase. Artificial intelligence (AI) is a superset involving 
machine learning as one of its focused areas. The fundamental concept of AI is to develop an 
intelligence as revealed by machines based on their awareness of their environment and input 
parameters/attributes and their response to performing anticipated tasks based on expecta-
tions. Machine learning generally deals with algorithms and techniques that can be utilized to 
recognize data, construct representations, and accomplish tasks such as predictions. Another 
major subfield of AI associated with machine learning is natural language processing (NLP), 
which derives mainly from computer science and computational linguistics. Currently, text 
analytics is a prominent area among data scientists for processing, extracting, and under-
standing natural human language. Deep learning is a subfield of machine learning that deals 
with methods associated with representative learning to improve data by gaining experience. 
It employs a hierarchical and layered structure to represent the given input attributes and its 
current surroundings, utilizing a nested, layered hierarchy of concept representations. Hence 
machine learning can be utilized to solve real-world problems. This provides us with a decent 
overview of the broad landscape of the multidisciplinary field of machine learning (Sarkar 
et al., 2018).

3.2.4 Machine learning problem

The problems that require intelligence are contained in the group of machine learning 
problems. Characteristic problems are face recognition, character recognition, spam filtering, 
speech recognition, document classification, fraud detection, anomaly detection, stock mar-
ket forecasting, weather forecasting, and occupancy forecasting. Remarkably, many complex 
issues that involve decision-making can also be considered problems designed for machine 
learning. These problems include, for instance, learning from experiences and observations 
and looking for solutions in both known and unknown search spaces. They comprise the clas-
sification of objects and mapping them to decisions and solutions. The classification of any 
types of objects or events is a machine learning problem (Kulkarni, 2012). Machine learning 
is extensively utilized in real-world problems that may be impossible to solve by traditional 
approaches (Sarkar et al., 2018). The real-world applications of machine learning can be clas-
sified as follows:

•	 healthcare	data	analysis
•	 anomaly	detection
•	 fraud	detection	and	prevention
•	 product	recommendations	in	online	shopping	platforms
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•	 sentiment	and	emotion	analysis
•	 weather	forecasting
•	 stock	market	forecasting
•	 content	recommendation
•	 market	basket	analysis
•	 customer	segmentation
•	 speech	recognition
•	 churn	prediction
•	 click-through	predictions
•	 failure/defect	detection	and	prevention
•	 object	and	scene	recognition	in	images	and	video
•	 e-mail	spam	filtering

3.2.5 Goals of learning

The key objective of machine learning is to produce learning algorithms with practi-
cal value. The goals of machine learning are defined as development and improvement of 
computer algorithms and models to meet decision-making needs in real-world situations. 
Remarkably, from washing machines and microwave ovens to the automated landing of air-
craft, machine learning plays a crucial role in all modern applications and appliances. The era 
of machine learning has introduced techniques from simple data analysis and pattern recog-
nition to fuzzy logic and inferencing. Since machine learning is data driven and data sources 
are minimal, and the recognition of useful data is difficult most of the time, the sources pro-
vide large piles of data, including significant relationships and correlations between them. 
Machine learning can extract these relationships, which is an area of data mining applica-
tions. The aim of machine learning is to enable the building of intelligent systems that can 
be employed in solving real-life problems. The complexity of algorithms, the amount and 
quality of information, the computational power of the computing engine, and the effective-
ness and reliability of the system architecture determine the quantity of intelligence. The 
quantity of intelligence is produced through algorithm development, learning, and evolution 
(Kulkarni, 2012).

3.2.6 Challenges in machine learning

Machine learning is a quickly developing and exciting scientific area with a lot of oppor-
tunity and prospect. But it comes with its own set of challenges because of the complicated 
nature of machine learning algorithms, their dependency on data, and their not being one of 
the more classical computing models. The following points include some of the main prob-
lems of machine learning.

•	 Problems	with	data	quality	lead	to	problems	with	data	processing	and	extraction	of	
features.

•	 Data	acquisition,	processing,	and	retrieval	are	procedures	that	are	very	tedious	and	time-
consuming.

•	 There	is	a	lack	of	high-quality	and	sufficient	training	data	in	many	scenarios.
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•	 Feature	extraction,	particularly	hand-crafting	features,	is	one	of	the	most	difficult	tasks	in	
machine learning. Recently, deep learning seems to have gained some value in this area.

•	 Expressing	business	obstacles	evidently,	with	well-defined	objectives	and	aims,	can	be	
problematic.

•	 Overfitting	and	underfitting	models	may	lead	to	poor	quality	of	the	model	learning	
configurations and relationships from the training data, leading to detrimental 
performance.

•	 The	curse	of	dimensionality	can	be	a	real	challenge,	that	is,	too	many	features.
•	 It	is	not	easy	to	implement	complex	models	in	the	real	world.

This is not a comprehensive list of challenges faced by machine learning currently, but it 
is certainly a list of the top issues faced by data scientists and analysts in machine learning 
projects or tasks, in particular (Sarkar et al., 2018).

3.3 Python libraries

Python is a programming language employed across both academia and enterprises to 
create and utilize machine learning algorithms. We will explain different machine learning 
techniques, such as TensorFlow where we can create neural network–based models on data-
sets. Moreover, we will explain how to utilize Keras, which is a high-level interface to create 
deep learning models easily and has a concise API, capable of running on top of TensorFlow. 
In addition, there are many excellent frameworks for deep learning, such as Theano, PyTorch, 
MXNet, Caffe, and Lasagne (Sarkar et al., 2018).

3.3.1 Scikit-learn

Scikit-learn (https://scikit-learn.org/stable/) is one of Python’s most popular and cru-
cial machine learning and data science applications for Python (Pedregosa et al., 2011). This 
applies to a wide range of machine learning algorithms that include key areas of machine 
learning, such as classification, regression, and clustering. The library incorporated all the 
standard machine learning algorithms, such as support vector machines, logistic regression, 
random forests, K-means clustering, and hierarchical clustering, perhaps the cornerstone for 
practical machine learning. Scikit-learn is mainly implemented with Python, but for achieving 
better performance some of the core code is implemented in Cython. It also utilizes wrappers 
around popular implementations of learning algorithms, such as support vector machine 
and logistic regression. Scikit-learn will be used broadly in subsequent chapters, so the intent 
here is to become familiar with the structure of the library and its core components (Sarkar 
et al., 2018). Scikit-learn library is constructed on a rather small and modest list of core API 
ideas and design patterns. The core APIs of scikit-learn are as follows:

Dataset representation: The data representation of most machine learning tasks is rela-
tively similar to one another. In general, a data point collection will be represented by a data 
point vector stacking; each row in the data characterizes a vector for a particular observation 
of the data point, called a dataset. A data point vector includes multiple independent vari-
ables (or features) and one or more dependent variables.

https://scikit-learn.org/stable/
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Estimators: The estimator interface is one of the scikit-learn library’s most crucial ele-
ments. The estimator interface is used by all machine learning algorithms in the package. 
The learning phase is conducted in a two-step development. The first step is the initialization 
of the estimator object, which includes choosing the suitable class object for the algorithm 
and providing the hyperparameters or parameters. The second step is utilizing the fit func-
tion to the data provided. The fit function can learn the machine learning algorithm’s perfor-
mance parameters and describe them as the object’s general attributes for simple final model 
examination. The fit function data are normally given as an input-output pair. In addition to 
the machine learning algorithms, many methods of data transformation are also introduced 
using the estimator APIs, such as feature scaling and Principal Component Analysis (PCA). 
It makes it possible to view transformation processes in an appropriate way for simple data 
transformation and simple mechanisms.

Predictors: Using a trained estimator for unknown data the predictor interface is applied 
to generate predictions, forecasts, etc. For instance, the predictor interface will provide pre-
dicted classes for the unknown test set in the case of a supervised learning problem. The 
predictor interface also includes support for providing measured performance values. A pre-
dictor design requirement is for creating a score function that will provide the sample output 
with a scalar value that will measure the model’s performance. In the future, these values will 
be used to adjust machine learning models.

Transformers: It is very common in machine learning to transform input data before cre-
ating a model. Many data transformations are modest, for example, replacing missing data 
with a constant by using a log transformation, whereas some data transformations are similar 
to learning algorithms like PCA. Many estimator objects can make the transformer interface 
simplify the transformation process. This interface helps us conduct a nontrivial transfor-
mation on the input data and provide the result to our actual learning algorithm. Since the 
transformer object maintains the estimator employed for transformation, it is very straight-
forward to use the same transformation to unknown test data utilizing transformation func-
tion (Sarkar et al., 2018).

Example 3.1
The following Python code is used to represent regression by using the scikit-learn library APIs. 

In this example we utilize the Boston house prices dataset, which exists in sklearn.datasets. Note 
that this example is adapted from Python–scikit-learn. This example uses the Boston house prices 
dataset to illustrate a two-dimensional plot of this regression technique. This dataset contains 506 
instances, and there are 13 numeric/categorical attributes and one target. The attribute information 
is as follows:
CRIM per capita crime rate by town
ZN proportion of residential land zoned for lots over 25,000 sq ft
INDUS proportion of nonretail business acres per town
CHAS Charles River dummy variable (=1 if tract bounds river; 0 otherwise)
NOX nitric oxides concentration (parts per 10 million)
RM average number of rooms per dwelling
AGE	proportion	of	owner-occupied	units	built	prior	to	1940
DIS weighted distances to five Boston employment centers
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RAD index of accessibility to radial highways
TAX full-value property-tax rate per $10,000
PTRATIO pupil-teacher ratio by town
B 1000(Bk - 0.63)^2 where Bk is the proportion of blacks by town
LSTAT % lower status of the population
MEDV	median	value	of	owner-occupied	homes	in	$1000s
This dataset is a copy of University of California (UCI) machine learning housing dataset. You can 
access the web page at https://archive.ics.uci.edu/ml/machine-learning-databases/housing/.

# Code source: Jaques Grobler
# License: BSD 3 clause

# ======================================================================
# Linear regression example using scikit-learn API
# ======================================================================
import matplotlib.pyplot as plt
import numpy as np
from sklearn import datasets, linear_model
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.metrics import mean_absolute_error
from sklearn.model_selection import train_test_split

# Load the Boston House prices dataset
boston = datasets.load_boston()
X = boston.data
y = boston.target

Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, test_size = 0.5,  
random_state = 0)
# Create linear regression object
regr = linear_model.LinearRegression()
# Train the model using the training sets
regr.fit(Xtrain, ytrain)
# Make predictions using the testing set
ypred = regr.predict(Xtest)

# The coefficients
print('Coefficients: \n', regr.coef_)
#Intercept
print('Intercept: \n', regr.intercept_ )
# The mean absolute error
print("MAE = %5.3f" % mean_absolute_error(ytest, ypred))
# Explained variance score: 1 is perfect prediction
print("R^2 = %0.5f" % r2_score(ytest, ypred))



 3.3 Python libraries 99

 

3.3.2 TensorFlow

TensorFlow is an open source machine learning library implemented by Google. 
TensorFlow was built on Google’s internal system to drive its development and research pro-
cesses. TensorFlow can be viewed as an initiative by Google to provide an update to Theano 
by providing easy-to-use frameworks for deep learning, neural networks, and machine learn-
ing with a strong emphasis on rapid prototyping and modeling. This introduces definitions 
where symbolic mathematical expressions can be converted into conceptual diagrams. Such 
graphs are then compiled and efficiently implemented into lower-level code. TensorFlow also 
automatically allows use of Central Processing Units (CPUs) and Graphical Processing Units 
(GPUs). In addition, TensorFlow works much better on a tensor processing unit (TPU), which 
was designed by Google. In addition to having a Python API, TensorFlow is also exposed by 
APIs to languages such as C + +, Haskell, Java, and Go. TensorFlow supports higher-level 
services that make the machine learning process simple based on model creation as well as 
the implementation across various processes for development and model serving. Similarly, 
TensorFlow aimed to make applications easy to understand and provide comprehensive doc-
umentation. It is possible to install the TensorFlow library using pip or conda install feature. 
Remember that you will also need upgraded dask and pandas libraries on your framework 
for effective implementation of TensorFlow (Sarkar et al., 2018). At https://www.tensorflow.
org/ you can always find the documentation for TensorFlow, which provides several samples 
for more details. We will provide some basic examples here regarding deep learning with 
TensorFlow.

3.3.3 Keras

Keras is Python’s high-level deep learning platform that can operate on top of TensorFlow. 
The most important advantage of using Keras, created by Francois Chollet, is the time saved 
by its easy-to-use but efficient high-level APIs, allowing quick prototyping for a concept. 
Keras helps us use TensorFlow’s principles in a much more straightforward and user-friendly 
way without writing unnecessary boilerplate software to create deep learning models. The 
principal reason for success of Keras is its ease of elasticity and flexibility. In addition to pro-
viding easy access to specialized libraries, Keras assures that we can still utilize the benefits 
provided by the TensorFlow package. Using the common pip or conda install command, 

# The mean squared error
print("MSE = %5.3f" % mean_squared_error(ytest, ypred))

# Plot outputs
fig, ax = plt.subplots()
ax.scatter(ytest, ypred, edgecolors = (0, 0, 0))
ax.plot([y.min(), y.max()], [y.min(), y.max()], 'k--', lw = 4)
ax.set_xlabel('Measured')
ax.set_ylabel('Predicted')
plt.show()

https://www.tensorflow.org/
https://www.tensorflow.org/
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Keras can be installed easily. We must presume that we have TensorFlow installed because it 
needs to be used as a backend for the creation of the Keras model (Sarkar et al., 2018).

3.3.4 Building a model with Keras

The Keras model construction process is a three-step process. The first step is to define the 
model’s structure. This is achieved by selecting the base model we would like to use, either 
a sequential model or a functional model. By adding layers to the model, we will further 
expand the model once we have defined a base model for our problem. We will start with 
the input layer to which we will feed our input data’s feature vectors. The layers to be added 
to the model will be dictated by the requirements of the model. Keras provides a bunch of 
layers that can be added to the system (hidden layers, fully connected, Convolutional Neural 
Network (CNN), Long short-term memory (LSTM), Recurrent neural network (RNN), etc.), 
and we will describe most of them while running through our deep learning model. We need 
to stack these layers together in a complex way in order to achieve our ultimate prototype 
model and insert the final output layer. The next phase in the machine learning cycle is to 
compile the framework model that we defined in the first stage. In addition to the model 
architecture, the learning process must define the following additional three significant 
parameters (Sarkar et al., 2018):

•	 Optimizer: A training process’s simplest explanation is the optimization of a loss 
function. Once we created the model and loss function, we must decide the optimizer to 
define the specific method or algorithm for optimization, which can be used to train the 
model and decrease the loss or error. This could be a string identifier for the optimizers 
already implemented, a function or an object we could implement for the optimizer class.

•	 Loss function: A loss function, also defined as an objective function, must define the 
target of minimizing loss/error that will exploit our model to achieve the best output 
over several epochs. For some preimplemented loss functions like cross-entropy loss for 
classification or mean squared error for regression, it may again be a string identifier, or it 
may be a custom loss function that can be created.

•	 Performance metrics: A metric is a representation of learning process that can be 
quantified. We can identify a performance measure that we want to monitor while 
generating a model—for example, accuracy for a classification method—which will teach 
us about the training process’s success. It helps to assess the performance of the model.

The last step in the process of model building is to implement the compiled method to start 
the process of training. To figure out the required parameters and weights of our model dur-
ing the training process, this will execute the lower level compiled code (Sarkar et al., 2018).

3.3.5 The natural language tool kit

Human languages vary from the languages of computer programming. These are not 
designed to be translated as are programming languages into a limited set of mathematical 
operations. Natural languages are what people use to communicate. Written with a program-
ming language, a computer program asks a machine precisely what to do. But there are no 
natural language compilers or interpreters. Natural language processing is an area of research 
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concerning the processing of natural languages in computer science and artificial intelligence 
(AI). In particular, this process includes translating natural language into information (num-
bers) that can be used by a machine to learn about the world. And sometimes this envi-
ronment is used to produce natural language text that represents that understanding. If the 
computer program you are creating understands natural language, it can operate on or even 
respond to these statements. But these actions and reactions are not precisely defined, giving 
you, the natural language pipeline designer, more flexibility (Hapke, Lane, & Howard, 2019).

A natural language processing system is often referred to as a pipeline, as it typically 
involves several processing phases in which natural language streams from one end and the 
processed	data	flows	out	the	other.	Eventually	you	will	have	the	power	to	write	code	that	
does exciting, unpredictable things like having a dialogue that can make computers look a 
little more human. It may appear like magic; all advanced technology does at first. But we’re 
drawing the curtain away so you can play inside, and you’ll soon discover all the tools and 
equipment you need to give yourself the magic tricks. It is not natural for machines to have 
the ability to process anything natural. It is kind of like constructing a building with architec-
tural drawings that can do something useful. If computers can interpret languages that are 
not programmed for machines to learn, it seems impossible (Hapke et al., 2019).

Python has been designed to be a practical language from scratch. It also reveals many 
of its own language production tools. Both of these characteristics make it a logical choice 
for learning the processing of natural language. It is a great language in an enterprise envi-
ronment to create stable output pipelines for NLP algorithms, with many contributors to a 
common codebase. They even use Python, whenever possible, instead of the “universal lan-
guage” of arithmetic and computational symbols (Hapke et al., 2019).

Natural languages cannot be translated directly into an exact collection of mathematical 
operations, but they contain information and guidance that can be derived. These pieces of 
information or instructions can be processed, indexed, checked, and acted upon instantly. 
One of those acts in response to a statement could produce a sequence of words. This is the 
“dialog engine or chatbot role you are going to build.” Natural languages have an additional 
challenge of decoding, which is even more difficult to solve. Natural language speakers and 
writers assume that the person doing the copying (listening and reading) is a human being, 
not a computer (Hapke et al., 2019).

This mind hypothesis about the human language interpreter turned out to be a strong 
assumption. It enables us to say a lot with few words when we presume that the processor 
has access to knowledge of the world throughout a period. This degree of compression for 
computers is still out of control. There is no simple “theory of mind” in an NLP pipeline to 
which you can refer. Nevertheless, strategies to help machines create ontologies of common 
sense knowledge, or knowledge bases, help to understand statements based on this informa-
tion (Hapke et al., 2019).

A search engine could produce more meaningful results by indexing web sites and docu-
ment archives in a way that takes the context of natural language text into consideration. 
Autocomplete uses NLP to complete the thought and is widespread to mobile phone key-
boards and search engines. Most word processors, browser plugins, or text editors have spell-
ing correctors, grammar checkers, composers of concordance, or coaches of style using NLP. 
Many dialog engines (chatbots) utilize natural language search to find an answer to the mes-
sage from their conversation partner. In addition to writing brief responses in chatbots or 
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virtual assistants, NLP pipelines that produce (compose) text can also be utilized to compile 
much longer text passages. The Associated Press utilizes NLP as “robot journalists” to com-
pose entire articles on financial news or reports on sporting events. Bots can write weather 
forecasts that look like weather in your hometown, since human meteorologists use NLP-
functional word processors to draft scripts. And in the cat and mouse game between spam 
filters and spam producers for text, the spam filters have maintained their advantage but may 
be losing in other contexts such as social networks. And these “puppet masters,” with the 
wealth and incentive to manipulate popular opinion, appear to be foreign governments and 
large corporations (Hapke et al., 2019).

Chatbots produced approximately 20% of the messages about the 2016 U.S. presidential 
election. Such bots reflect the views of their owners and programmers. More than just short 
social network posts can be created by NLP systems. On Amazon and elsewhere, NLP can be 
used to compose long film or product reviews. Most reviewers are producing autonomous 
NLP pipelines that have never set foot in a movie theater or purchased the product being 
reviewed. On Slack, IRC, and even customer service websites chatbots have to interact with 
ambiguous commands and queries. And chatbots equipped with voice recognition and pro-
duction systems can even manage long conversations with an unspecified aim or “objective 
function,” such as booking at a local restaurant. To companies that need something more than 
a phone tree but don’t want to pay people to help their customers, NLP programs can answer 
phones. According to computational resource limitations, early NLP frameworks had to uti-
lize the computational power of their human brains to model and implement complex logical 
rules to obtain information from a string of natural language. This is an NLP approach based 
on patterns. The patterns, like our regular expression, need not be simply character series 
variations. Furthermore, NLP frequently includes patterns of sequences of words or parts of 
speech or other “higher-level” patterns (Hapke et al., 2019).

Python’s most powerful library to deal with text content may be the Natural Language 
Tool Kit (NLTK). NLTK and its significant modules are presented in this section, with a brief 
description of its main modules. Similar to other standard libraries there is a significant dif-
ference in the NLTK collection. In particular, we don’t need to access any auxiliary data in 
the case of other libraries. But to access the full potential of the NLTK library we need some 
auxiliary data, mainly various corpora. Various functions and modules in the library use this 
information (Sarkar et al., 2018).

A process of collecting the documents of interest in a single dataset is the starting point 
of any text analytics process. This dataset is essential for processing and evaluating the next 
steps. Such document collection is generally referred to as a corpus. Different versions of the 
corpus are called corpora. The NLTK module nltk.corpus provides the necessary functions 
that can be utilized in a variety of formats to read corpus data. It promotes business training 
from the NLTK package-bundled datasets as well (Sarkar et al., 2018).

Tokenization is one of the key steps of preprocessing and standardization of language. 
Every	text	file	has	several	elements,	such	as	sentences,	phrases,	and	terms,	that	make	up	the	
document. The tokenization method can be used to break the file into smaller components. 
This tokenization can be used in sentences, terms, clauses, etc. Using sentence tokenization 
and word tokenization is the most popular way of tokenizing any text. The nltk.tokenize 
module of the NLTK library offers features that enable any textual data to be easily tokenized 
(Sarkar et al., 2018).
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A text file is constructed on the basis of different grammatical rules and structures. The 
grammar is based on the text document’s language. The tagging method would involve get-
ting a text corpus, tokenizing the text, and assigning details such as tags to each word in the 
corpora metadata. The module nltk.tag contains various algorithms that can be used for tag-
ging and other related activities (Sarkar et al., 2018).

A word may have various forms depending on what portion of the speech it describes. The 
stemming method is used to convert all of a word’s different forms into the base form, known 
as the root step. Lemmatization is similar to stemming, but the basic form is known as the 
root word and it is always a word that is correct in terms of semantics and lexicography. This 
conversion is crucial, because many times the core word contains more information about 
the document that these different forms can dilute. The NLTK nltk.stem framework contains 
various methods that can be used to stem and lemmatize a corpus (Sarkar et al., 2018).

Chunking is another process similar to parsing and tokenization, but the key difference is 
that we will target phrases found in the text instead of attempting to parse every word. We 
may tag phrases with additional parts of speech information by using the chunking proce-
dure, which is crucial to understanding the document’s structure. The NLTK module nltk.
chunk is made up of the required techniques that can be used by our corpora to implement 
the chunking procedure (Sarkar et al., 2018).

Sentiment analysis is one the most popular techniques on text data. Processing of senti-
ment is the procedure of taking a text document and attempting to determine the opinion 
and polarity presented by the document. Polarity in a text file reference may indicate that the 
information reflects the emotion, for example, positive, negative, or neutral. Using different 
algorithms and at different levels of text segmentation, the sentiment analysis on textual data 
can be accomplished. The nltk.sentiment module is the application that can be used on text 
documents to perform various sentiment analyses (Sarkar et al., 2018).

Classification of text documents may include learning from several text documents (corpus) 
the sentiment, topic, theme, class, etc., and then using the trained model to label unknown 
documents in the future. The major difference from ordinary structured data is that we will 
use unstructured text in the context of feature representations. Clustering means bringing 
different documents together according to some measure of similarity, such as semantic simi-
larity. Usually, the modules nltk.classify and nltk.cluster are used to execute these operations 
once we do the required engineering and extraction functionality. There are many other text 
analytics frameworks, such as pattern, genism, textblob, and spacy (Sarkar et al., 2018).

3.4 Learning scenarios

Common scenarios of machine learning vary in the categories of training data available to 
the learner, the sequence and algorithm of processing training data, and the test data utilized 
to assess the learning algorithm.

Supervised learning: The learner uses a series of labeled samples as training data and pre-
dicts all unseen instances. This is the most common scenario correlated with problems of 
classification	regression	and	ranking.	Examples	of	supervised	 learning	are	anomaly	detec-
tion, face recognition, signal and image classification, weather forecasting, and stock market 
forecasting.
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Unsupervised learning: The learner solely receives unlabeled training data and predicts 
all unseen instances. Since there is usually no labeled instance in that environment, quantita-
tive assessment of a learner’s performance can be challenging. Clustering and reduction of 
dimensionality are forms of unsupervised learning problems.

Semisupervised learning: The learner receives a training sample composed of both labeled 
and unlabeled instances and predicts all unseen instances. Semisupervised learning are typi-
cal situations in which it is easy to access unlabeled data, but labels are costly to obtain. 
Various types of applications-related problems, like classification regression and ranking pro-
cesses, can be presented as semisupervised learning instances. The idea is that distribution of 
unlabeled instances can help the learner achieve better performance than in the supervised 
setting. The focus of modern empirical and practical machine learning study is the analysis of 
the circumstances under which this can really be achieved.

Transductive inference: As in the semisupervised case, together with a set of unlabeled 
test points the learner receives a labeled learning sample. The aim of transductive inference, 
however, is to predict labels for these specific test points only. Transductive inference seems 
to be an easier task and is in accordance with the situation used in a number of modern appli-
cations. Nonetheless, the assumptions under which a better performance can be obtained in 
this environment, as in the semisupervised system, are research questions that have not been 
properly addressed.

Online learning: This interactive method contains multiple rounds, as opposed to previous 
situations, and training and testing steps are intermixed. The learner gets an unlabeled learn-
ing point at each stage, makes a prediction, receives the true label, and causes a loss. The goal 
in the online setting is to mitigate cumulative loss throughout all rounds. Unlike the previous 
settings mentioned, online learning does not allow any distributional assumption. Moreover, 
in this case, instances and their labels may be selected adversarially.

Reinforcement learning: The learner continually engages with the environment to collect 
information, influencing the environment in some situations and obtaining an immediate 
reward for each activity. The learner’s goal is to optimize his reward with the environment 
over a series of acts and iterations. Nonetheless, the environment does not provide long-term 
incentive feedback, and the learner faces the problem of discovery and manipulation, as it 
must make a selection between exploring unseen activities to find out information or leverag-
ing the already collected information.

Active learning: The learner receives training samples adaptively and interactively, usually 
by querying an oracle to ask for labels on new instances. The goal of active learning is to produce 
a performance that is equivalent to the standard supervised learning case, but with less exam-
ples labeled. Active learning is generally employed in systems in which the labels are expensive 
to acquire, such as applications in computational biology. Many other methods and somewhat 
more demanding learning scenarios can be found (Mohri, Rostamizadeh, & Talwalkar, 2018).

3.5 Supervised learning algorithms

Supervised learning algorithms include learning algorithms that use training data and 
associated labels during the model training process with each data sample. The key objec-
tive is to learn from the input data samples’ corresponding output mapping or relationship. 
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This trained model can then be utilized later to predict output for any new set of input data 
instance that was previously unseen during the process of model training. Such approaches 
are defined as supervised, as the model learns from data samples, whereas in the training 
phase the required performance labels/responses are already known in advance. Supervised 
learning basically attempts to model the relationship between the inputs and their corre-
sponding outputs from the training data so that we can predict output responses to new 
data inputs based on the previously learned knowledge of the relationships and mapping 
between the inputs and their target outputs. Supervised training approaches consist of two 
major classes, classification and regression, based on the type of machine learning problems 
to be solved (Sarkar et al., 2018).

3.5.1 Classification

Classification-based tasks are a subfield of supervised machine learning in which the key 
goal is to predict output labels or reactions that are categorical in nature of input data related 
to what the model has learned during the training phase. Therefore, each output response 
belongs to a specific discrete category or class. Popular classification algorithms are logistic 
regression (LR), linear discriminant analysis (LDA), artificial neural networks (ANN), sup-
port vector machines (SVM), k-nearest neighbors (k-NN), naive Bayes (NB), decision trees 
(DT), ensembles like random forests and gradient boosting, and deep learning techniques 
(Sarkar et al., 2018).

A wide range of diverse problems can be solved by machine learning techniques. In a clas-
sification task, it is necessary to learn a proper classifier from training data. Classification is 
just one range of possible tasks in which a model can learn. Others are regression and cluster-
ing. For each of these tasks we will explain how problems are solved with machine learning 
techniques, what kind of information is needed, how performance of the models is evaluated, 
and how we can choose the best model. The objects of interest in machine learning are gen-
erally referred to as instances. The set of all possible instances is called the instance space. To 
accomplish the task under consideration a model needs to be created. In order to create such 
a model, a training set with labeled instances (sometimes called examples) is utilized. Part of the 
labeled data is generally set aside, where it is called a test set, for testing or assessing a classi-
fier. The basic type of input space arises once instances are designated by a fixed number of 
features (attributes) (Flach, 2012).

A credit is an allowance of money to be paid back with interest, usually in installments, 
loaned by a financial institution, such as a bank. It is crucial that the bank can forecast in 
advance the risk associated with a loan, which is the possibility that the customer may default 
and not pay back the entire amount. This is both to ensure the bank makes a profit and also 
not to burden a customer with a loan beyond their financial capacity. The bank measures the 
risk in credit scoring given the amount of credit and the customer information. The aim of 
this information from specific applications is to infer a general rule that codes the relationship 
between the attributes of a customer and the risk involved. That is, to calculate the risk for a 
new application, the machine learning program applies a template to the past data and then 
chooses to accept or refuse it accordingly (Alpaydin, 2014).

There are several machine learning applications in data science. One of them is optical charac-
ter recognition, which involves recognizing character codes from images. People have diverse 
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handwriting styles; characters may be typically written large or small, with a pencil or pen, 
and there might be several images related to the same character. There are machine learning 
algorithms that learn sequences and model different variations. In the case of face recognition, 
the input is an image, the classes are people to be recognized, and the learning algorithm 
has to learn to relate face images to the identities. This problem is harder than optical char-
acter recognition since there are several classes, the input image is larger, and a face is three-
dimensional and differences in pose and lighting cause noteworthy variations. Moreover, 
there might be occlusion of certain inputs; for instance, glasses may hide the eyes and eye-
brows and a beard may hide the chin. In medical diagnosis, the inputs are the related informa-
tion about the patient and the classes are the illnesses. The inputs contain, for instance, the 
patient’s	age,	gender,	past	medical	history,	current	symptoms,	blood	tests,	EEG,	EMG,	ECG	
signals,	MRI,	 or	PET,	 images.	 Some	 tests	 cannot	be	applied	 to	 the	patient,	 and	 thus	 these	
inputs might be missing. In the case of a medical diagnosis, a wrong decision may result in 
inappropriate or lack of treatment, and it is preferable for the classifier to reject and defer a 
decision to a human expert in cases of doubt. The data is sound signals for speech recognition, 
and the classes are spoken words. The interaction to be learned in this case is from an acous-
tic signal to a language term. Because of variations in gender, age, or accent, several people 
pronounce the same word in different ways, which makes this task rather difficult. The best 
way to create a language model is to learn it from a large amount of data. The applications 
of machine learning to natural language processing are continually expanding. Spam filtering is 
one in which spam generators on one side and filters on the other side keep generating more 
and more clever ways to outwit each other. Document analysis is another exciting example, 
such as analyzing posts or blogs on social networking sites to extract “trending” topics or 
to determine what to advertise. Biometrics is the authentication or recognition of people by 
utilizing their physiological or behavioral characteristics and needs an integration of inputs 
from diverse modalities. Physiological characteristics might be images of the fingerprint, face, 
palm, and iris; behavioral characteristics might be dynamics of signature, gait, voice, and key-
stroke. Machine learning can be utilized to recognize different modalities to obtain an overall 
accept/reject decision (Alpaydin, 2014).

3.5.2 Forecasting, prediction, and regression

Regression is a machine learning task in which the main aim is the estimation of value. 
Regression techniques are based on sets of input data and output responses that are continu-
ous numerical values, unlike classification, in which they have distinct classes or categories. 
Regression models utilize input data features or attributes and their accompanying numerical 
output values to learn basic relations and associations between inputs and their correspond-
ing outputs. One of the most common real-world examples of regression is stock market fore-
casting. A simple regression model can be built to forecast stock prices based on data related 
to the previous stock market values. Simple linear regression models attempt to model data 
relationships with one feature or descriptive variable x and a single response variable y with 
the goal of predicting y. Lasso regression is a special regression type that performs normal 
regression and generalizes the model well through regularization and selection of features 
or variables. Lasso is the least complete operator of shrinkage and choice. Ridge regression is 
another special regression type that performs normal regression and generalizes the model 
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by regularizing to prevent the model overfitting. Generalized linear models are basic imple-
mentations that can be used to model data that forecasts various types of output responses 
(Sarkar et al., 2018).

3.5.3 Linear models

In machine learning, linear models are of particular relevance since they are simple. Linear 
models are parametric, which means that they have a fixed form with a small number of 
numeric parameters that can be learned from data. Since linear models are stable, small varia-
tions in the training data have only limited impact on the learned model. Linear models are 
less likely to overfit the training data than some other models since they have comparatively 
few parameters. The reverse of this sometimes results in underfitting. Moreover, linear models 
have low variance but high bias. Such models are generally desirable once you have limited 
data and need to avoid overfitting. Linear models exist for all predictive tasks, including clas-
sification, probability estimation, and regression (Flach, 2012).

A	simple	linear	regression	model	assumes	that	the	regression	function	E(Y	|X)	is	 linear	
in the inputs X1,. . .,Xp. Linear models were developed primarily in the precomputer era of 
statistics, but there are still good reasons to study and use them even in today’s computer 
age. These are simple and mostly include a summary of how the inputs influence the output. 
We can sometimes outperform fancy nonlinear models for predictive purposes, especially in 
cases with small training instances, poor signal-to-noise ratio, or sparse data. Finally, linear 
approaches can be extended to input transformations, and this extends their scope consid-
erably. Such generalizations are sometimes referred to as forms of basic function (Hastie, 
Tibshirani, Friedman, & Franklin, 2005).

Example 3.2
The following Python code is used to represent linear regression by using the scikit-learn library 

APIs. In this example we utilize the diabetes dataset, which exists in sklearn.datasets. The dataset 
contains 10 baseline variables—age, sex, body mass index, average blood pressure, and six blood 
serum measurements—taken from 442 diabetes patients, as well as the response of interest, a quan-
titative measure of disease progression 1 year after baseline. Hence there are 442 instances with the 
10 attributes.

Column	11	is	a	quantitative	measure	of	disease	progression	1	year	after	baseline.	Each	of	these	
10 attributes were mean-centered and scaled by standard deviation times n_samples (i.e., the sum 
of squares of each column totals 1). The original data can be downloaded from: https://www4.stat.
ncsu.edu/~boos/var.select/diabetes.html’.

This example utilizes all the features of the diabetes dataset to illustrate a two-dimensional plot 
of this regression technique. The straight line seen in the plot demonstrates how linear regression 
tries to draw a straight line, which minimizes the residual sum of squares between the observed 
responses in the dataset, and the responses predicted by the linear approximation. The correlation 
coefficient R2,	mean	absolute	error	(MAE),	and	mean	squared	error	(MSE)	are	also	calculated.	Note	
that this example is adapted from Python–scikit-learn.
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# Code source: Jaques Grobler
# License: BSD 3 clause
# ======================================================================
# Linear regression example
# ======================================================================
import matplotlib.pyplot as plt
import numpy as np
from sklearn import datasets, linear_model
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.metrics import mean_absolute_error
from sklearn.model_selection import train_test_split

# Load the diabetes dataset
diabetes = datasets.load_diabetes()
diabetes_X = diabetes.data
y = diabetes.target
Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, test_size = 0.5, ran-
dom_state = 0)

# Create linear regression object
regr = linear_model.LinearRegression()
# Train the model using the training sets
regr.fit(Xtrain, ytrain)
# Make predictions using the testing set
ypred = regr.predict(Xtest)

# The coefficients
print('Coefficients: \n', regr.coef_)
#Intercept
print('Intercept: \n', regr.intercept_ )
# Explained variance score: 1 is perfect prediction
print("R^2 = %0.5f" % r2_score(ytest, ypred))
# The mean absolute error
print("MAE = %5.3f" % mean_absolute_error(ytest, ypred))
# The mean squared error
print("MSE = %5.3f" % mean_squared_error(ytest, ypred))

# Plot outputs
fig, ax = plt.subplots()
ax.scatter(ytest, ypred, edgecolors = (0, 0, 0))
ax.plot([y.min(), y.max()], [y.min(), y.max()], 'k--', lw = 4)
ax.set_xlabel('Measured')
ax.set_ylabel('Predicted')
plt.show()
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Example 3.3
The following Python code is used to represent ridge regression by using the scikit-learn li-

brary APIs. In this example we utilize the diabetes dataset, which exists in sklearn.datasets and 
is described in the previous example. This example utilizes all the features of the diabetes dataset 
to illustrate a two-dimensional plot of this regression technique. The straight line seen in the plot 
demonstrates how linear regression tries to draw a straight line, which minimizes the residual sum 
of squares between the observed responses in the dataset, and the responses predicted by the linear 
approximation. The correlation coefficient R2,	MAE,	and	MSE	are	also	calculated.	Note	 that	 this	
example is adapted from Python–scikit-learn.

# ======================================================================
# Ridge regression example
# ======================================================================
import matplotlib.pyplot as plt
from sklearn import datasets, linear_model
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.metrics import mean_absolute_error
from sklearn.model_selection import train_test_split

# Load the diabetes dataset
diabetes = datasets.load_diabetes()
diabetes_X = diabetes.data
y = diabetes.target
Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, test_size = 0.5, ran-
dom_state = 0)

# Create linear regression object
regr = linear_model.Ridge(alpha = .5)
# Train the model using the training sets
regr.fit(Xtrain, ytrain)
# Make predictions using the testing set
ypred = regr.predict(Xtest)

# The coefficients
print('Coefficients: \n', regr.coef_)
#Intercept
print('Intercept: \n', regr.intercept_ )
# Explained variance score: 1 is perfect prediction
print("R^2 = %0.5f" % r2_score(ytest, ypred))
# The mean absolute error
print("MAE = %5.3f" % mean_absolute_error(ytest, ypred))
# The mean squared error
print("MSE = %5.3f" % mean_squared_error(ytest, ypred))
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# Plot outputs
fig, ax = plt.subplots()
ax.scatter(ytest, ypred, edgecolors = (0, 0, 0))
ax.plot([y.min(), y.max()], [y.min(), y.max()], 'k--', lw = 4)
ax.set_xlabel('Measured')
ax.set_ylabel('Predicted')
plt.show()

Example 3.4
The following Python code is used to represent lasso regression by using the scikit-learn library 

APIs. In this example we utilize the Boston house prices dataset, which exists in sklearn.datasets. 
This example utilizes all the features of the Boston house prices dataset. The straight line seen in the 
plot demonstrates how linear regression tries to draw a straight line, which minimizes the residual 
sum of squares between the observed responses in the dataset, and the responses predicted by the 
linear approximation. The correlation coefficient R2,	MAE,	and	MSE	are	also	calculated.	Note	that	
this example is adapted from Python–scikit-learn.

# ======================================================================
# Lasso regression example
# ======================================================================
import matplotlib.pyplot as plt
import numpy as np
from sklearn import datasets, linear_model
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.metrics import mean_absolute_error
from sklearn.model_selection import train_test_split
# Load the Boston House prices dataset
boston = datasets.load_boston()
X = boston.data
y = boston.target
Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, test_size = 0.5, ran-
dom_state = 0)

# Create linear regression object
regr = linear_model.Lasso(alpha = 0.1)
# Train the model using the training sets
regr.fit(Xtrain, ytrain)

# Make predictions using the testing set
ypred = regr.predict(Xtest)

# The coefficients
print('Coefficients: \n', regr.coef_)
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#Intercept
print('Intercept: \n', regr.intercept_ )
# Explained variance score: 1 is perfect prediction
print("R^2 = %0.5f" % r2_score(ytest, ypred))
# The mean absolute error
print("MAE = %5.3f" % mean_absolute_error(ytest, ypred))
# The mean squared error
print("MSE = %5.3f" % mean_squared_error(ytest, ypred))
# Plot outputs
fig, ax = plt.subplots()
ax.scatter(ytest, ypred, edgecolors = (0, 0, 0))
ax.plot([y.min(), y.max()], [y.min(), y.max()], 'k--', lw = 4)
ax.set_xlabel('Measured')
ax.set_ylabel('Predicted')
plt.show()

Example 3.5
The following Python code is used to represent the transformation of target in regression by us-

ing the scikit-learn library APIs. In this example we utilize the Boston house prices dataset, which 
exists in sklearn.datasets. This example utilizes the transformed features of the Boston house prices 
dataset using TransformedTargetRegressor. TransformedTargetRegressor transforms the targets y 
before fitting a regression model. The predictions are mapped back to the original space via an 
inverse transform. The regressor, which is utilized for prediction, and the transformer, which is 
applied to the target variable can be taken as an argument. The straight line seen in the plot dem-
onstrates how linear regression tries to draw a straight line, which minimizes the residual sum of 
squares between the observed responses in the dataset, and the responses predicted by the linear 
approximation. The correlation coefficient R2,	MAE,	and	MSE	are	also	calculated.	It	can	be	seen	from	
the example that the target transformation improved the performance of the regression model. Note 
that this example is adapted from Python–scikit-learn.

# ======================================================================
#Transforming target in regression
# ======================================================================
from sklearn.compose import TransformedTargetRegressor
from sklearn.preprocessing import QuantileTransformer
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.metrics import mean_absolute_error
from sklearn.datasets import load_boston
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# Load the Boston house prices dataset
boston = load_boston()
X = boston.data
y = boston.target
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state = 0)

# ======================================================================
# Prediction without transformation
# ======================================================================

# Create linear regression object
regr = LinearRegression()
# Train the model using the training sets
regr.fit(X_train, y_train)
# Make predictions using the testing set
y_pred = regr.predict(X_test)

print('R^2 score without Transformation: {0:.2f}'.format(regr.score(X_
test, y_test)))
# Explained variance score: 1 is perfect prediction
print("R^2 = %0.5f" % r2_score(y_test, y_pred))
# The mean absolute error
print("MAE = %5.3f" % mean_absolute_error(y_test, y_pred))
# The mean squared error
print("MSE = %5.3f" % mean_squared_error(y_test, y_pred))

# Plot outputs
fig, ax = plt.subplots()
ax.scatter(y_test, y_pred, edgecolors = (0, 0, 0))
ax.plot([y.min(), y.max()], [y.min(), y.max()], 'k--', lw = 4)
ax.set_xlabel('Measured')
ax.set_ylabel('Predicted')
plt.title('Without Transformation')
plt.show()

# ======================================================================
# Prediction with transformation
# ======================================================================
transformer = QuantileTransformer(output_distribution = 'normal')
regressor = LinearRegression()
regr = TransformedTargetRegressor(regressor = regressor,

transformer = transformer)
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X_train, X_test, y_train, y_test = train_test_split(X, y, random_state = 0)
regr.fit(X_train, y_train)
y_pred = regr.predict(X_test)

print('R^2 score with Transformation: {0:.2f}'.format(regr.score(X_test, 
y_test)))
# Explained variance score: 1 is perfect prediction
print("R^2 = %0.5f" % r2_score(y_test, y_pred))
# The mean absolute error
print("MAE = %5.3f" % mean_absolute_error(y_test, y_pred))
# The mean squared error
print("MSE = %5.3f" % mean_squared_error(y_test, y_pred))

# Plot outputs
fig, ax = plt.subplots()
ax.scatter(y_test, y_pred, edgecolors = (0, 0, 0))
ax.plot([y.min(), y.max()], [y.min(), y.max()], 'k--', lw = 4)
ax.set_xlabel('Measured')
ax.set_ylabel('Predicted')
plt.title('With Transformation')
plt.show()

Example 3.6
The following Python code compares Bayesian ridge regression with ordinary least squares 

(OLS) by using the scikit-learn library APIs. In this example we utilize the Boston house prices data-
set, which exists in sklearn.datasets. The plot shows the true house prices and estimated house pric-
es by using Bayesian ridge regression and ordinary least squares (OLS). The correlation coefficient 
R2,	MAE,	and	MSE	are	also	calculated.	Note	that	this	example	is	adapted	from	Python–scikit-learn.
# Bayesian ridge regression

# ======================================================================
print(__doc__)
import matplotlib.pyplot as plt
from scipy import stats
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.metrics import mean_absolute_error
from sklearn.datasets import load_boston
from sklearn.linear_model import BayesianRidge, LinearRegression

# Load the Boston house prices dataset
boston = load_boston()
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X = boston.data
y = boston.target
X_train, X_test, y_train, y_test = train_test_split(X, y, random_ 
state = 0)

# ######################################################################
# Fit the Bayesian ridge regression and an OLS for comparison
regr = BayesianRidge(compute_score = True)
regr.fit(X_train, y_train)
y_pred_bayesian = regr.predict(X_test)
ols = LinearRegression()
ols.fit(X_train, y_train)
y_pred_linear = ols.predict(X_test)

# ######################################################################
# Plot true house prices, estimated house prices
lw = 2
plt.figure(figsize = (6, 5))
plt.title("Real and Predicted House Prices")
plt.plot(y_pred_bayesian, color = 'lightgreen', linewidth = lw,
label = "Bayesian Ridge estimate")
plt.plot(y_test, color = 'gold', linewidth = lw, label = "Ground truth")
plt.plot(y_pred_linear, color = 'navy', linestyle = '--', label = "OLS esti-
mate")
plt.xlabel("Houses")
plt.ylabel("House Prices")
plt.legend(loc = "best", prop = dict(size = 12))

Example 3.7
The following Python code utilizes Ridge linear classifier by using the scikit-learn library APIs. 

In this example we utilize the Iris dataset, which exists in sklearn.datasets. The Iris dataset contains 
150 (50 in each of three classes) instances with 4 numeric predictive attributes and the class. The 
attributes are sepal length, sepal width, petal length, and petal width, all in cm. The classes are 
Iris-Setosa, Iris-Versicolour, and Iris-Virginica. The Iris dataset is classified by using Ridge linear 
classifier. The classification accuracy, precision, recall, F1 score, Cohen kappa score, and Matthews 
correlation coefficient are calculated. The classification report and confusion matrix are also given. 
Note that this example is adapted from Python–scikit-learn.

# ======================================================================
# Ridge classifier example
# ======================================================================
import numpy as np
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from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.linear_model import RidgeClassifier

iris = load_iris()
X, y = iris.data, iris.target
Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, test_size = 0.3, ran-
dom_state = 0)

clf = RidgeClassifier(tol = 1e-2, solver = "sag")
clf.fit(Xtrain,ytrain)
ypred = clf.predict(Xtest)

from sklearn import metrics
print('Accuracy:', np.round(metrics.accuracy_score(ytest,ypred),4))
print('Precision:', np.round(metrics.precision_score(ytest,
       ypred,average = 'weighted'),4))
print('Recall:', np.round(metrics.recall_score(ytest,ypred,
       average = 'weighted'),4))
print('F1 Score:', np.round(metrics.f1_score(ytest,ypred,
       average = 'weighted'),4))
print('Cohen Kappa Score:', np.round(metrics.cohen_kappa_score(ytest, 
ypred),4))
print('Matthews Corrcoef:', np.round(metrics.matthews_corrcoef(ytest, 
ypred),4))
print('\t\tClassification Report:\n', metrics.classification_report(ypred, 
ytest))

from sklearn.metrics import confusion_matrix
from io import BytesIO #neded for plot
import seaborn as sns; sns.set()
import matplotlib.pyplot as plt

mat = confusion_matrix(ytest, ypred)
sns.heatmap(mat.T, square = True, annot = True, fmt = 'd', cbar = False)
plt.xlabel('true label')
plt.ylabel('predicted label');

plt.savefig("Confusion.jpg")
# Save SVG in a fake file object.
f = BytesIO()
plt.savefig(f, format = "svg")
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3.5.4 The perceptron

If there is a linear decision boundary dividing the classes, the labeled data is termed lin-
early separable. The least-squares classifier can find a dividing decision boundary if any exists, 
but it is not guaranteed. A linear classifier, which can accomplish exact separation on linearly 
separable data, is the perceptron, initially proposed as a simple neural network. The percep-
tron repeats over the training set, updating the weight vector each time it comes across an 
incorrectly classified example (Flach, 2012).

The perceptron was first proposed by F. Rosenblatt (Rosenblatt, 1958). It can be employed 
to classify patterns. A perceptron is a feed-forward neuron in which the data flow is unidi-
rectional from input to output. In the input layer, each input data item in the elements is 
multiplied by a constant weight factor wij and passes through the neurons of the succeeding 
layer.	Each	neuron	of	the	input	layer	can	propagate	its	output	to	either	only	one	or	to	several	
neurons	of	the	intermediate	layer.	Every	element	of	the	intermediate	layer	adds	its	inputs	to	
a net value that will be multiplied with a variable weight and propagated to the neurons of 
the	output	layer.	Every	neuron	of	the	output	layer	is	linked	to	all	elements	of	the	intermediate	
layer. Depending on their weighted input net, these elements deliver either the value 0 or the 
value 1. During the learning process of perceptrons, the anticipated output zi for every neuron 
in the output layer is known. Hence, it can be continuously compared with the calculated 
output oi (Veit, 2012).

Example 3.8
The following Python code utilizes the perceptron classifier by applying the scikit-learn library 

APIs. In this example we utilize the optical recognition of handwritten digits dataset, which exists in 
sklearn.datasets. The optical recognition of handwritten digits dataset contains 5620 instances with 
64 numeric (8 x 8 image of integer pixels in the range 0...16) predictive attributes and the class. This 
is a copy of the test set of the UCI machine learning handwritten digits datasets (https://archive.
ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits).

The dataset is composed of images of handwritten digits: 10 classes in which each class refers to 
a digit. The handwritten digits dataset is divided into training and test set and then classified by us-
ing perceptron classifier. The classification accuracy, precision, recall, F1 score, Cohen kappa score, 
and Matthews correlation coefficient are calculated. The classification report and confusion matrix 
are also given. Note that this example is adapted from Python–scikit-learn.

# ======================================================================
# Perceptron example
# ======================================================================
import numpy as np
from sklearn.datasets import load_digits
from sklearn.linear_model import Perceptron
from sklearn.model_selection import train_test_split

X, y = load_digits(return_X_y = True)
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Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, test_size = 0.3, ran-
dom_state = 0)

#Create the Model
clf = Perceptron(tol = 1e-3, random_state = 0)
#Train the Model with Training dataset
clf.fit(Xtrain,ytrain)
#Predict the Model with Test dataset
ypred = clf.predict(Xtest)
print("Score:",clf.score(Xtest, ytest))

#Evaluate the Model and Print Performance Metrics
from sklearn import metrics
print('Accuracy:', np.round(metrics.accuracy_score(ytest,ypred),4))
print('Precision:', np.round(metrics.precision_score(ytest,
       ypred,average = 'weighted'),4))
print('Recall:', np.round(metrics.recall_score(ytest,ypred,
       average = 'weighted'),4))
print('F1 Score:', np.round(metrics.f1_score(ytest,ypred,
       average = 'weighted'),4))
print('Cohen Kappa Score:', np.round(metrics.cohen_kappa_score(ytest, 
ypred),4))
print('Matthews Corrcoef:', np.round(metrics.matthews_corrcoef(ytest, 
ypred),4))
print('\t\tClassification Report:\n', metrics.classification_report(ypred, 
ytest))
from sklearn.metrics import confusion_matrix
print("Confusion Matrix:\n",confusion_matrix(ytest, ypred))

#Plot Confusion Matrix
from sklearn.metrics import confusion_matrix
from io import BytesIO #neded for plot
import seaborn as sns; sns.set()
import matplotlib.pyplot as plt

mat = confusion_matrix(ytest, ypred)
sns.heatmap(mat.T, square = True, annot = True, fmt = 'd', cbar = False)
plt.xlabel('true label')
plt.ylabel('predicted label');

plt.savefig("Confusion.jpg")
# Save SVG in a fake file object.
f = BytesIO()
plt.savefig(f, format = "svg")
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3.5.5 Logistic regression

Logistic regression, despite its name, is a classification model rather than regression model. 
Logistic regression is a simple and more efficient method for binary and linear classification 
problems. It is a classification model, which is very easy to realize and achieves very good 
performance with linearly separable classes. It is an extensively employed algorithm for clas-
sification in industry. The logistic regression model, like the Adaline and perceptron, is a 
statistical method for binary classification that can be generalized to multiclass classification. 
Scikit-learn has a highly optimized version of logistic regression implementation, which sup-
ports multiclass classification task (Raschka, 2015).

Example 3.9
The following Python code employs the logistic regression classifier by using the scikit-learn 

library APIs. In this example we utilize the optical recognition of handwritten digits dataset, which 
exists in sklearn.datasets. The handwritten digits dataset is divided into training and test set and 
then classified by using the logistic regression classifier. The classification accuracy, precision, recall, 
F1 score, Cohen kappa score, and Matthews correlation coefficient are calculated. The classification 
report and confusion matrix are also given. Note that this example is adapted from Python–scikit-
learn.

# ======================================================================
# Classification with logistic regression
# ======================================================================
print(__doc__)

# Authors: Alexandre Gramfort <alexandre.gramfort@inria.fr>
#         Mathieu Blondel <mathieu@mblondel.org>
#         Andreas Mueller <amueller@ais.uni-bonn.de>
# License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn import datasets
from sklearn.preprocessing import StandardScaler

digits = datasets.load_digits()
X, y = digits.data, digits.target
Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, test_size = 0.3, ran-
dom_state = 0)
clf = LogisticRegression(C = 50, multi_class = 'multinomial',
penalty = 'l1', solver = 'saga', tol = 0.1)
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Example 3.10
The following Python code utilizes the logistic regression classifier by using the Scikit-learn li-

brary APIs. In this example we utilize the Iris dataset, which exists in sklearn.datasets. The Iris data-
set is classified with the logistic regression classifier by using 10-fold cross-validation. The classifica-
tion accuracy, precision, recall, F1 score, Cohen kappa score, and Matthews correlation coefficient 
are calculated. Note that this example is adapted from Python–scikit-learn.

clf.fit(Xtrain, ytrain)
ypred = clf.predict(Xtest)

#Print performance metrics
from sklearn import metrics
print('Accuracy:', np.round(metrics.accuracy_score(ytest,ypred),4))
print('Precision:', np.round(metrics.precision_score(ytest,
       ypred,average = 'weighted'),4))
print('Recall:', np.round(metrics.recall_score(ytest,ypred,
       average = 'weighted'),4))
print('F1 Score:', np.round(metrics.f1_score(ytest,ypred,
       average = 'weighted'),4))
print('Cohen Kappa Score:', np.round(metrics.cohen_kappa_score(ytest, 
ypred),4))
print('Matthews Corrcoef:', np.round(metrics.matthews_corrcoef(ytest, 
ypred),4))
print('\t\tClassification Report:\n', metrics.classification_report(ypred, 
ytest))

from sklearn.metrics import confusion_matrix
from io import BytesIO #neded for plot
import seaborn as sns; sns.set()
import matplotlib.pyplot as plt

mat = confusion_matrix(ytest, ypred)
sns.heatmap(mat.T, square = True, annot = True, fmt = 'd', cbar = False)
plt.xlabel('true label')
plt.ylabel('predicted label');

plt.savefig("Confusion.jpg")
# Save SVG in a fake file object.
f = BytesIO()
plt.savefig(f, format = "svg")
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3.5.6 Linear discriminant analysis

LDA is a classifier used to find a linear combination of features, which separates two or 
more classes of data. The succeeding combination can be used as a linear classifier. In LDA, 

# ======================================================================
# Logistic regression example with cross-validation
# ======================================================================
from sklearn.linear_model import LogisticRegressionCV
from sklearn.model_selection import cross_val_score
from sklearn.datasets import load_iris
import warnings

#To prevent warnings
warnings.filterwarnings("ignore")

iris = load_iris()
X, y = iris.data, iris.target

CV = 10 #10-fold cross validation
model = LogisticRegressionCV(cv = CV, random_state = 0, multi_
class = 'multinomial').fit(X, y)

#Evaluate Model Using 10-Fold Cross Validation and Print Performance 
Metrics
Acc_scores = cross_val_score(model, X, y, cv = CV)
print("Accuracy: %0.3f (+/- %0.3f)" % (Acc_scores.mean(), Acc_scores.
std() * 2))
f1_scores = cross_val_score(model, X, y, cv = CV,scoring = 'f1_macro')
print("F1 score: %0.3f (+/- %0.3f)" % (f1_scores.mean(), f1_scores.std() 
* 2))
Precision_scores = cross_val_score(model, X, y, 
cv = CV,scoring = 'precision_macro')
print("Precision score: %0.3f (+/- %0.3f)" % (Precision_scores.mean(), 
Precision_scores.std() * 2))
Recall_scores = cross_val_score(model, X, y, cv = CV,scoring = 'recall_
macro')
print("Recall score: %0.3f (+/- %0.3f)" % (Recall_scores.mean(), Recall_
scores.std() * 2))
from sklearn.metrics import cohen_kappa_score, make_scorer
kappa_scorer = make_scorer(cohen_kappa_score)
Kappa_scores = cross_val_score(model, X, y, cv = CV,scoring = kappa_scorer)
print("Kappa score: %0.3f (+/- %0.3f)" % (Kappa_scores.mean(), Kappa_
scores.std() * 2))
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the classes are expected to be normally distributed. Like PCA, LDA can be utilized for both 
dimension reduction and classification. In a two-class dataset, the a priori probabilities for 
class 1 and class 2 are p1 and p2; the class means and overall mean are µ1, µ2, and µ; and the 
class variances are cov1 and cov2 respectively.

µ µ µ= × + ×p p1 1 2 2 (3.1)

Then, within-class and between-class scatters are used to represent the needed criteria for 
class separability. The scatter measures for a multiclass situation are calculated as:
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where C refers to the number of classes and
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The between-class scatter is calculated as:
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Then, the aim is to find a discriminant plane to maximize the ratio of between-class to 
within-class scatters (variances):
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In practical cases, the class covariances and means are not known, but they can be cal-
culated	 from	 the	 training	set.	Either	 the	maximum	 likelihood	estimate	or	 the	maximum	a	
posteriori estimate can be used instead of the exact value in the above equations (Sanei, 2013; 
Subasi, 2019).

µ=p1×µ1+p2×µ2

Sw=∑j=1Cpjxcovj

coj=xj−µjxj−µjT

Sb=1C∑j=1Cµj−µµj−µT

JLDA=wSbwTwSwwT

Example 3.11
The following Python code utilizes the logistic regression classifier by using the scikit-learn li-

brary APIs. In this example we utilize the MNIST handwritten digits dataset, which is available at 
http://yann.lecun.com/exdb/mnist/.

The training set includes 60,000 examples, and a test set includes 10,000 examples. This dataset 
is a subset of a larger set available from NIST. The digits were normalized in size and centered in a 
fixed-size image. The original black-and-white (bilevel) images from NIST were normalized in size 
to fit in a 20 x 20 pixel box while preserving their aspect ratio. The resulting images contain gray 
levels as a result of the anti-aliasing technique utilized by the normalization algorithm. The images 
were centered in a 28 x 28 image by computing the center of mass of the pixels and translating the 
image so as to position this point at the center of the 28 x 28 field. The MNIST handwritten digits 
dataset is divided into training and test set and then classified by using the LDA classifier. The clas-
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sification accuracy, precision, recall, F1 score, Cohen kappa score and Matthews correlation coef-
ficient are calculated. The classification report and confusion matrix are also given. Note that this 
example is adapted from Python–scikit-learn.

# ======================================================================
# LDA example with training and test set
# ======================================================================
import numpy as np
import time
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.model_selection import train_test_split
from sklearn.datasets import fetch_openml

# Turn down for faster convergence
train_samples = 5000

# Load data from https://www.openml.org/d/554
X, y = fetch_openml('mnist_784', version = 1, return_X_y = True)
Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, test_size = 0.3, ran-
dom_state = 0)

#lda = LinearDiscriminantAnalysis(solver = "svd", store_covariance = True)
#clf = LinearDiscriminantAnalysis(solver = 'lsqr', shrinkage = 'auto')
clf = LinearDiscriminantAnalysis(solver = 'lsqr', shrinkage = None)
clf.fit(Xtrain,ytrain)
ypred = clf.predict(Xtest)

from sklearn import metrics
print('Accuracy:', np.round(metrics.accuracy_score(ytest,ypred),4))
print('Precision:', np.round(metrics.precision_score(ytest,
        ypred,average = 'weighted'),4))
print('Recall:', np.round(metrics.recall_score(ytest,ypred,
        average = 'weighted'),4))
print('F1 Score:', np.round(metrics.f1_score(ytest,ypred,
        average = 'weighted'),4))
print('Cohen Kappa Score:', np.round(metrics.cohen_kappa_score(ytest, 
ypred),4))
print('Matthews Corrcoef:', np.round(metrics.matthews_corrcoef(ytest, 
ypred),4))
print('\t\tClassification Report:\n', metrics.classification_report(ypred, 
ytest))
from sklearn.metrics import confusion_matrix
print("Confusion Matrix:\n", confusion_matrix(ytest, ypred))
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Example 3.12
The following Python code utilizes the LDA classifier by using the scikit-learn library APIs. In 

this example we utilize the Iris dataset, which exists in sklearn.datasets. The Iris dataset is classified 
with LDA classifier by using 10-fold cross-validation. The classification accuracy, precision, recall, 
F1 score, Cohen kappa score, and Matthews correlation coefficient are calculated. Note that this 
example is adapted from Python–scikit-learn.

# ======================================================================
# LDA example with cross-validation
# ======================================================================
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.model_selection import cross_val_score
from sklearn.datasets import load_iris
from sklearn.metrics import cohen_kappa_score, make_scorer
iris = load_iris()
X, y = iris.data, iris.target

# fit model no training data
#lda = LinearDiscriminantAnalysis(solver = "svd", store_covariance = True)
#model = LinearDiscriminantAnalysis(solver = 'lsqr', shrinkage = 'auto')
model = LinearDiscriminantAnalysis(solver = 'lsqr', shrinkage = None)

CV = 10 #10-Fold Cross Validation
#Evaluate Model Using 10-Fold Cross Validation and Print Performance 
Metrics
Acc_scores = cross_val_score(model, X, y, cv = CV)
print("Accuracy: %0.3f (+/- %0.3f)" % (Acc_scores.mean(), Acc_scores.
std() * 2))
f1_scores = cross_val_score(model, X, y, cv = CV,scoring = 'f1_macro')
print("F1 score: %0.3f (+/- %0.3f)" % (f1_scores.mean(), f1_scores.std() 
* 2))
Precision_scores = cross_val_score(model, X, y, 
cv = CV,scoring = 'precision_macro')
print("Precision score: %0.3f (+/- %0.3f)" % (Precision_scores.mean(), 
Precision_scores.std() * 2))
Recall_scores = cross_val_score(model, X, y, cv = CV,scoring = 'recall_
macro')
print("Recall score: %0.3f (+/- %0.3f)" % (Recall_scores.mean(), Recall_
scores.std() * 2))
kappa_scorer = make_scorer(cohen_kappa_score)
Kappa_scores = cross_val_score(model, X, y, cv = CV,scoring = kappa_scorer)
print("Kappa score: %0.3f (+/- %0.3f)" % (Kappa_scores.mean(), Kappa_
scores.std() * 2))
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3.5.7 Artificial neural networks

An artificial neural network (ANN) is a model that is inspired by the human brain and the 
way it functions. The nodes and their interconnections are like the neurons in our brain. There 
is a big difference between the ANN and a human brain. The brain has many neurons as 
processing units, operating in parallel, whereas the computer has only a restricted number of 
processors. Moreover, the neurons are simpler and slower in speed as compared to the com-
puter processors. The computational power on a larger scale is another difference between 
the brain and the computer systems. Neurons consist of networks or synapses that work in 
a parallel manner. The processor in a computer system is active, whereas the memory of the 
system is passive. However, in the brain, the memory and the processing unit are distributed 
together as the processing takes place through the neurons, whereas the memory is posi-
tioned in the synapses (Alpaydin, 2014). A standard ANN has an input layer, an output layer, 
and, between input and output, at least one hidden layer. ANN always has several layers of 
nodes, definite link patterns and layer connections, connection weights, and node (neuron) 
activation functions that map weighted inputs to outputs. Throughout the training process, 
the weights are changed. The backpropagation algorithm is a technique to train ANNs, and it 
has the following two key stages: propagation and weight update.

Propagation
1. To generate the output values from the output layer, the input data sample vectors are 

propagated forward through the neural network.
2. Compare the produced output vector with the actual (desired) output vector for that 

input data vector.
3. Calculate the error at the output units.
4. Backpropagate error values to each node (neuron).

Weight update
1. Calculate the weight gradients by multiplying the output error and input activation.
2. Utilize the learning rate to calculate the percentage of the gradient from the original 

weight by subtraction and then update the node weight. With many iterations 
(epochs), these two stages are repeated several times until we have reliable results. 
Backpropagation is usually employed in conjunction with optimization algorithms such 
as stochastic gradient descent. A multilayer perceptron (MLP) is a fully connected feed-
forward artificial neural network with at least three layers (input, output, and at least one 
hidden layer). Backpropagation can be employed to train MLPs and even deep neural 
networks (multilayered MLPs) (Sarkar et al., 2018).

Example 3.13
The following Python code utilizes MLP classifier by using the scikit-learn library APIs. In this 

example we utilize the Iris dataset, which exists in sklearn.datasets. The Iris dataset is divided into 
training and test set and then classified by using MLP classifier. The classification accuracy, preci-
sion, recall, F1 score, Cohen kappa score, and Matthews correlation coefficient are calculated. The 
classification report and confusion matrix are also given. Note that this example is adapted from 
Python–scikit-learn.
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# ======================================================================
# MLP example with training and test set
# ======================================================================
import numpy as np
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.neural_network import MLPClassifier

#Load Iris Dataset
iris = load_iris()
X, y = iris.data, iris.target
#Create Train and Test set
Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, test_size = 0.3, ran-
dom_state = 0)

#Create the Model
mlp = MLPClassifier(hidden_layer_sizes = (100, ), learning_rate_init = 0.001,
alpha = 1, momentum = 0.9,max_iter = 1000)
#Train the Model with Training dataset
mlp.fit(Xtrain,ytrain)
#Test the Model with Testing dataset
ypred = mlp.predict(Xtest)

from sklearn import metrics
print('Accuracy:', np.round(metrics.accuracy_score(ytest,ypred),4))
print('Precision:', np.round(metrics.precision_score(ytest,
        ypred,average = 'weighted'),4))
print('Recall:', np.round(metrics.recall_score(ytest,ypred,
        average = 'weighted'),4))
print('F1 Score:', np.round(metrics.f1_score(ytest,ypred,
        average = 'weighted'),4))
print('Cohen Kappa Score:', np.round(metrics.cohen_kappa_score(ytest, 
ypred)))
print('Matthews Corrcoef:', np.round(metrics.matthews_corrcoef(ytest, 
ypred)))
print('\t\tClassification Report:\n', metrics.classification_report(ypred, 
ytest))

from sklearn.metrics import confusion_matrix
from io import BytesIO #neded for plot
import seaborn as sns; sns.set()
import matplotlib.pyplot as plt

mat = confusion_matrix(ytest, ypred)
sns.heatmap(mat.T, square = True, annot = True, fmt = 'd', cbar = False)
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plt.xlabel('true label')
plt.ylabel('predicted label');

plt.savefig("Confusion.jpg")
# Save SVG in a fake file object.
f = BytesIO()
plt.savefig(f, format = "svg")

Example 3.14
The following Python code utilizes MLP classifier by using the scikit-learn library APIs. In this 

example we utilize the Iris dataset, which exists in sklearn.datasets. The Iris dataset is classified 
with MLP classifier by using 10-fold cross-validation. The classification accuracy, precision, recall, 
F1 score, Cohen kappa score, and Matthews correlation coefficient are calculated. Note that this 
example is adapted from Python–scikit-learn.

# ======================================================================
# MLP example with cross-validation
# ======================================================================
import numpy as np
from sklearn.datasets import load_iris
from sklearn.neural_network import MLPClassifier
from sklearn.model_selection import cross_val_score
from sklearn.metrics import cohen_kappa_score, make_scorer

#Load Iris Dataset
iris = load_iris()
X, y = iris.data, iris.target
#Create the Model
model = MLPClassifier(hidden_layer_sizes = (100, ), learning_rate_
init = 0.001,
      alpha = 1, momentum = 0.9,max_iter = 1000)

CV = 10 #10-Fold Cross Validation
#Evaluate Model Using 10-Fold Cross Validation and Print Performance 
Metrics
Acc_scores = cross_val_score(model, X, y, cv = CV)
print("Accuracy: %0.3f (+/- %0.3f)" % (Acc_scores.mean(), Acc_scores.
std() * 2))
f1_scores = cross_val_score(model, X, y, cv = CV,scoring = 'f1_macro')
print("F1 score: %0.3f (+/- %0.3f)" % (f1_scores.mean(), f1_scores.std() 
* 2))
Precision_scores = cross_val_score(model, X, y, 
cv = CV,scoring = 'precision_macro')
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Example 3.15
The following Python code is used to represent the MLP regression by using the scikit-learn li-

brary APIs. In this example we utilize the California housing dataset that includes data drawn from 
the 1990 U.S. census. All the block groups reporting zero entries for the independent and dependent 
variables are excluded. The final data includes 20,640 observations on 9 attributes. The dataset may 
also be downloaded from StatLib mirrors. This example utilizes all the features of the California 
housing dataset. The straight line seen in the plot demonstrates how MLP regression tries to draw 
a straight line, which minimizes the residual sum of squares between the observed responses in 
the dataset, and the responses predicted by the MLP approximation. The correlation coefficient R2, 
MAE,	and	MSE	are	also	calculated.	Note	that	this	example	is	adapted	from	Python–scikit-learn.

# ======================================================================
# MLP regression example with California housing dataset
# ======================================================================
import matplotlib.pyplot as plt
import numpy as np
from sklearn.neural_network import MLPRegressor
from sklearn.datasets.california_housing import fetch_california_housing
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.metrics import mean_absolute_error
from sklearn.model_selection import train_test_split

# Load the California Housing dataset
cal_housing = fetch_california_housing()
X, y = cal_housing.data, cal_housing.target
names = cal_housing.feature_names
Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, test_size = 0.1, 
random_state = 0)

# Create MLP regression object
print("Training MLPRegressor...")

print("Precision score: %0.3f (+/- %0.3f)" % (Precision_scores.mean(), 
Precision_scores.std() * 2))
Recall_scores = cross_val_score(model, X, y, cv = CV,scoring = 'recall_
macro')
print("Recall score: %0.3f (+/- %0.3f)" % (Recall_scores.mean(), Recall_
scores.std() * 2))
kappa_scorer = make_scorer(cohen_kappa_score)
Kappa_scores = cross_val_score(model, X, y, cv = CV,scoring = kappa_scorer)
print("Kappa score: %0.3f (+/- %0.3f)" % (Kappa_scores.mean(), Kappa_
scores.std() * 2))
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3.5.8 k-Nearest neighbors

When provided with a big training dataset, the k-nearest neighbors method appears to be 
labor intensive, as it has been mostly utilized in pattern recognition. Learning by analogy is 
the method on which the nearest neighbors are based. To detail this, it actually means that 
learning by analogy is used for classifying the nearest neighbors, and it is done by making a 
comparison of closely related training tuple and the given test tuple. Hence “n” attributes are 
used for the recognition of the training tuples where, in the n-dimensional space, every tuple 
relates to a separate point. In case of an unidentified tuple, the role of the k-nearest neighbors 
classifier becomes to explore the pattern space for all closely located k training tuples, and 
they are called the k-nearest neighbors. The distance metric is used to define the level of close-
ness,	like	Euclidean	distance.	For	any	k-nearest	neighbors,	the	most	basic	class	is	linked	with	
the unidentified tuple. When k becomes equal to one, it means that the tuple that is unidenti-
fied is linked with the class of the closest training tuple in pattern space. Usually, the value 
of k is larger when the number of training tuples is large (Han, Pei, & Kamber, 2011). The 
number of main elements is three in this method, which includes a set of labeled objects or 
records, a distance metric to identify the distance that exists between objects, and the k value 
to discern the nearest neighbors. When classification needs to be determined for an unlabeled 
object, the distance between the labeled object and the object itself needs to be computed, and 
thereby the identification of the k-nearest neighbors is attained. Therefore the nearest neigh-
bors’ class labels are employed in order to identify the object’s class label (Wu et al., 2008).

Unless the training set includes identical instances from different classes, the classes can be 
separated perfectly on the training set, as the set memorized all training examples. Moreover, 
by choosing the right examples any decision boundary can be more or less represented. Hence, 

regr = MLPRegressor(activation = 'logistic')
# Train the model using the training sets
regr.fit(Xtrain, ytrain)
# Make predictions using the testing set
ypred = regr.predict(Xtest)
# Explained variance score: 1 is perfect prediction
print("R^2 = %0.5f" % r2_score(ytest, ypred))
# The mean absolute error
print("MAE = %5.3f" % mean_absolute_error(ytest, ypred))
# The mean squared error
print("MSE = %5.3f" % mean_squared_error(ytest, ypred))
# Plot outputs
fig, ax = plt.subplots()
ax.scatter(ytest, ypred, edgecolors = (0, 0, 0))
ax.plot([y.min(), y.max()], [y.min(), y.max()], 'k--', lw = 4)
ax.set_xlabel('Measured')
ax.set_ylabel('Predicted')
plt.show()
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the k-nearest neighbors classifier has low bias but also high variance. This results in a risk of 
overfitting if the training data is limited, noisy, or unrepresentative. Actually, high-dimen-
sional instance spaces can be challenging for the curse of dimensionality. High-dimensional 
spaces tend to be extremely sparse, where each point is far away from virtually every other 
point, and hence pairwise distances tend to be uninformative. But even if you eliminate the 
curse of dimensionality, it is not a simple matter of counting the number of features, since 
there are many reasons why the effective dimensionality of the instance space might be much 
smaller than the number of features. For example, some of the features may be irrelevant and 
drown out the relevant features’ signal in the distance calculations. In such a case it would be 
better, before creating a distance-based model, to reduce dimensionality by using feature selec-
tion. On the other hand, the data may live on a manifold of lower dimension than the instance 
space that permits other dimensionality-reduction techniques, such as principal component 
analysis. Obviously, only output targets (or exemplars) can be kept in the exemplar database, 
but if we can find a way of combining these, we can eliminate this restriction by applying the 
k-nearest neighbors method. The k-nearest neighbors classifier takes a vote between the k ≥ 
1 nearest exemplars of the instance to be classified and predicts the majority class. If k-nearest 
neighbors is used for regression problems, the apparent way to combine the predictions from 
the k neighbors is by taking the mean value that is also distance-weighted (Flach, 2012).

Example 3.16
The following Python code utilizes k-NN classifier by using the scikit-learn library APIs. In this 

example we utilize the MNIST handwritten digits dataset (details are explained previously). The 
MNIST handwritten digits dataset is divided into training and test set and then classified by using 
k-NN classifier. The classification accuracy, precision, recall, F1 score, Cohen kappa score, and Mat-
thews correlation coefficient are calculated. The classification report and confusion matrix are also 
given. Note that this example is adapted from Python–scikit-learn.

# ======================================================================
# k-NN example with training and test set
# ======================================================================
import time
import numpy as np
from sklearn.datasets import fetch_openml
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.utils import check_random_state
from sklearn.neighbors import KNeighborsClassifier

print(__doc__)

# Turn down for faster convergence
train_samples = 5000
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# Load data from https://www.openml.org/d/554
X, y = fetch_openml('mnist_784', version = 1, return_X_y = True)

random_state = check_random_state(0)
permutation = random_state.permutation(X.shape[0])
X = X[permutation]
y = y[permutation]
X = X.reshape((X.shape[0], -1))
Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, train_size = train_
samples, test_size = 10000)
#Transform data using standart scaler
scaler = StandardScaler()
Xtrain = scaler.fit_transform(Xtrain)
Xtest = scaler.transform(Xtest)

#Create the Model
clf = KNeighborsClassifier(n_neighbors = 5)
#Train the model with Training Dataset
clf.fit(Xtrain,ytrain)
#Test the model with Testset
ypred = clf.predict(Xtest)

#Evaluate the Model and Print Performance Metrics
from sklearn import metrics
print('Accuracy:', np.round(metrics.accuracy_score(ytest,ypred),4))
print('Precision:', np.round(metrics.precision_score(ytest,
       ypred,average = 'weighted'),4))
print('Recall:', np.round(metrics.recall_score(ytest,ypred,
       average = 'weighted'),4))
print('F1 Score:', np.round(metrics.f1_score(ytest,ypred,
       average = 'weighted'),4))
print('Cohen Kappa Score:', np.round(metrics.cohen_kappa_score(ytest, 
ypred),4))
print('Matthews Corrcoef:', np.round(metrics.matthews_corrcoef(ytest, 
ypred),4))
print('\t\tClassification Report:\n', metrics.classification_report(ypred, 
ytest))
from sklearn.metrics import confusion_matrix
print("Confusion Matrix:\n",confusion_matrix(ytest, ypred))

#Plot Confusion Matrix
from sklearn.metrics import confusion_matrix
from io import BytesIO #neded for plot



 3.5 Supervised learning algorithms 131

 

Example 3.17
The following Python code utilizes k-NN classifier by using the scikit-learn library APIs. In this 

example we utilize the Iris dataset, which exists in sklearn.datasets. The Iris dataset is classified 
with k-NN classifier by using 10-fold cross-validation. The classification accuracy, precision, recall, 
F1 score, Cohen kappa score, and Matthews correlation coefficient are calculated. Note that this 
example is adapted from Python–scikit-learn.

# ======================================================================
# k-NN example with cross-validation
# ======================================================================
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import cross_val_score
from sklearn.datasets import load_iris
iris = load_iris()
X, y = iris.data, iris.target

#Create a Model
model = KNeighborsClassifier(n_neighbors = 5)

CV = 10 #10-Fold Cross Validation
#Evaluate Model Using 10-Fold Cross Validation and Print Performance 
Metrics
Acc_scores = cross_val_score(model, X, y, cv = CV)
print("Accuracy: %0.3f (+/- %0.3f)" % (Acc_scores.mean(), Acc_scores.
std() * 2))
f1_scores = cross_val_score(model, X, y, cv = CV,scoring = 'f1_macro')
print("F1 score: %0.3f (+/- %0.3f)" % (f1_scores.mean(), f1_scores.std() 
* 2))

import seaborn as sns; sns.set()
import matplotlib.pyplot as plt

mat = confusion_matrix(ytest, ypred)
sns.heatmap(mat.T, square = True, annot = True, fmt = 'd', cbar = False)
plt.xlabel('true label')
plt.ylabel('predicted label');

plt.savefig("Confusion.jpg")
# Save SVG in a fake file object.
f = BytesIO()
plt.savefig(f, format = "svg")
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Precision_scores = cross_val_score(model, X, y, cv = CV,scoring = 'preci-
sion_macro')
print("Precision score: %0.3f (+/- %0.3f)" % (Precision_scores.mean(), 
Precision_scores.std() * 2))
Recall_scores = cross_val_score(model, X, y, cv = CV,scoring = 'recall_
macro')
print("Recall score: %0.3f (+/- %0.3f)" % (Recall_scores.mean(), Recall_
scores.std() * 2))
from sklearn.metrics import cohen_kappa_score, make_scorer
kappa_scorer = make_scorer(cohen_kappa_score)
Kappa_scores = cross_val_score(model, X, y, cv = CV,scoring = kappa_scorer)
print("Kappa score: %0.3f (+/- %0.3f)" % (Kappa_scores.mean(), Kappa_
scores.std() * 2))

Example 3.18
The following Python code is used to represent the k-NN regression by using the scikit-learn 

library APIs. In this example we utilize the California housing dataset explained previously. The 
straight line seen in the plot demonstrates how k-NN regression tries to draw a straight line, which 
minimizes the residual sum of squares between the observed responses in the dataset, and the re-
sponses predicted by the k-NN approximation. The correlation coefficient R2,	MAE,	and	MSE	are	
also calculated. Note that this example is adapted from Python–scikit-learn.

# ======================================================================
# k-NN regression example with California housing dataset
# ======================================================================
import matplotlib.pyplot as plt
import numpy as np
from sklearn.neighbors import KNeighborsRegressor
from sklearn.datasets.california_housing import fetch_california_housing
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.metrics import mean_absolute_error
from sklearn.model_selection import train_test_split

# Load the California Housing dataset
cal_housing = fetch_california_housing()
X, y = cal_housing.data, cal_housing.target
names = cal_housing.feature_names
Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, test_size = 0.1, 
random_state = 0)

# Create a Regression object
print("Training Regressor...")
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3.5.9 Support vector machines

Support vector machines (SVMs) are one of the main machine-learning algorithms that are 
not only accurate but also highly robust. The objective of SVMs is to locate the most suitable 
function of classification to separate the classes in the training data when undertaking the 
two-class learning task. In case of the linearly separable dataset, the role of the linear function 
of classification is to make the comparison of the separating hyperplane that goes through 
the center of the two classes, separating the two. Because there are a number of linear hyper-
planes, the role of the SVM broadens to ensure that the margin, which is the most suitable 
function for the purpose, is employed by increasing the margin to the maximum between the 
classes. Instinctively, the definition of margin is the space between the classes. In mathemati-
cal terms, this margin is the shortest possible space between the hyperplane point and the 
closely located data points. Having this geometric definition is very important to augment 
the margin; despite the fact that there are a vast number of hyperplanes, no more than two 
can be utilized by the SVM. Determining the most extreme margin of hyperplanes that make 
the best use of generalization is the motivation that drives investigating SVMs. It permits the 
most appropriate classification performance on training data, as well as perfectly classifies 
future data (Wu et al., 2008). It can also be employed for generalization of the highly distrib-
uted data. As compared to the other classification methods like Bayes and ANN, it indicates 
an improved accuracy in classification. The training process relies on the sequential technique 
of minimization, and classification accuracy is found to be better in SVM, as it gives improved 
generalization capacity (Ray, Mohanty, & Panigrahi, 2019).

regr = KNeighborsRegressor(n_neighbors = 2)
# Train the model using the training sets
regr.fit(Xtrain, ytrain)
# Make predictions using the testing set
ypred = regr.predict(Xtest)

# Explained variance score: 1 is perfect prediction
print("R^2 = %0.5f" % r2_score(ytest, ypred))
# The mean absolute error
print("MAE = %5.3f" % mean_absolute_error(ytest, ypred))
# The mean squared error
print("MSE = %5.3f" % mean_squared_error(ytest, ypred))

# Plot outputs
fig, ax = plt.subplots()
ax.scatter(ytest, ypred, edgecolors = (0, 0, 0))
ax.plot([y.min(), y.max()], [y.min(), y.max()], 'k--', lw = 4)
ax.set_xlabel('Measured')
ax.set_ylabel('Predicted')
plt.show()
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Example 3.19
The following Python code utilizes SVM classifier through the Scikit-learn library APIs. In this 

example we utilize the optical recognition of handwritten digits dataset, which exists in sklearn.
datasets. The optical recognition of handwritten digits dataset is divided into training and test set 
and then classified by using SVM classifier. The classification accuracy, precision, recall, F1 score, 
Cohen kappa score, and Matthews correlation coefficient are calculated. The classification report 
and confusion matrix are also given. Note that this example is adapted from Python–scikit-learn.

# ======================================================================
# SVM example with training and test set
# ======================================================================
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.utils import check_random_state
from sklearn import svm
from sklearn.datasets import load_digits

#Load dataset and split to training and testing set
X, y = load_digits(return_X_y = True)
Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, test_size = 0.3, ran-
dom_state = 0)

#Transfrom the data using Standard Scaler
scaler = StandardScaler()
Xtrain = scaler.fit_transform(Xtrain)
Xtest = scaler.transform(Xtest)

C = 10.0 # SVM regularization parameter
#Create the Model
clf =svm.SVC(kernel = 'linear', C = C)
#Train the model with Training Dataset
clf.fit(Xtrain,ytrain)
#Test the model with Testset
ypred = clf.predict(Xtest)

#Evaluate the Model and Print Performance Metrics
from sklearn import metrics
print('Accuracy:', np.round(metrics.accuracy_score(ytest,ypred),4))
print('Precision:', np.round(metrics.precision_score(ytest,
       ypred,average = 'weighted'),4))
print('Recall:', np.round(metrics.recall_score(ytest,ypred,
       average = 'weighted'),4))
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Example 3.20
The following Python code utilizes SVM classifier through the Scikit-learn library APIs. In this 

example we utilize the Iris dataset, which exists in sklearn.datasets. The Iris dataset is classified 
with SVM classifier by using 10-fold cross-validation. The classification accuracy, precision, recall, 
F1 score, Cohen kappa score, and Matthews correlation coefficient are calculated. Note that this 
example is adapted from Python–scikit-learn.

# ======================================================================
# SVM example with cross-validation
# ======================================================================
from sklearn import svm
from sklearn.model_selection import cross_val_score
from sklearn.datasets import load_iris
iris = load_iris()
X, y = iris.data, iris.target

print('F1 Score:', np.round(metrics.f1_score(ytest,ypred,
        average = 'weighted'),4))
print('Cohen Kappa Score:', np.round(metrics.cohen_kappa_score(ytest, 
ypred),4))
print('Matthews Corrcoef:', np.round(metrics.matthews_corrcoef(ytest, 
ypred),4))
print('\t\tClassification Report:\n', metrics.classification_report(ypred, 
ytest))
from sklearn.metrics import confusion_matrix
print("Confusion Matrix:\n",confusion_matrix(ytest, ypred))

#Plot Confusion Matrix
from sklearn.metrics import confusion_matrix
from io import BytesIO #neded for plot
import seaborn as sns; sns.set()
import matplotlib.pyplot as plt

mat = confusion_matrix(ytest, ypred)
sns.heatmap(mat.T, square = True, annot = True, fmt = 'd', cbar = False)
plt.xlabel('true label')
plt.ylabel('predicted label');

plt.savefig("Confusion.jpg")
# Save SVG in a fake file object.
f = BytesIO()
plt.savefig(f, format = "svg")



136 3. Machine learning techniques

 

Example 3.21
The following Python code is used to represent the transformation of target in regression by 

using SVR from the scikit-learn library. In this example we utilize the Boston house prices data-
set, which exists in sklearn.datasets. This example employs the transformed features of the Boston 
house price dataset using TransformedTargetRegressor. TransformedTargetRegressor transforms 
the targets y before fitting a regression model. The predictions are mapped back to the original 
space via an inverse transform. It takes as an argument the regressor, which is utilized for predic-
tion, and the transformer, which is applied to the target variable. The straight line seen in the plot 
demonstrates how SVR regression tries to draw a straight line, which minimizes the residual sum of 
squares between the observed responses in the dataset, and the responses predicted by the SVR ap-
proximation. The correlation coefficient R2,	MAE,	and	MSE	are	also	calculated.	The	example	shows	
that the target transformation improved the performance of the SVR regression model. Note that 
this example is adapted from Python–scikit-learn.

# ======================================================================
# SVR regression example with Boston house prices dataset
# ======================================================================

C = 50.0 # SVM regularization parameter
# fit model no training data
model = svm.SVC(kernel = 'linear', C = C)

CV = 10 #10-Fold Cross Validation
#Evaluate Model Using 10-Fold Cross Validation and Print Performance 
Metrics
Acc_scores = cross_val_score(model, X, y, cv = CV)
print("Accuracy: %0.3f (+/- %0.3f)" % (Acc_scores.mean(), Acc_scores.
std() * 2))
f1_scores = cross_val_score(model, X, y, cv = CV,scoring = 'f1_macro')
print("F1 score: %0.3f (+/- %0.3f)" % (f1_scores.mean(), f1_scores.std() 
* 2))
Precision_scores = cross_val_score(model, X, y, 
cv = CV,scoring = 'precision_macro')
print("Precision score: %0.3f (+/- %0.3f)" % (Precision_scores.mean(), 
Precision_scores.std() * 2))
Recall_scores = cross_val_score(model, X, y, cv = CV,scoring = 'recall_
macro')
print("Recall score: %0.3f (+/- %0.3f)" % (Recall_scores.mean(), 
Recall_scores.std() * 2))
from sklearn.metrics import cohen_kappa_score, make_scorer
kappa_scorer = make_scorer(cohen_kappa_score)
Kappa_scores = cross_val_score(model, X, y, cv = CV,scoring = kappa_scorer)
print("Kappa score: %0.3f (+/- %0.3f)" % (Kappa_scores.mean(), Kappa_
scores.std() * 2))
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# ======================================================================
#Transforming target in regression
# ======================================================================
from sklearn.compose import TransformedTargetRegressor
from sklearn.preprocessing import QuantileTransformer
from sklearn.svm import SVR
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.metrics import mean_absolute_error
from sklearn.datasets import load_boston

# Load the Boston House prices dataset
boston = load_boston()
X = boston.data
y = boston.target
X_train, X_test, y_train, y_test = train_test_split(X, y, random_
state = 0)

# ======================================================================
# Prediction without Transformation
# ======================================================================

#Create Regression object
regr = SVR(gamma = 'scale', C = 200.0, epsilon = 0.2)
# Train the model using the training sets
regr.fit(X_train, y_train)
# Make predictions using the testing set
y_pred = regr.predict(X_test)

print('R^2 score without Transformation: {0:.2f}'.format(regr.score(X_
test, y_test)))
# Explained variance score: 1 is perfect prediction
print("R^2 = %0.5f" % r2_score(y_test, y_pred))
# The mean absolute error
print("MAE = %5.3f" % mean_absolute_error(y_test, y_pred))
# The mean squared error
print("MSE = %5.3f" % mean_squared_error(y_test, y_pred))

# Plot outputs
fig, ax = plt.subplots()
ax.scatter(y_test, y_pred, edgecolors = (0, 0, 0))
ax.plot([y.min(), y.max()], [y.min(), y.max()], 'k--', lw = 4)
ax.set_xlabel('Measured')
ax.set_ylabel('Predicted')
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3.5.10 Decision tree classifiers

A decision tree is a dividing-and-conquering recursive data structure. It is a powerful non-
parametric approach that can be used for classification as well as regression. In parametric 
estimation, a model is represented over the entire input space and trained with full training 
data from its parameters. It is then easy to use the same template and set of parameters for 
any test input. In nonparametric estimation, the input space is divided into local regions, 
described	 by	 a	 distance	 measure	 like	 the	 Euclidean	 norm,	 and	 the	 associated	 local	 model	
created from the training data in that region is used for each source. A decision tree is a 
hierarchical supervised learning model in which a smaller number of stages define the local 

plt.title('Without Transformation')
plt.show()

# ======================================================================
# Prediction with Transformation
# ======================================================================
transformer = QuantileTransformer(output_distribution = 'normal')
regressor = SVR(gamma = 'scale', C = 200.0, epsilon = 0.2)
regr = TransformedTargetRegressor(regressor = regressor,
           transformer = transformer)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state = 0)
regr.fit(X_train, y_train)
y_pred = regr.predict(X_test)

print('R^2 score with Transformation: {0:.2f}'.format(regr.score(X_test, 
y_test)))
# Explained variance score: 1 is perfect prediction
print("R^2 = %0.5f" % r2_score(y_test, y_pred))
# The mean absolute error
print("MAE = %5.3f" % mean_absolute_error(y_test, y_pred))
# The mean squared error
print("MSE = %5.3f" % mean_squared_error(y_test, y_pred))

# Plot outputs
fig, ax = plt.subplots()
ax.scatter(y_test, y_pred, edgecolors = (0, 0, 0))
ax.plot([y.min(), y.max()], [y.min(), y.max()], 'k--', lw = 4)
ax.set_xlabel('Measured')
ax.set_ylabel('Predicted')
plt.title('With Transformation')
plt.show()
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region in a series of sequential splits. A decision tree is made up of internal decision nodes 
and	terminal	 leaves.	Each	decision	node	uses	a	 test	 function	 that	 labels	 the	branches	with	
discrete scores. A test is used at every node with an input, and one of the branches is chosen 
depending on the result. This process starts at the root and is conducted recursively before 
reaching a leaf node. A decision tree is a nonparametric model in the sense that no parametric 
structure is presumed for category densities and the tree assembly is not a static a priori, but 
the tree expands by inserting leaves and branches during the learning process depending 
on the nature of the problem inherent in the data. In the case of classification, each leaf node 
has an output label that is the class code, and it is a numerical value in regression. A leaf 
node identifies a localized region in the input space where instances in this region have the 
same classification labels or numerical outputs that are very similar in regression. The region 
boundaries are well-specified by the discriminants that can be coded on the path from the 
root to the leaf node in the inner nodes. The hierarchical allocation of decision results in the 
region containing an input being easily found. Moreover, the decision tree is easy to interpret 
and	can	be	converted	into	an	easily	understandable	set	of	IF-THEN	rules.	Decision	trees	are	
therefore widely accepted and preferred to more accurate but less interpretable approaches 
(Alpaydin, 2014; Subasi, 2019).

The decision tree learning models are ambitious and, beginning from the root with the 
complete training information, the best split must be checked in each phase. It divides the 
training data into two or more, depending on whether the selected feature is discrete or 
numerical. We then continue to divide recursively with the relevant subset until there is no 
longer any need to split, at which stage a leaf node is generated and labeled. In the case of a 
decision tree for classification, namely a classification tree, impurity measures are utilized for 
the goodness of a split. A split is valid after dividing for all branches if all branch-selecting 
instances	 belong	 to	 the	 same	 category.	 Entropy	 is	 a	 potential	 way	 of	 measuring	 impurity	
(Quinlan and Ross, 1986). Nevertheless, entropy is not the only feasible measure. Therefore, 
for all attributes, binary and numeric, the impurity should be calculated, and the impurity 
that has minimum entropy chosen. Then the development of the tree proceeds recursively 
and parallel to all branches that are not pure, until all are pure. This is the basis of the CART 
(classification and regression tree) algorithm (Breiman, Friedman, Olshen, & Stone, 1984), ID3 
algorithm (Quinlan and Ross, 1986), and its extension C4.5 (Alpaydin, 2014; Quinlan, 1993; 
Subasi, 2019).

Usually, the node is not more divided if the number of training instances reaching the node 
is less than a certain percentage of the training set; to stop building a tree earlier than this is 
called tree prepruning. Another approach to have simplified trees is by postpruning, which 
works better than prepruning in reality. In the postpruning cycle, the tree grows completely 
until all the leaves are pure, without any training error. Subsequently, subtrees, which result 
in overfitting, have to be identified and pruned. The pruning set must be put aside from the 
initial	 labeled	set	 that	 is	not	used	during	training.	Every	subtree	must	be	substituted	by	a	
leaf node labeled with the training instances specified by the subtree. If the leaf node does 
not yield worse than the subtree on the pruning set, the subtree should also be pruned and 
the leaf node must be retained, as the additional complexity of the subtree is not sufficient; 
otherwise, the subtree should be preserved. If prepruning is compared to postpruning, pre-
pruning is quicker, but postpruning generally results in a more accurate tree (Alpaydin, 2014; 
Subasi, 2019).



140 3. Machine learning techniques

 

Tree models are one of the most common machine learning models. Because of their recur-
sive “divide-and-conquer” existence, trees are descriptive and easy to understand, and of 
particular interest to computer scientists. Tree models are not limited to classification but can 
be used to solve almost any problem of machine learning, including ranking and estimation 
of probability, regression, and clustering. It is possible to define the tree structure common to 
all these models (Flach, 2012).

Example 3.22
The following Python code utilizes DT classifier by employing the scikit-learn library APIs. In 

this example we utilize the MNIST handwritten digits dataset (for which details are explained pre-
viously). The MNIST handwritten digits dataset is divided into training and test set and then classi-
fied by using DT classifier. The classification accuracy, precision, recall, F1 score, Cohen kappa score, 
and Matthews correlation coefficient are calculated. The classification report and confusion matrix 
are also given. Note that this example is adapted from Python–scikit-learn.

# ======================================================================
# Decision tree example with training and testset
# ======================================================================
import time
import numpy as np
from sklearn.datasets import fetch_openml
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.utils import check_random_state
from sklearn import tree
print(__doc__)

# Turn down for faster convergence
train_samples = 5000

# Load data from https://www.openml.org/d/554
X, y = fetch_openml('mnist_784', version = 1, return_X_y = True)

random_state = check_random_state(0)
permutation = random_state.permutation(X.shape[0])
X = X[permutation]
y = y[permutation]
X = X.reshape((X.shape[0], -1))

Xtrain, Xtest, ytrain, ytest = train_test_split(
X, y, train_size = train_samples, test_size = 10000)



 3.5 Supervised learning algorithms 141

 

scaler = StandardScaler()
Xtrain = scaler.fit_transform(Xtrain)
Xtest = scaler.transform(Xtest)

#Create the Model
clf = tree.DecisionTreeClassifier()
#Train the Model with Training dataset
clf.fit(Xtrain,ytrain)
#Test the Model with Testing dataset
ypred = clf.predict(Xtest)

#Evaluate the Model and Print Performance Metrics
from sklearn import metrics
print('Accuracy:', np.round(metrics.accuracy_score(ytest,ypred),4))
print('Precision:', np.round(metrics.precision_score(ytest,
       ypred,average = 'weighted'),4))
print('Recall:', np.round(metrics.recall_score(ytest,ypred,
       average = 'weighted'),4))
print('F1 Score:', np.round(metrics.f1_score(ytest,ypred,
       average = 'weighted'),4))
print('Cohen Kappa Score:', np.round(metrics.cohen_kappa_score(ytest, 
ypred),4))
print('Matthews Corrcoef:', np.round(metrics.matthews_corrcoef(ytest, 
ypred),4))
print('\t\tClassification Report:\n', metrics.classification_report(ypred, 
ytest))

from sklearn.metrics import confusion_matrix
print("Confusion Matrix:\n",confusion_matrix(ytest, ypred))
from sklearn.metrics import confusion_matrix
from io import BytesIO #neded for plot
import seaborn as sns; sns.set()
import matplotlib.pyplot as plt

mat = confusion_matrix(ytest, ypred)
sns.heatmap(mat.T, square = True, annot = True, fmt = 'd', cbar = False)
plt.xlabel('true label')
plt.ylabel('predicted label');

plt.savefig("Confusion.jpg")
# Save SVG in a fake file object.
f = BytesIO()
plt.savefig(f, format = "svg")
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Example 3.23
The following Python code utilizes DT classifier by employing the scikit-learn library APIs. In 

this example we utilize the Iris dataset, which exists in sklearn.datasets. The Iris dataset is classified 
with DT classifier by using 10-fold cross-validation. The classification accuracy, precision, recall, 
F1 score, Cohen kappa score, and Matthews correlation coefficient are calculated. Note that this 
example is adapted from Python–scikit-learn.
# ======================================================================
# Decision tree example with cross-validation
# ======================================================================

from sklearn import tree
from sklearn.model_selection import cross_val_score
from sklearn.datasets import load_iris
iris = load_iris()
X, y = iris.data, iris.target

# fit model no training data
model = tree.DecisionTreeClassifier()

CV = 10 #10-Fold Cross Validation
#Evaluate Model Using 10-Fold Cross-Validation and Print Performance 
Metrics
Acc_scores = cross_val_score(model, X, y, cv = CV)
print("Accuracy: %0.3f (+/- %0.3f)" % (Acc_scores.mean(), Acc_scores.
std() * 2))
f1_scores = cross_val_score(model, X, y, cv = CV,scoring = 'f1_macro')
print("F1 score: %0.3f (+/- %0.3f)" % (f1_scores.mean(), f1_scores.std() 
* 2))
Precision_scores = cross_val_score(model, X, y, 
cv = CV,scoring = 'precision_macro')
print("Precision score: %0.3f (+/- %0.3f)" % (Precision_scores.mean(), 
Precision_scores.std() * 2))
Recall_scores = cross_val_score(model, X, y, 
cv = CV,scoring = 'recall_macro')
print("Recall score: %0.3f (+/- %0.3f)" % (Recall_scores.mean(), Recall_
scores.std() * 2))
from sklearn.metrics import cohen_kappa_score, make_scorer
kappa_scorer = make_scorer(cohen_kappa_score)
Kappa_scores = cross_val_score(model, X, y, cv = CV,scoring = kappa_scorer)
print("Kappa score: %0.3f (+/- %0.3f)" % (Kappa_scores.mean(), Kappa_
scores.std() * 2))
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Example 3.24
The following Python code is used to represent the transformation of target in regression by 

employing DT regressor from the scikit-learn library. In this example we utilize the Boston house 
prices dataset, which exists in sklearn.datasets. This example employs the transformed features of 
the Boston house prices dataset using TransformedTargetRegressor. TransformedTargetRegressor 
transforms the targets y before fitting a regression model. The predictions are mapped back to the 
original space via an inverse transform. It takes as an argument the regressor, which is utilized for 
prediction, and the transformer, which is applied to the target variable. The straight line seen in the 
plot demonstrates how DT regression tries to draw a straight line, which minimizes the residual 
sum of squares between the observed responses in the dataset, and the responses predicted by the 
DT regressor. The correlation coefficient R2,	MAE,	and	MSE	are	also	calculated.	It	is	shown	in	the	
example that the target transformation improved the performance of the DT regression model. Note 
that this example is adapted from Python–scikit-learn.

# ======================================================================
# Decision tree regression example with Boston house prices dataset
# ======================================================================
# ======================================================================
#Transforming target in regression
# ======================================================================
from sklearn.compose import TransformedTargetRegressor
from sklearn.preprocessing import QuantileTransformer
from sklearn.tree import DecisionTreeRegressor
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.metrics import mean_absolute_error
from sklearn.datasets import load_boston
 
# Load the Boston house prices dataset
boston = load_boston()
X = boston.data
y = boston.target
X_train, X_test, y_train, y_test = train_test_split(X, y, random_
state = 0)

# ======================================================================
# Prediction without Transformation
# ======================================================================

#Create Regression object
regr = DecisionTreeRegressor(random_state = 0)
# Train the model using the training sets
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regr.fit(X_train, y_train)
# Make predictions using the testing set
y_pred = regr.predict(X_test)

print('R^2 score without Transformation: {0:.2f}'.format(regr.score(X_
test, y_test)))
# Explained variance score: 1 is perfect prediction
print("R^2 = %0.5f" % r2_score(y_test, y_pred))
# The mean absolute error
print("MAE = %5.3f" % mean_absolute_error(y_test, y_pred))
# The mean squared error
print("MSE = %5.3f" % mean_squared_error(y_test, y_pred))
# Plot outputs
fig, ax = plt.subplots()
ax.scatter(y_test, y_pred, edgecolors = (0, 0, 0))
ax.plot([y.min(), y.max()], [y.min(), y.max()], 'k--', lw = 4)
ax.set_xlabel('Measured')
ax.set_ylabel('Predicted')
plt.title('Without Transformation')
plt.show()

# ======================================================================
# Prediction with Transformation
# ======================================================================
transformer = QuantileTransformer(output_distribution = 'normal')
regressor = DecisionTreeRegressor(random_state = 0)
regr = TransformedTargetRegressor(regressor = regressor,
         transformer = transformer)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state = 0)
regr.fit(X_train, y_train)
y_pred = regr.predict(X_test)

print('R^2 score with Transformation: {0:.2f}'.format(regr.score(X_test, 
y_test)))
# Explained variance score: 1 is perfect prediction
print("R^2 = %0.5f" % r2_score(y_test, y_pred))
# The mean absolute error
print("MAE = %5.3f" % mean_absolute_error(y_test, y_pred))
# The mean squared error
print("MSE = %5.3f" % mean_squared_error(y_test, y_pred))

# Plot outputs
fig, ax = plt.subplots()
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3.5.11 Naive Bayes

Another important classification technique is the naive Bayes technique. Firstly, an earlier 
step of variable selection takes place where variables that are highly correlated are elimi-
nated because of increased similarity in their mechanism of classes’ separation. This means 
independence can approximate the relationships between the variables. Secondly, assuming 
the interactions to be zero leads toward an implicit regularization step, so the model vari-
ance is reduced, leading to classifications that are more accurate. Thirdly, in some scenarios, 
when there is a correlation between the variables, the overlapping takes place between the 
optimal decision surface and independent assumption so that the assumption has no effect 
on performance. Fourthly, the decision surface that the naive Bayes model produces has a 
complex nonlinear shape even though the surface is considered linear. For many reasons, 
this technique appears to be feasible. It is exceptionally easy to construct, because it does not 
require any difficult schemes for iterative parameter estimation. Users who are not skilled 
in making classifications can also understand its classification logic. Lastly, it may not be the 
best possible classifier for some applications; however, it can do quite well under particular 
circumstances (Wu et al., 2008).

ax.scatter(y_test, y_pred, edgecolors = (0, 0, 0))
ax.plot([y.min(), y.max()], [y.min(), y.max()], 'k--', lw = 4)
ax.set_xlabel('Measured')
ax.set_ylabel('Predicted')
plt.title('With Transformation')
plt.show()

Example 3.25
The following Python code utilizes naïve Bayes classifier by employing the scikit-learn library 

APIs. In this example we utilize the MNIST handwritten digits dataset (for which details are ex-
plained previously). The MNIST handwritten digits dataset is divided into training and test set 
and then classified by using the naive Bayes classifier. The classification accuracy, precision, recall, 
F1 score, Cohen kappa score, and Matthews correlation coefficient are calculated. The classification 
report and confusion matrix are also given. Note that this example is adapted from Python–scikit-
learn.

# ======================================================================
# Naive Bayes example with training and testset
# ======================================================================
import time
import numpy as np
from sklearn.datasets import fetch_openml
# Import train_test_split function
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from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.utils import check_random_state
#Import Gaussian Naive Bayes model
from sklearn.naive_bayes import GaussianNB

print(__doc__)

# Turn down for faster convergence
train_samples = 5000
# Load data from https://www.openml.org/d/554
X, y = fetch_openml('mnist_784', version = 1, return_X_y = True)

random_state = check_random_state(0)
permutation = random_state.permutation(X.shape[0])
X = X[permutation]
y = y[permutation]
X = X.reshape((X.shape[0], -1))

# Split dataset into training set and test set
# 70% training and 30% test
Xtrain, Xtest, ytrain, ytest = train_test_split(X, y,test_size = 0.3, ran-
dom_state = 0)

scaler = StandardScaler()
Xtrain = scaler.fit_transform(Xtrain)
Xtest = scaler.transform(Xtest)

#Create a Gaussian Classifier
gnb = GaussianNB()
#Train the model using the training sets
gnb.fit(Xtrain, ytrain)
#Predict the response for test dataset
ypred = gnb.predict(Xtest)

#Evaluate the Model and Print Performance Metrics
from sklearn import metrics
print('Accuracy:', np.round(metrics.accuracy_score(ytest,ypred),4))
print('Precision:', np.round(metrics.precision_score(ytest,
      ypred,average = 'weighted'),4))
print('Recall:', np.round(metrics.recall_score(ytest,ypred,
      average = 'weighted'),4))
print('F1 Score:', np.round(metrics.f1_score(ytest,ypred,
      average = 'weighted'),4))
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print('Cohen Kappa Score:', np.round(metrics.cohen_kappa_score(ytest, 
ypred),4))
print('Matthews Corrcoef:', np.round(metrics.matthews_corrcoef(ytest, 
ypred),4))
print('\t\tClassification Report:\n', metrics.classification_report(ypred, 
ytest))
from sklearn.metrics import confusion_matrix
print("Confusion Matrix:\n",confusion_matrix(ytest, ypred))

#Plot Confusion Matrix
from sklearn.metrics import confusion_matrix
from io import BytesIO #neded for plot
import seaborn as sns; sns.set()
import matplotlib.pyplot as plt

mat = confusion_matrix(ytest, ypred)
sns.heatmap(mat.T, square = True, annot = True, fmt = 'd', cbar = False)
plt.xlabel('true label')
plt.ylabel('predicted label');
plt.savefig("Confusion.jpg")
# Save SVG in a fake file object.
f = BytesIO()
plt.savefig(f, format = "svg")

Example 3.26
The following Python code utilizes naive Bayes classifier by employing the scikit-learn library 

APIs. In this example we utilize the Iris dataset, which exists in sklearn.datasets. The Iris dataset is 
classified with naïve Bayes classifier by using 10-fold cross-validation. The classification accuracy, 
precision, recall, F1 score, Cohen kappa score, and Matthews correlation coefficient are calculated. 
Note that this example is adapted from Python–scikit-learn.

# ======================================================================
# Naive Bayes example with cross-validation
# ======================================================================
from sklearn.model_selection import cross_val_score
from sklearn.datasets import load_iris
#Import Gaussian Naive Bayes model
from sklearn.naive_bayes import GaussianNB
iris = load_iris()
X, y = iris.data, iris.target
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3.5.12 Ensemble methods

Model combinations are usually identified as model ensembles. They are the most effec-
tive approaches in machine learning, generally achieving better performance than the single 
models. But ensemble models bring an increased algorithmic cost and model complexity. 
There are two main motivations behind the ensemble learning: computational learning the-
ory and statistics. A famous statistical theory says that averaging measurements can lead to a 
more reliable and stable estimate since we decrease the effect of random oscillations in single 
measurements. Therefore if we can build an ensemble model from the same training data, 
we might reduce the effect of random variations in single models. The main issue is how to 
realize diversity among these different models. The diversity is realized generally by training 
models on random subsets of the data, and even by building them from random subsets of 
the available features. Learnability of hypothesis languages is examined from the perspective 
of a learning model that defines what the meaning is by learnability. PAC learnability needs 
a hypothesis to be approximately accurate most of the time. An alternative learning model 
known as weak learnability needs a hypothesis that is learned a somehow better than chance. 
Even	so,	it	is	apparent	that	PAC-learnability	is	stricter	than	weak	learnability.	This	was	dem-
onstrated utilizing an iterative algorithm, which repetitively creates a hypothesis targeted to 

#Create a Gaussian Classifier
model = GaussianNB()

CV = 10 #10-Fold Cross-Validation
#Evaluate Model Using 10-Fold Cross-Validation and Print Performance 
Metrics
Acc_scores = cross_val_score(model, X, y, cv = CV)
print("Accuracy: %0.3f (+/- %0.3f)" % (Acc_scores.mean(), Acc_scores.
std() * 2))
f1_scores = cross_val_score(model, X, y, cv = CV,scoring = 'f1_macro')
print("F1 score: %0.3f (+/- %0.3f)" % (f1_scores.mean(), f1_scores.std() 
* 2))
Precision_scores = cross_val_score(model, X, y, 
cv = CV,scoring = 'precision_macro')
print("Precision score: %0.3f (+/- %0.3f)" % (Precision_scores.mean(), 
Precision_scores.std() * 2))
Recall_scores = cross_val_score(model, X, y, cv = CV,scoring = 'recall_macro')
print("Recall score: %0.3f (+/- %0.3f)" % (Recall_scores.mean(), Recall_
scores.std() * 2))
from sklearn.metrics import cohen_kappa_score, make_scorer
kappa_scorer = make_scorer(cohen_kappa_score)
Kappa_scores = cross_val_score(model, X, y, cv = CV,scoring = kappa_scorer)
print("Kappa score: %0.3f (+/- %0.3f)" % (Kappa_scores.mean(), Kappa_
scores.std() * 2))
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correct the mistakes of the previous hypothesis by boosting. The final model combines the 
hypotheses learned in every iteration and thus creates an ensemble (Flach, 2012).	Ensemble	
models have the following specifications:

•	 they	build	multiple,	diverse	predictive	models	from	adapted	versions	of	the	training	data	
by resampling or reweighting;

•	 they	combine	the	predictions	of	these	models	by	any	means,	generally	by	simple	
averaging or voting with or without weighting.

Since the idea of an ensemble method is to build a large model class from the predictions 
that are carefully chosen elements of it are pooled, they may achieve a better overall predic-
tion. Breiman’s random forests is an ensemble classifier based on bootstrapping, with trees 
being the ensemble. In other words, random forests is a “bagged” (i.e., bootstrap aggregated) 
version of trees. It can be seen that bagging is a very general idea. ANNs, SVMs, or any other 
model classifiers can be bagged. Another technique to create an ensemble model is reoptimiz-
ing sequentially and averaging the solutions. This can be achieved by boosting that utilizes a 
class of “weak learners” as its ensemble. A weak learner is a poor model, which still describes 
some crucial characteristic of the data. Hence, it is reasonable that combining over the appro-
priate collection of weak learners will generate a strong learner. Generally, there are two main 
principles producing ensemble models. First, combining models signifies a stronger model 
class than simply selecting one of them. Consequently, the weighted sum of predictions from 
a collection of models can achieve better performance than individual predictions since linear 
combinations of the models must produce a lower bias than any individual model. The pre-
dictions that the ensemble models are combined stay distinct since they are based on diverse 
assumptions, which cannot be easily merged, and they have various parameters with diverse 
estimates. In fact, ensemble models only enhance the model selection techniques when the 
models in the ensemble achieve various predictions (Clarke, Fokoue, & Zhang, 2009 Clarke, 
Foukoue, & Zhang, 2009). Two best-known ensemble algorithms are bagging and boosting.

3.5.13 Bagging

Bagging or bootstrap aggregating is an ensemble modeling algorithm trained with data 
subsets randomly selected from the training dataset to boost model variance. The moderate 
approach is to take a weighted vote or a weighted average in the case of a classification or 
a numerical prediction respectively. It allows you to differentiate test incidents for a specific 
machine learning method in order to create correct predictions. Instead of gathering inde-
pendent sample datasets from the domain, bagging also deals with the original training data. 
Bagging is unique when resampling the original training data rather than using independent 
domain datasets. Different models are built in parallel from multiple samples to vote for 
the final model with equivalent weights. The classifier is always successful from the origi-
nal training data, with considerably better predictions than the actual classifier, and never 
performs significantly poor. This seeks to neutralize the variance by adjusting the original 
training data through canceling certain instances and duplicating others. By avoiding overfit-
ting, the classifier improves consistency and reduces bias and variance errors. Nonetheless, 
the biased model, which is robust in the variations in training data due to sampling, does not 
improve much (Witten, Frank, & Hall, 2011).
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Bagging is an extremely successful ensemble learner that produces diverse models on dis-
tinct random samples of the original dataset. These samples are held uniformly with replace-
ments that are called bootstrap samples. Since samples are held with replacement, the bootstrap 
sample will in general include duplicates, and therefore some of the original data points will 
be lost even if the bootstrap sample is of the same size as the original dataset. This is pre-
cisely what is needed, since differences between the bootstrap samples will produce diversity 
among the models in the ensemble. They can choose to aggregate the predictions of the vari-
ous models by voting—the class predicted by most models wins—or by averaging, which is 
more fitting of the performance scores or probabilities of the base classifiers. By voting, we 
see that bagging generates a piecewise linear decision boundary, something unlikely with a 
single linear classifier. When we turn the votes from each model into estimates of probability, 
we see that the different boundaries of the decision divide the space of the example into seg-
ments, of which each may obtain a different score (Flach, 2012).

To construct a model, first split the dataset into training set and test set. Then get a bootstrap 
sample from the training data and train an indicator utilizing the sample. The previous steps 
should be repeated a random number of times. The models from the samples are combined 
by averaging the output for regression or voting in favor of classification. It consequently 
yields an approximation of the sampling error, likewise, indicated as the speculation error. It 
functions splendidly for unbalanced learning algorithms like neural systems, decision trees, 
and regression trees. However, it does not work properly with stable classifiers like k-nearest 
neighbors. The absence of understanding is the major detriment to bagging, as the strategy is 
utilized in the unsupervised context of group analysis (Kumari, 2012).

Bagging is an ensemble model that improves a model’s performance as random forests. 
This approach is built on resampling to ensure that the data are described by the models 
on average. A successful technique is one that looks for a sufficiently large class of models 
that can generate a model with a small error of misclassification. But even if this is done 
by a method, it may be unstable. Unstable techniques are those with high variability in the 
selection of their model. ANN, trees, and subset selection in linear regression are unstable. 
Nearest-neighbors methods, on the other hand, are stable. Generally speaking, bagging can 
enhance the performance of unstable classifier so that it is nearly optimal (Clarke, Fokoue, & 
Zhang, 2009).

Bagging is particularly useful in combination with tree models, which are quite vulner-
able to variations in training data. Bagging is often combined with another concept when 
applied to tree models. A method often referred to as subspace sampling constructs each 
tree from a different random subset of features. It enables even more variety in the ensemble 
and has the additional advantage of reducing each tree’s training time. Random forests are 
the resulting ensemble model. The space partition of the accompanying example is basi-
cally the combination of the individual tree’s partitions in the ensemble. Therefore, while 
the random forest partition is finer than most tree partitions, it can be mapped back to a 
single tree model in theory since intersection refers to the combination of the branches of 
two different trees. This is distinct from bagging linear classifiers, in which the ensemble 
has a decision boundary that a single base classifier cannot learn. One could also assume 
that an alternative learning algorithm for tree models is implemented by the random forest 
algorithm (Flach, 2012).
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Example 3.27
The following Python code utilizes bagging ensemble classifier by employing the Scikit-learn 

library APIs. In this example we utilize the MNIST handwritten digits dataset (for which details 
are explained previously). The MNIST handwritten digits dataset is divided into training and test 
set and then classified by using bagging ensemble classifier. The classification accuracy, precision, 
recall, F1 score, Cohen kappa score, and Matthews correlation coefficient are calculated. The clas-
sification report and confusion matrix are also given. Note that this example is adapted from Py-
thon–scikit-learn.

# ======================================================================
# Bagging example with training and test set
# ======================================================================
import time
import numpy as np
from sklearn.datasets import fetch_openml
# Import train_test_split function
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.utils import check_random_state
#Import Bagging ensemble model
from sklearn.ensemble import BaggingClassifier
#Import Tree model as a base classifier
from sklearn import tree

print(__doc__)

# Turn down for faster convergence
train_samples = 5000

# Load data from https://www.openml.org/d/554
X, y = fetch_openml('mnist_784', version = 1, return_X_y = True)

random_state = check_random_state(0)
permutation = random_state.permutation(X.shape[0])
X = X[permutation]
y = y[permutation]
X = X.reshape((X.shape[0], -1))

# Split dataset into training set and test set
# 70% training and 30% test
Xtrain, Xtest, ytrain, ytest = train_test_split(X, y,test_size = 0.3, 
random_state = 0)



152 3. Machine learning techniques

 

scaler = StandardScaler()
Xtrain = scaler.fit_transform(Xtrain)
Xtest = scaler.transform(Xtest)

#Create a Bagging Ensemble Classifier
" " "BaggingClassifier(base_estimator = None, n_estimators = 10, max_sam-
ples = 1.0,
max_features = 1.0, bootstrap = True, bootstrap_features = False, oob_
score = False,
warm_start = False, n_jobs = None, random_state = None, verbose = 0)” “ “
bagging = BaggingClassifier(tree.DecisionTreeClassifier(),
       max_samples = 0.5, max_features = 0.5)
#Train the model using the training sets
bagging.fit(Xtrain,ytrain)
#Predict the response for test dataset
ypred = bagging.predict(Xtest)

#Evaluate the Model and Print Performance Metrics
from sklearn import metrics
print('Accuracy:', np.round(metrics.accuracy_score(ytest,ypred),4))
print('Precision:', np.round(metrics.precision_score(ytest,
       ypred,average = 'weighted'),4))
print('Recall:', np.round(metrics.recall_score(ytest,ypred,
       average = 'weighted'),4))
print('F1 Score:', np.round(metrics.f1_score(ytest,ypred,
       average = 'weighted'),4))
print('Cohen Kappa Score:', np.round(metrics.cohen_kappa_score(ytest, 
ypred),4))
print('Matthews Corrcoef:', np.round(metrics.matthews_corrcoef(ytest, 
ypred),4))
print('\t\tClassification Report:\n', metrics.classification_report(ypred, 
ytest))
from sklearn.metrics import confusion_matrix
print("Confusion Matrix:\n",confusion_matrix(ytest, ypred))

#Plot Confusion Matrix
from sklearn.metrics import confusion_matrix
from io import BytesIO #neded for plot
import seaborn as sns; sns.set()
import matplotlib.pyplot as plt

mat = confusion_matrix(ytest, ypred)
sns.heatmap(mat.T, square = True, annot = True, fmt = 'd', cbar = False)
plt.xlabel('true label')
plt.ylabel('predicted label');
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plt.savefig("Confusion.jpg")
# Save SVG in a fake file object.
f = BytesIO()
plt.savefig(f, format = "svg")

Example 3.28
The following Python code utilizes bagging ensemble classifier by employing the scikit-learn 

library APIs. In this example we utilize the Iris dataset, which exists in sklearn.datasets. The Iris 
dataset is classified with bagging ensemble classifier by using 10-fold cross-validation. The classifi-
cation accuracy, precision, recall, F1 score, Cohen kappa score, and Matthews correlation coefficient 
are calculated. Note that this example is adapted from Python–scikit-learn.

# ======================================================================
# Bagging example with cross-validation
# ======================================================================
print(__doc__)
from sklearn.model_selection import cross_val_score
from sklearn.datasets import load_iris
#Import Bagging ensemble model
from sklearn.ensemble import BaggingClassifier
#Import Tree model as a base classifier
from sklearn import tree
iris = load_iris()
X, y = iris.data, iris.target

"""BaggingClassifier(base_estimator = None, n_estimators = 10, max_sam-
ples = 1.0,
max_features = 1.0, bootstrap = True, bootstrap_features = False, oob_
score = False,
warm_start = False, n_jobs = None, random_state = None, verbose = 0)” “ “
#Create a Bagging Ensemble Classifier
model = BaggingClassifier(tree.DecisionTreeClassifier(),
      max_samples = 0.5, max_features = 0.5)

CV = 10 #10-Fold Cross Validation
#Evaluate Model Using 10-Fold Cross Validation and Print Performance 
Metrics
Acc_scores = cross_val_score(model, X, y, cv = CV)
print("Accuracy: %0.3f (+/- %0.3f)" % (Acc_scores.mean(), Acc_scores.
std() * 2))
f1_scores = cross_val_score(model, X, y, cv = CV,scoring = 'f1_macro')
print("F1 score: %0.3f (+/- %0.3f)" % (f1_scores.mean(), f1_scores.std() 
* 2))
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3.5.14 Random forest

Random forest makes a practice of the decision tree as the main classifier, and the use of 
this ensemble learning technique is to characterize the information. The ensemble technique 
combines the indicators from multiple trained classifiers to classify new instances. A random 
forest is a type of classifier that consists of tree-organized classifiers. In those classifiers, the 
independent random vectors are disseminated indistinguishably. Moreover, each tree makes 
a unit vote for the most well-known class. A random vector is independent of the former 
random vectors with the same distribution, and the training test is employed to create a tree. 
In the case of random forests, an upper bound is determined with the purpose to acquire the 
generalization error as far as two parameters that are given beneath: the accurateness of the 
individual classifiers and the dependency between them. There are two sections for gener-
alization of error in case of random forest. These sections are characterized as the individual 
classifier’s strength in the forest and the correlation between them as a function of raw mar-
gin. The correlation needs to be reduced to increase the random forest’s accuracy level while 
making sure that the strength remains intact (Goel & Abhilasha, 2017).

Precision_scores = cross_val_score(model, X, y, 
cv = CV,scoring = 'precision_macro')
print("Precision score: %0.3f (+/- %0.3f)" % (Precision_scores.mean(), 
Precision_scores.std() * 2))
Recall_scores = cross_val_score(model, X, y, cv = CV,scoring = 'recall_macro')
print("Recall score: %0.3f (+/- %0.3f)" % (Recall_scores.mean(), Recall_
scores.std() * 2))
from sklearn.metrics import cohen_kappa_score, make_scorer
kappa_scorer = make_scorer(cohen_kappa_score)
Kappa_scores = cross_val_score(model, X, y, cv = CV,scoring = kappa_scorer)
print("Kappa score: %0.3f (+/- %0.3f)" % (Kappa_scores.mean(), Kappa_
scores.std() * 2))

Example 3.29
The following Python code utilizes random forest classifier by employing the scikit-learn library 

APIs. In this example we utilize the MNIST handwritten digits dataset (for which details are ex-
plained previously). The MNIST handwritten digits dataset is divided into training and test set 
and then classified by using random forest classifier. The classification accuracy, precision, recall, 
F1 score, Cohen kappa score, and Matthews correlation coefficient are calculated. The classification 
report and confusion matrix are also given. Note that this example is adapted from Python–scikit-
learn.

# ======================================================================
# Random forest example with training and testset
# ======================================================================
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import time
import numpy as np
from sklearn.datasets import fetch_openml
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.utils import check_random_state
from sklearn.ensemble import RandomForestClassifier

print(__doc__)

# Turn down for faster convergence
train_samples = 5000

# Load data from https://www.openml.org/d/554
X, y = fetch_openml('mnist_784', version = 1, return_X_y = True)

random_state = check_random_state(0)
permutation = random_state.permutation(X.shape[0])
X = X[permutation]
y = y[permutation]
X = X.reshape((X.shape[0], -1))

Xtrain, Xtest, ytrain, ytest = train_test_split(
X, y, train_size = train_samples, test_size = 10000)

#Transform the data using Standard Scaler
scaler = StandardScaler()
Xtrain = scaler.fit_transform(Xtrain)
Xtest = scaler.transform(Xtest)

#In order to change to accuracy increase n_estimators
"""RandomForestClassifier(n_estimators = 'warn', criterion = 'gini', max_
depth = None,
min_samples_split = 2, min_samples_leaf = 1, min_weight_fraction_leaf = 0.0,
max_features = 'auto', max_leaf_nodes = None, min_impurity_decrease = 0.0,
min_impurity_split = None, bootstrap = True, oob_score = False, n_jobs = None,
random_state = None, verbose = 0, warm_start = False, class_weight = None)” “ “
clf = RandomForestClassifier(n_estimators = 200)
#Create the Model
#Train the model with Training Dataset
clf.fit(Xtrain,ytrain)
#Test the model with Testset
ypred = clf.predict(Xtest)
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Example 3.30
The following Python code utilizes random forest classifier by employing the scikit-learn library 

APIs. In this example we utilize the Iris dataset, which exists in sklearn.datasets. The Iris dataset is 
classified with random forest classifier by using 10-fold cross-validation. The classification accuracy, 
precision, recall, F1 score, Cohen kappa score, and Matthews correlation coefficient are calculated. 
Note that this example is adapted from Python–scikit-learn.

#Evaluate the Model and Print Performance Metrics
from sklearn import metrics
print('Accuracy:', np.round(metrics.accuracy_score(ytest,ypred),4))
print('Precision:', np.round(metrics.precision_score(ytest,
       ypred,average = 'weighted'),4))
print('Recall:', np.round(metrics.recall_score(ytest,ypred,
       average = 'weighted'),4))
print('F1 Score:', np.round(metrics.f1_score(ytest,ypred,
average = 'weighted'),4))
print('Cohen Kappa Score:', np.round(metrics.cohen_kappa_score(ytest, 
ypred),4))
print('Matthews Corrcoef:', np.round(metrics.matthews_corrcoef(ytest, 
ypred),4))
print('\t\tClassification Report:\n', metrics.classification_report(ypred, 
ytest))
from sklearn.metrics import confusion_matrix
print("Confusion Matrix:\n",confusion_matrix(ytest, ypred))

#Plot Confusion Matrix
from sklearn.metrics import confusion_matrix
from io import BytesIO #neded for plot
import seaborn as sns; sns.set()
import matplotlib.pyplot as plt
mat = confusion_matrix(ytest, ypred)
sns.heatmap(mat.T, square = True, annot = True, fmt = 'd', cbar = False)
plt.xlabel('true label')
plt.ylabel('predicted label');

plt.savefig("Confusion.jpg")
# Save SVG in a fake file object.
f = BytesIO()
plt.savefig(f, format = "svg")
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# ======================================================================
# Random forest example with cross-validation
# ======================================================================
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import cross_val_score
from sklearn.datasets import load_iris
iris = load_iris()
X, y = iris.data, iris.target

#In order to change to accuracy increase n_estimators
"""RandomForestClassifier(n_estimators = 'warn', criterion = 'gini', max_
depth = None,
min_samples_split = 2, min_samples_leaf = 1, min_weight_fraction_leaf = 0.0,
max_features = 'auto', max_leaf_nodes = None, min_impurity_decrease = 0.0,
min_impurity_split = None, bootstrap = True, oob_score = False, n_jobs = None,
random_state = None, verbose = 0, warm_start = False, class_weight = None)” “ “
# fit model no training data
model = RandomForestClassifier(n_estimators = 200)

CV = 10 #10-Fold Cross Validation
#Evaluate Model Using 10-Fold Cross Validation and Print Performance 
Metrics
Acc_scores = cross_val_score(model, X, y, cv = CV)
print("Accuracy: %0.3f (+/- %0.3f)" % (Acc_scores.mean(), Acc_scores.
std() * 2))
f1_scores = cross_val_score(model, X, y, cv = CV,scoring = 'f1_macro')
print("F1 score: %0.3f (+/- %0.3f)" % (f1_scores.mean(), f1_scores.std() 
* 2))
Precision_scores = cross_val_score(model, X, y, 
cv = CV,scoring = 'precision_macro')
print("Precision score: %0.3f (+/- %0.3f)" % (Precision_scores.mean(), 
Precision_scores.std() * 2))
Recall_scores = cross_val_score(model, X, y, 
cv = CV,scoring = 'recall_macro')
print("Recall score: %0.3f (+/- %0.3f)" % (Recall_scores.mean(), Recall_
scores.std() * 2))
from sklearn.metrics import cohen_kappa_score, make_scorer
kappa_scorer = make_scorer(cohen_kappa_score)
Kappa_scores = cross_val_score(model, X, y, cv = CV,scoring = kappa_scorer)
print("Kappa score: %0.3f (+/- %0.3f)" % (Kappa_scores.mean(), Kappa_
scores.std() * 2))
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Example 3.31
The following Python code is used to represent the transformation of target in regression by em-

ploying random forest regressor from the scikit-learn library. In this example we utilize the Boston 
house prices dataset, which exists in sklearn.datasets. This example utilizes the transformed fea-
tures of the Boston house prices dataset employing TransformedTargetRegressor. TransformedTar-
getRegressor transforms the targets y before fitting a regression model. The predictions are mapped 
back to the original space via an inverse transform. It takes as an argument the regressor, which is 
utilized for prediction, and the transformer, which is applied to the target variable. The straight 
line seen in the plot demonstrates how random forest regression tries to draw a straight line, which 
will best minimize the residual sum of squares between the observed responses in the dataset, and 
the responses predicted by the random forest regressor. The correlation coefficient R2,	MAE,	and	
MSE	are	also	calculated.	It	can	be	seen	from	the	example	that	the	target	transformation	improved	
the performance of the random forest regression model. Note that this example is adapted from 
Python–scikit-learn.

# ======================================================================
# Random forest regressor example with Boston house prices dataset
# ======================================================================
# ======================================================================
#Transforming target in regression
# ======================================================================
import matplotlib.pyplot as plt
from sklearn.compose import TransformedTargetRegressor
from sklearn.preprocessing import QuantileTransformer
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.metrics import mean_absolute_error
from sklearn.datasets import load_boston

# Load the Boston house prices dataset
boston = load_boston()
X = boston.data
y = boston.target
X_train, X_test, y_train, y_test = train_test_split(X, y, random_ 
state = 0)

# ======================================================================
# Prediction without transformation
# ======================================================================

# Create Regression object
regr = RandomForestRegressor(max_depth = 2, random_state = 0,
n_estimators = 100)
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# Train the model using the training sets
regr.fit(X_train, y_train)
# Make predictions using the testing set
y_pred = regr.predict(X_test)

print('R^2 score without Transformation: {0:.2f}'.format(regr.score(X_
test, y_test)))
# Explained variance score: 1 is perfect prediction
print("R^2 = %0.5f" % r2_score(y_test, y_pred))
# The mean absolute error
print("MAE = %5.3f" % mean_absolute_error(y_test, y_pred))
# The mean squared error
print("MSE = %5.3f" % mean_squared_error(y_test, y_pred))

# Plot outputs
fig, ax = plt.subplots()
ax.scatter(y_test, y_pred, edgecolors = (0, 0, 0))
ax.plot([y.min(), y.max()], [y.min(), y.max()], 'k--', lw = 4)
ax.set_xlabel('Measured')
ax.set_ylabel('Predicted')
plt.title('Without Transformation')
plt.show()

# ======================================================================
# Prediction with transformation
# ======================================================================
transformer = QuantileTransformer(output_distribution = 'normal')
regressor = RandomForestRegressor(max_depth = 2, random_state = 0,
       n_estimators = 100)
regr = TransformedTargetRegressor(regressor = regressor,
       transformer = transformer)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state = 0)
regr.fit(X_train, y_train)
y_pred = regr.predict(X_test)
print('R^2 score with Transformation: {0:.2f}'.format(regr.score(X_test, 
y_test)))
# Explained variance score: 1 is perfect prediction

print("R^2 = %0.5f" % r2_score(y_test, y_pred))
# The mean absolute error
print("MAE = %5.3f" % mean_absolute_error(y_test, y_pred))
# The mean squared error
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3.5.15 Boosting

Boosting is an ensemble learner model that is similar to bagging but utilizes a more com-
plicated approach than bootstrap sampling to generate diverse training sets. The basic idea 
is simple and appealing. Assume that a linear classifier is trained on a dataset and we want 
to add another classifier to the ensemble, which works better on the misclassifications of the 
first classifier. A good approach is to give the misclassified instances a higher weight and to 
modify the classifier to take these weights into account. The basic linear classifier can estimate 
the class means as a weighted average (Flach, 2012).

If the learning technique is weak, it may only achieve slightly better than random estimat-
ing at forecasting the true classes. Boosting is a method that is developed to enhance the per-
formance of certain weak learners by iteratively optimizing them on the dataset employed to 
achieve better performance. The iterative optimization utilizes an exponential loss function 
and a sequence of data-driven weights, which improves the cost of misclassifications, thus 
making consecutive iterations of the classifier more sensitive. Actually, the iterations form an 
ensemble of rules produced from a base classifier in the same way that ensemble voting by 
a weighted sum over the ensemble generally achieves better performance. Boosting is pro-
posed by Schapire (Schapire, 1990) and has subsequently seen quick improvement. Boosting 
was initially proposed for weak learners, and the concept of weak learner is a stump. A stump 
can have a small error rate if it is related to a good model split, but mostly it does not, so 
enhancing it in one way or another is often a good idea. Similar to bagging, boosting tends 
to enhance the performance of unstable classifiers by decreasing their variances. There is evi-
dence that boosting can overfit (Clarke et al., 2009).

There is some indication that neither bagging nor boosting improves much when the clas-
sifier is already pretty good (stable) with a low misclassification error. The reason is that the 
classifier is already almost optimal, as in LDA cases. Moreover, there is even some indica-
tion that boosting, like bagging, can degrade the performance of a classifier. This is more 
usual while the sample size is too small. There is a considerable inconsistency due to lack of 
data where the averaging technique cannot help much. Bagging and boosting are anticipated 
for various scenarios and are not easily comparable. For example, stumps are a weak classi-
fier with high bias but often stable. In this case, the benefits of boosting may be inadequate 
since the class is limited, but bagging can achieve better performance. Larger trees might be 

print("MSE = %5.3f" % mean_squared_error(y_test, y_pred))
# Plot outputs
fig, ax = plt.subplots()
ax.scatter(y_test, y_pred, edgecolors = (0, 0, 0))
ax.plot([y.min(), y.max()], [y.min(), y.max()], 'k--', lw = 4)
ax.set_xlabel('Measured')
ax.set_ylabel('Predicted')
plt.title('With Transformation')
plt.show()
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amenable to variance reduction but might have less bias, thus they are more amenable to 
boosting. Finally, the approaches are diverse and encourage freewheeling applications. We 
can bag a boosted classifier or boost a bagged classifier. Furthermore, we can stack classifiers 
of diverse forms, say decision trees, ANN, SVMs, and nearest neighbors, and then boost the 
bagged version or take stacked ANNs and SVMs and boost the result. These kinds of options 
might be extremely exhausting; consequently, in order to improve ensemble methods, we 
need to decide carefully which classification or regression method is to be employed and how 
to employ it (Clarke et al., 2009).

3.5.15.1 Adaptive Boosting (AdaBoost)
Adaptive boosting (Freund & Schapire, 1997) strategy has been proposed to expand the 

precision of the ensemble. The essential idea of boosting is to construct a progression of 
classifiers with the goal that the later classifier will concentrate more on the misclassified 
tuples of the last round. An ensemble of classifiers with high precision will be created since 
classifiers in the ensemble supplement one another. Boosting is considered to be a general 
strategy that is used for bringing improvement in a random learning algorithm. The model 
algorithm is easy to comprehend, and it does not experience overfitting. It handles both the 
binary classification issues just like multiclass issues are handled in the machine learning 
domain. AdaBoost likewise gives an expansion to the occurring regression issues. The boost-
ing algorithm appears to be strong compared to bagging on the data with no noise. The algo-
rithm is dependent on the datasets and is used for assembling numerous classifiers to merge 
them into a stronger classifier. Because of this, it is known as a successive classifiers’ creation 
(Kumari, 2012).

To develop a classifier, we take the preparation or training set as the input. Besides that, 
the set of base learning algorithms are called more than once repetitively to keep up a 
set of weights over the preparation set. At first, all weights are set similarly,; however, in 
each round, the weights of inaccurately grouped examples are expanded with the goal that 
the frail learner is compelled to concentrate on the hard examples in the preparation data. 
Thirdly, this boosting can be connected by two structures, boosting by sampling and boost-
ing by weighing. In the technique of learning by boosting, a weighted set of training can 
be accepted directly by the base learning algorithm. Now, with such algorithms, the entire 
preparation set is assigned to the base learning algorithm. Also, in boosting by sampling 
technique, models are drawn by displacing the preparation set with probability relative 
to their weights. The stopping iteration is controlled by the cross-validation technique 
(Kumari, 2012).

The algorithm does not require prior knowledge about the weak learner; thus it can be 
joined with any technique for discovering weak hypotheses. At long last, it accompanies a set 
of hypothetical guarantees given adequate data, and weak learner can dependably produce 
precise weak hypotheses. The algorithm is used on learning issues and follows two proper-
ties. The first property is that there are different hardness levels for the observed examples. 
The boosting algorithm will in general produce such distributions that are related to the 
harder examples, hence it is difficult for the weak algorithm to show efficiency in the same 
space. As for the second property, the algorithm cannot be changed repeatedly for different 
training datasets or hypotheses (Kumari, 2012).
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Example 3.32
The following Python code utilizes the AdaBoost classifier by employing the scikit-learn library 

APIs. In this example we utilize the MNIST handwritten digits dataset (for which details are ex-
plained previously). The MNIST handwritten digits dataset is divided into training and test set and 
then classified by using AdaBoost classifier. The classification accuracy, precision, recall, F1 score, 
Cohen kappa score, and Matthews correlation coefficient are calculated. The classification report 
and confusion matrix are also given. Note that this example is adapted from Python–scikit-learn.

# ======================================================================
# Adaboost example with training and test set
# ======================================================================
import time
import numpy as np
from sklearn.datasets import fetch_openml
# Import train_test_split function
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.utils import check_random_state
#Import Adaboost ensemble model
from sklearn.ensemble import AdaBoostClassifier
#Import Tree model as a base classifier
from sklearn import tree

print(__doc__)

# Turn down for faster convergence
train_samples = 5000

# Load data from https://www.openml.org/d/554
X, y = fetch_openml('mnist_784', version = 1, return_X_y = True)

random_state = check_random_state(0)
permutation = random_state.permutation(X.shape[0])
X = X[permutation]
y = y[permutation]
X = X.reshape((X.shape[0], -1))

# Split dataset into training set and test set
# 70% training and 30% test
Xtrain, Xtest, ytrain, ytest = train_test_split(X, y,test_size = 0.3, ran-
dom_state = 0)
scaler = StandardScaler()
Xtrain = scaler.fit_transform(Xtrain)
Xtest = scaler.transform(Xtest)
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#Create an Adaboost Ensemble Classifier
""" AdaBoostClassifier(base_estimator = None, n_estimators = 50, learning_
rate = 1.0,
    algorithm = 'SAMME.R', random_state = None)” “ “
clf = AdaBoostClassifier(tree.DecisionTreeClassifier(),n_estimators = 10, al-
gorithm = 'SAMME',learning_rate = 0.5)

#Train the model using the training sets
clf.fit(Xtrain,ytrain)
#Predict the response for test dataset
ypred = clf.predict(Xtest)

#Evaluate the Model and Print Performance Metrics
from sklearn import metrics
print('Accuracy:', np.round(metrics.accuracy_score(ytest,ypred),4))
print('Precision:', np.round(metrics.precision_score(ytest,
      ypred,average = 'weighted'),4))
print('Recall:', np.round(metrics.recall_score(ytest,ypred,
      average = 'weighted'),4))
print('F1 Score:', np.round(metrics.f1_score(ytest,ypred,
      average = 'weighted'),4))
print('Cohen Kappa Score:', np.round(metrics.cohen_kappa_score(ytest, 
ypred),4))
print('Matthews Corrcoef:', np.round(metrics.matthews_corrcoef(ytest, 
ypred),4))
print('\t\tClassification Report:\n', metrics.classification_report(ypred, 
ytest))
from sklearn.metrics import confusion_matrix
print("Confusion Matrix:\n",confusion_matrix(ytest, ypred))

#Plot Confusion Matrix
from sklearn.metrics import confusion_matrix
from io import BytesIO #neded for plot
import seaborn as sns; sns.set()
import matplotlib.pyplot as plt

mat = confusion_matrix(ytest, ypred)
sns.heatmap(mat.T, square = True, annot = True, fmt = 'd', cbar = False)
plt.xlabel('true label')
plt.ylabel('predicted label');

plt.savefig("Confusion.jpg")
# Save SVG in a fake file object.
f = BytesIO()
plt.savefig(f, format = "svg")
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Example 3.33
The following Python code utilizes AdaBoost classifier by employing the scikit-learn library 

APIs. In this example we utilize the Iris dataset, which exists in sklearn.datasets. The Iris dataset 
is classified with AdaBoost classifier by using 10-fold cross-validation. The classification accuracy, 
precision, recall, F1 score, Cohen kappa score, and Matthews correlation coefficient are calculated. 
Note that this example is adapted from Python–scikit-learn.

# ======================================================================
# Adaboost example with cross-validation
# ======================================================================
print(__doc__)
from sklearn.model_selection import cross_val_score
from sklearn.datasets import load_iris
#Import Adaboost Ensemble model
from sklearn.ensemble import AdaBoostClassifier
#Import Tree model as a base classifier
from sklearn import tree
iris = load_iris()
X, y = iris.data, iris.target

#Create an Adaboost Ensemble Classifier
""" AdaBoostClassifier(base_estimator = None, n_estimators = 50, learning_
rate = 1.0,
     algorithm = 'SAMME.R', random_state = None)” “ “
model = clf = AdaBoostClassifier(tree.DecisionTreeClassifier(),n_estima-
tors = 10,
     algorithm = 'SAMME',learning_rate = 0.5)
CV = 10 #10-Fold Cross Validation
#Evaluate Model Using 10-Fold Cross Validation and Print Performance 
Metrics
Acc_scores = cross_val_score(model, X, y, cv = CV)
print("Accuracy: %0.3f (+/- %0.3f)" % (Acc_scores.mean(), Acc_scores.
std() * 2))
f1_scores = cross_val_score(model, X, y, cv = CV,scoring = 'f1_macro')
print("F1 score: %0.3f (+/- %0.3f)" % (f1_scores.mean(), f1_scores.std() 
* 2))
Precision_scores = cross_val_score(model, X, y, cv = CV,scoring = 'preci-
sion_macro')
print("Precision score: %0.3f (+/- %0.3f)" % (Precision_scores.mean(), 
Precision_scores.std() * 2))
Recall_scores = cross_val_score(model, X, y, cv = CV,scoring = 'recall_mac-
ro')
print("Recall score: %0.3f (+/- %0.3f)" % (Recall_scores.mean(), Recall_
scores.std() * 2))
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from sklearn.metrics import cohen_kappa_score, make_scorer
kappa_scorer = make_scorer(cohen_kappa_score)
Kappa_scores = cross_val_score(model, X, y, cv = CV,scoring = kappa_scorer)
print("Kappa score: %0.3f (+/- %0.3f)" % (Kappa_scores.mean(), Kappa_
scores.std() * 2))

Example 3.34
The following Python code is used to represent the transformation of target in regression by 

employing AdaBoost regressor from the scikit-learn library. In this example we utilize the Boston 
house prices dataset, which exists in sklearn.datasets. This example employs the transformed fea-
tures of the Boston houses price dataset using TransformedTargetRegressor. TransformedTarget-
Regressor transforms the targets y before fitting a regression model. The predictions are mapped 
back to the original space via an inverse transform. It takes as an argument the regressor, which is 
utilized for prediction, and the transformer, which is applied to the target variable. The straight line 
seen in the plot demonstrates how AdaBoost regression tries to draw a straight line, which mini-
mizes the residual sum of squares between the observed responses in the dataset, and the responses 
predicted by the AdaBoost. The correlation coefficient R2,	MAE,	and	MSE	are	also	calculated.	It	can	
be seen from the example that the target transformation improved the performance of the AdaBoost 
regression model. Note that this example is adapted from Python–scikit-learn.

# ======================================================================
# Adaboost regressor example with Boston house prices dataset
# ======================================================================
# ======================================================================
#Transforming target in regression
# ======================================================================
import matplotlib.pyplot as plt
from sklearn.compose import TransformedTargetRegressor
from sklearn.preprocessing import QuantileTransformer
from sklearn.ensemble import AdaBoostRegressor
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.metrics import mean_absolute_error
from sklearn.datasets import load_boston

# Load the Boston House prices dataset
boston = load_boston()
X = boston.data
y = boston.target
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state = 0)
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# ======================================================================
# Prediction without Transformation
# ======================================================================

# Create Regression object
regr = AdaBoostRegressor(random_state = 0, n_estimators = 100)
# Train the model using the training sets
regr.fit(X_train, y_train)
# Make predictions using the testing set
y_pred = regr.predict(X_test)

print('R^2 score without Transformation: {0:.2f}'.format(regr.score(X_
test, y_test)))
# Explained variance score: 1 is perfect prediction
print("R^2 = %0.5f" % r2_score(y_test, y_pred))
# The mean absolute error
print("MAE = %5.3f" % mean_absolute_error(y_test, y_pred))
# The mean squared error
print("MSE = %5.3f" % mean_squared_error(y_test, y_pred))

# Plot outputs
fig, ax = plt.subplots()
ax.scatter(y_test, y_pred, edgecolors = (0, 0, 0))
ax.plot([y.min(), y.max()], [y.min(), y.max()], 'k--', lw = 4)
ax.set_xlabel('Measured')
ax.set_ylabel('Predicted')
plt.title('Without Transformation')
plt.show()

# ======================================================================
# Prediction with transformation
# ======================================================================
transformer = QuantileTransformer(output_distribution = 'normal')
regressor = AdaBoostRegressor(random_state = 0, n_estimators = 100)
regr = TransformedTargetRegressor(regressor = regressor,
           transformer = transformer)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state = 0)
regr.fit(X_train, y_train)
y_pred = regr.predict(X_test)

print('R^2 score with Transformation: {0:.2f}'.format(regr.score(X_test, 
y_test)))
# Explained variance score: 1 is perfect prediction
print("R^2 = %0.5f" % r2_score(y_test, y_pred))
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# The mean absolute error
print("MAE = %5.3f" % mean_absolute_error(y_test, y_pred))
# The mean squared error
print("MSE = %5.3f" % mean_squared_error(y_test, y_pred))

# Plot outputs
fig, ax = plt.subplots()
ax.scatter(y_test, y_pred, edgecolors = (0, 0, 0))
ax.plot([y.min(), y.max()], [y.min(), y.max()], 'k--', lw = 4)
ax.set_xlabel('Measured')
ax.set_ylabel('Predicted')
plt.title('With Transformation')
plt.show()

3.5.15.2 Gradient Boosting
With their “bagging” procedure, Breiman (Breiman, 1996) introduced the idea of adding 

randomness into function estimation procedures to improve their performance. Initial imple-
mentations of AdaBoost (Freund & Schapire, 1995) also utilized random sampling, but this 
was considered an approximation of deterministic weighting, once the implementation of 
the base learner does not support observation weights, rather than as an important compo-
nent. Later, Breiman (Breiman, 1999) suggested a hybrid bagging boosting procedure (“adap-
tive bagging”) aimed for the least squares fitting of additive expansions. It replaces the base 
learner in regular boosting processes with the relevant bagged base learner and substitutes 
“out of bag” residuals for the ordinary residuals at each boosting step. Inspired by Breiman 
(Breiman, 1999), a minimal modification achieved gradient boosting to combine randomness 
as an essential part of the process. At each iteration a subsample of the training data is drawn 
at random (without replacement) from the full training dataset. This randomly chosen sub-
sample is then utilized, instead of the full sample, to fit the base learner and calculate the 
model update for the current iteration (Friedman, 2002).

Example 3.35
The following Python code utilizes gradient boosting classifier by employing the scikit-learn 

library APIs. In this example we utilize the MNIST handwritten digits dataset (for which details 
were explained previously). The MNIST handwritten digits dataset is divided into training and 
test set and then classified by using gradient boosting classifier. The classification accuracy, preci-
sion, recall, F1 score, Cohen kappa score, and Matthews correlation coefficient are calculated. The 
classification report and confusion matrix are also given. Note that this example is adapted from 
Python–scikit-learn.
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# ======================================================================
# Gradient boosting example with training and testset
# ======================================================================
import time
import numpy as np
from sklearn.datasets import fetch_openml
# Import train_test_split function
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.utils import check_random_state
#Import Gradient Boosting ensemble model
from sklearn.ensemble import GradientBoostingClassifier

print(__doc__)

# Turn down for faster convergence
train_samples = 5000

# Load data from https://www.openml.org/d/554
X, y = fetch_openml('mnist_784', version = 1, return_X_y = True)

random_state = check_random_state(0)
permutation = random_state.permutation(X.shape[0])
X = X[permutation]
y = y[permutation]
X = X.reshape((X.shape[0], -1))

# Split dataset into training set and test set
# 70% training and 30% test
Xtrain, Xtest, ytrain, ytest = train_test_split(X, y,test_size = 0.3, ran-
dom_state = 0)
scaler = StandardScaler()
Xtrain = scaler.fit_transform(Xtrain)
Xtest = scaler.transform(Xtest)

#Create the Model
clf = GradientBoostingClassifier(n_estimators = 100, learning_rate = 1.0,
max_depth = 1, random_state = 0).fit(Xtrain, ytrain)
clf.score(Xtest, ytest)

#Train the model using the training sets
clf.fit(Xtrain,ytrain)
#Predict the response for test dataset
ypred = clf.predict(Xtest)
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#Evaluate the Model and Print Performance Metrics
from sklearn import metrics
print('Accuracy:', np.round(metrics.accuracy_score(ytest,ypred),4))
print('Precision:', np.round(metrics.precision_score(ytest,
      ypred,average = 'weighted'),4))
print('Recall:', np.round(metrics.recall_score(ytest,ypred,
      average = 'weighted'),4))
print('F1 Score:', np.round(metrics.f1_score(ytest,ypred,
      average = 'weighted'),4))
print('Cohen Kappa Score:', np.round(metrics.cohen_kappa_score(ytest, 
ypred),4))
print('Matthews Corrcoef:', np.round(metrics.matthews_corrcoef(ytest, 
ypred),4))
print('\t\tClassification Report:\n', metrics.classification_report(ypred, 
ytest))
from sklearn.metrics import confusion_matrix
print("Confusion Matrix:\n",confusion_matrix(ytest, ypred))

Example 3.36
The following Python code is used to represent the transformation of target in regression by 

employing gradient boosting regressor from the scikit-learn library. In this example we utilize the 
Boston house prices dataset, which exists in sklearn.datasets. This example utilizes the transformed 
features of the Boston house prices dataset using TransformedTargetRegressor. TransformedTarget-
Regressor transforms the targets y before fitting a regression model. The predictions are mapped 
back to the original space via an inverse transform. It takes as an argument the regressor, which is 
utilized for prediction, and the transformer, which is applied to the target variable. The straight line 
seen in the plot demonstrates how gradient boosting regression tries to draw a straight line, which 
minimizes the residual sum of squares between the observed responses in the dataset, and the re-
sponses predicted by gradient boosting. The correlation coefficient R2,	MAE,	and	MSE	are	also	cal-
culated. It can be seen from the example that the target transformation improved the performance of 
the gradient boosting regression model. Note that this example is adapted from Python–scikit-learn.

# ======================================================================
# Gradient boosting regressor example with Boston house prices dataset
# ======================================================================
# ======================================================================
#Transforming target in regression
# ======================================================================
import matplotlib.pyplot as plt
from sklearn.compose import TransformedTargetRegressor
from sklearn.preprocessing import QuantileTransformer
from sklearn.ensemble import GradientBoostingRegressor
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from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.metrics import mean_absolute_error
from sklearn.datasets import load_boston
# Load the Boston House prices dataset
boston = load_boston()
X = boston.data
y = boston.target
X_train, X_test, y_train, y_test = train_test_split(X, y, random_ 
state = 0)

# ======================================================================
# Prediction without transformation
# ======================================================================

# Create linear regression object
# Fit regression model
params = {'n_estimators': 500, 'max_depth': 4, 'min_samples_split': 2,
  'learning_rate': 0.01, 'loss': 'ls'}
regr = GradientBoostingRegressor(**params)
# Train the model using the training sets
regr.fit(X_train, y_train)
# Make predictions using the testing set
y_pred = regr.predict(X_test)

print('R^2 score without Transformation: {0:.2f}'.format(regr.score(X_
test, y_test)))
# Explained variance score: 1 is perfect prediction
print("R^2 = %0.5f" % r2_score(y_test, y_pred))
# The mean absolute error
print("MAE = %5.3f" % mean_absolute_error(y_test, y_pred))
# The mean squared error
print("MSE = %5.3f" % mean_squared_error(y_test, y_pred))

# Plot outputs
fig, ax = plt.subplots()
ax.scatter(y_test, y_pred, edgecolors = (0, 0, 0))
ax.plot([y.min(), y.max()], [y.min(), y.max()], 'k--', lw = 4)
ax.set_xlabel('Measured')
ax.set_ylabel('Predicted')
plt.title('Without Transformation')
plt.show()
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3.5.16 Other ensemble methods

There are numerous ensemble approaches besides bagging and boosting. The key differ-
ence is that the sense predictions of the base models are combined. The predictions of some 
base classifiers as features learn to produce a metamodel, which combines their predictions. 
Learning a linear metamodel is known as stacking. It is also feasible to combine different base 
models into a heterogeneous ensemble to achieve base model diversity such that base models 
are trained by diverse learning algorithms by employing the same training set. Hence the 
model ensembles are composed of a set of base models and a metamodel, which is trained to 
decide how base model predictions must be combined (Flach, 2012).

# ======================================================================
# Prediction with transformation
# ======================================================================
transformer = QuantileTransformer(output_distribution = 'normal')
regressor = GradientBoostingRegressor(**params)
regr = TransformedTargetRegressor(regressor = regressor,
         transformer = transformer)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state = 0)
regr.fit(X_train, y_train)
y_pred = regr.predict(X_test)

print('R^2 score with Transformation: {0:.2f}'.format(regr.score(X_test, 
y_test)))
# Explained variance score: 1 is perfect prediction
print("R^2 = %0.5f" % r2_score(y_test, y_pred))
# The mean absolute error
print("MAE = %5.3f" % mean_absolute_error(y_test, y_pred))
# The mean squared error
print("MSE = %5.3f" % mean_squared_error(y_test, y_pred))

# Plot outputs
fig, ax = plt.subplots()
ax.scatter(y_test, y_pred, edgecolors = (0, 0, 0))
ax.plot([y.min(), y.max()], [y.min(), y.max()], 'k--', lw = 4)
ax.set_xlabel('Measured')
ax.set_ylabel('Predicted')
plt.title('With Transformation')
plt.show()
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Example 3.37
The following Python code utilizes Stacking metaclassifier by employing the scikit-learn library 

APIs. In this example, we utilize the Iris dataset, which exists in sklearn.datasets. Note that this 
example is adapted from Python–scikit-learn.

# ======================================================================
# Stacking metaclassifier example
# ======================================================================
#Before running you should install mlxtend.classifier for Staking using pip 
install mlxtend
import numpy as np
import warnings
from sklearn import model_selection
from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.neural_network import MLPClassifier
from sklearn.ensemble import RandomForestClassifier
from mlxtend.classifier import StackingClassifier
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn import tree

#Load Iris Dataset
iris = load_iris()
X, y = iris.data, iris.target
#Create Train and Test set
Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, test_size = 0.3, ran-
dom_state = 0)

warnings.simplefilter('ignore')

#Create the Model
clf1 = KNeighborsClassifier(n_neighbors = 1)
clf2 = RandomForestClassifier(random_state = 1)
clf3 = MLPClassifier(hidden_layer_sizes = (100, ), learning_rate_
init = 0.001,
      alpha = 1, momentum = 0.9,max_iter = 1000)
DT = tree.DecisionTreeClassifier()
sclf = StackingClassifier(classifiers = [clf1, clf2, clf3],
      meta_classifier = DT)

# ======================================================================
# # Stacking example with cross-validation
# ======================================================================
print('5-fold cross validation:\n')
for clf, label in zip([clf1, clf2, clf3, sclf],
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      ['KNN',
      'Random Forest',
      'Multilayer Perceptron',
      'StackingClassifier']):

scores = model_selection.cross_val_score(clf, X, y,
cv = 5, scoring = 'accuracy')
print("Accuracy: %0.3f (+/- %0.3f) [%s]"
  % (scores.mean(), scores.std(), label))
# ======================================================================
# # Stacking example with training and test set
# ======================================================================
#Train the Model with Training dataset
sclf.fit(Xtrain,ytrain)
#Test the Model with Testing dataset
ypred = sclf.predict(Xtest)

from sklearn import metrics
print('Accuracy:', np.round(metrics.accuracy_score(ytest,ypred),4))
print('Precision:', np.round(metrics.precision_score(ytest,
       ypred,average = 'weighted'),4))
print('Recall:', np.round(metrics.recall_score(ytest,ypred,
       average = 'weighted'),4))
print('F1 Score:', np.round(metrics.f1_score(ytest,ypred,
       average = 'weighted'),4))
print('Cohen Kappa Score:', np.round(metrics.cohen_kappa_score(ytest, 
ypred)))
print('Matthews Corrcoef:', np.round(metrics.matthews_corrcoef(ytest, 
ypred)))
print('\t\tClassification Report:\n', metrics.classification_report(ypred, 
ytest))

from sklearn.metrics import confusion_matrix
from io import BytesIO #neded for plot
import seaborn as sns; sns.set()
import matplotlib.pyplot as plt

mat = confusion_matrix(ytest, ypred)
sns.heatmap(mat.T, square = True, annot = True, fmt = 'd', cbar = False)
plt.xlabel('true label')
plt.ylabel('predicted label');

plt.savefig("Confusion.jpg")
# Save SVG in a fake file object.
f = BytesIO()
plt.savefig(f, format = "svg")
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Example 3.38
The following Python code utilizes voting ensemble classifier by employing the scikit-learn li-

brary APIs. In this example, we utilize the Iris dataset, which exists in sklearn.datasets. Note that 
this example is adapted from Python–scikit-learn.

# ======================================================================
# Voting ensemble classifier example
# ======================================================================
from sklearn import datasets
from sklearn.model_selection import cross_val_score
from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import GaussianNB
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import VotingClassifier

#Load Iris Dataset
iris = load_iris()
X, y = iris.data, iris.target
#Create Train and Test set
Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, test_size = 0.3, ran-
dom_state = 0)

# ======================================================================
# Voting example with cross-validation
# ======================================================================
#Create the Model
clf1 = KNeighborsClassifier(n_neighbors = 1)
clf2 = RandomForestClassifier(random_state = 1)
clf3 = MLPClassifier(hidden_layer_sizes = (100, ), learning_rate_ 
init = 0.001,
     alpha = 1, momentum = 0.9,max_iter = 1000)
eclf = VotingClassifier(estimators = [('kNN', clf1), ('RF', clf2), ('MLP', 
clf3)], voting = 'hard')

print('\nPerfromance with Cross Validation')
print('5-fold cross validation:\n')
for clf, label in zip([clf1, clf2, clf3, eclf], ['kNN', 'Random Forest', 
'MLP', 'Ensemble']):
scores = cross_val_score(clf, X, y, cv = 5, scoring = 'accuracy')
print("Accuracy: %0.2f (+/- %0.2f) [%s]" % (scores.mean(), scores.std(), 
label))
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Example 3.39
The following Python code is used to represent the transformation of target in regression by em-

ploying voting regressor from the scikit-learn library. In this example, we utilize the Boston house 
prices dataset, which exists in sklearn.datasets. The straight line seen in the plot demonstrates how 
voting regression tries to draw a straight line, which best minimizes the residual sum of squares 
between the observed responses in the dataset, and the responses predicted by regressor. The cor-
relation coefficient R2,	MAE,	and	MSE	are	also	calculated.	It	can	be	seen	from	the	example	that	the	
target transformation has improved the performance of the Voting regression model. Note that this 
example is adapted from Python–scikit-learn.

# ======================================================================
# Voting regressor example
# ======================================================================
import matplotlib.pyplot as plt
from sklearn import datasets

# ======================================================================
# Voting example with training and testset
# ======================================================================
#Train the model using the training sets
eclf.fit(Xtrain,ytrain)
#Predict the response for test dataset
ypred = eclf.predict(Xtest)

#Evaluate the Model and Print Performance Metrics
print('\n\nPerfromance with Test Set')
from sklearn import metrics
print('Accuracy:', np.round(metrics.accuracy_score(ytest,ypred),4))
print('Precision:', np.round(metrics.precision_score(ytest,
      ypred,average = 'weighted'),4))
print('Recall:', np.round(metrics.recall_score(ytest,ypred,
      average = 'weighted'),4))
print('F1 Score:', np.round(metrics.f1_score(ytest,ypred,
      average = 'weighted'),4))
print('Cohen Kappa Score:', np.round(metrics.cohen_kappa_score(ytest, 
ypred),4))
print('Matthews Corrcoef:', np.round(metrics.matthews_corrcoef(ytest, 
ypred),4))
print('\t\tClassification Report:\n', metrics.classification_report(ypred, 
ytest))
from sklearn.metrics import confusion_matrix
print("Confusion Matrix:\n",confusion_matrix(ytest, ypred))
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from sklearn.ensemble import GradientBoostingRegressor
from sklearn.ensemble import RandomForestRegressor
from sklearn.linear_model import LinearRegression
from sklearn.ensemble import VotingRegressor
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.metrics import mean_absolute_error

# Load the Boston house prices dataset
boston = datasets.load_boston()
X = boston.data
y = boston.target
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state = 0)
# Training classifiers
reg1 = GradientBoostingRegressor(random_state = 1, n_estimators = 10)
reg2 = RandomForestRegressor(random_state = 1, n_estimators = 10)
reg3 = LinearRegression()
eregr = VotingRegressor(estimators = [('gb', reg1), ('rf', reg2), ('lr', 
reg3)])

# Train the model using the training sets
eregr.fit(X_train, y_train)
# Make predictions using the testing set
y_pred = eregr.predict(X_test)

print('R^2 score without Transformation: {0:.2f}'.format(eregr.score(X_
test, y_test)))
# Explained variance score: 1 is perfect prediction
print("R^2 = %0.5f" % r2_score(y_test, y_pred))
# The mean absolute error
print("MAE = %5.3f" % mean_absolute_error(y_test, y_pred))
# The mean squared error
print("MSE = %5.3f" % mean_squared_error(y_test, y_pred))

# Plot outputs
fig, ax = plt.subplots()
ax.scatter(y_test, y_pred, edgecolors = (0, 0, 0))
ax.plot([y.min(), y.max()], [y.min(), y.max()], 'k--', lw = 4)
ax.set_xlabel('Measured')
ax.set_ylabel('Predicted')
plt.title('Voting Regressor')
plt.show()
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3.5.17 Deep learning

Deep learning is an enhancement to artificial neural networks (ANNs). The simple neural 
network is composed of an input layer, a hidden layer, and an output layer. The ANN model’s 
parameters are the weights of every connection, which exists in the network and sometimes 
a bias parameter. Deep learning has recently turned out to be one of machine learning’s most 
well-known characteristics. Deep learning has achieved exceptional accuracy and popularity 
in numerous fields, especially in image and audio (Sarkar et al., 2018).

If a linear model is not enough for any learning process, it is possible to describe new 
features that are nonlinear input functions, hence a linear model is built in the domain of 
those features. This requires determining the good basis functions. One way to create a new 
space is to use one of the extraction methods for applications such as PCA. But an MLP 
that extracts these features in its hidden layer is the best technique, because the first layer 
(feature extraction) and the second layer in which these features are incorporated to predict 
the output are learned together in a supervised approach. With one hidden layer, an MLP 
has limited ability, while with several hidden layers, an MLP may learn more complicated 
input functions. This is the concept behind deep neural networks, where each hidden layer 
combines the values in its previous layer, beginning from the networks’ raw input, and 
learns more complicated input features. Another feature of deep networks is that successive 
hidden layers of more abstract descriptions are used up to the output layer in which the 
outputs are learned in terms of these intangible concepts. The idea is to learn feature levels 
of rising abstraction in deep learning with minimal human intervention (Bengio, 2009), as 
in several applications. The assembly that is present in the input is not recognized, so any 
kind of dependencies should be automatically discovered during training. A key issue with 
training an MLP with many hidden layers is that it is important to successively multiply 
the derivatives in all layers while backpropagating the error to the previous layers, and 
the gradient vanishes. This is also the reason why the unfolded recurrent neural networks 
were trained slowly. For convolutional neural networks, the condition cannot happen, as 
the fan-in and fan-out of hidden units are naturally negligible. A deep neural network is 
usually trained one layer at a time (Hinton & Salakhutdinov, 2006). The aim of each layer is 
to extract the relevant features from the data fed to it, and for this purpose a technique such 
as the autoencoder can be used. Therefore, beginning with the raw input data, an autoen-
coder can be trained, and the encoded representation learned from its secret layer is then 
used as an input to train the next autoencoder, and so on, until we reach the final layer that 
is trained with the labeled data in a supervised manner. They are all brought together after 
training all the layers one by one, and the entire network is fine-tuned with the labeled data. 
If there are lots of labeled data and lots of computational power, the whole deep network 
can be trained in a supervised manner, but the compromise is that using an unsupervised 
approach to initialize weights works much better than random initialization; as a result, 
fewer labeled data can be used to perform training more rapidly. Methods of deep learning 
are particularly prominent since they need less human intervention. The layers of abstrac-
tion can be considered in so many implementations that exploring such an abstract repre-
sentation can be informative as well as a good description of the problem (Alpaydin, 2014; 
Subasi, 2019).
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The deep learning area, as described earlier, is a machine learning subfield that has recently 
become quite prominent. The key objective is to bring machine learning technology closer 
to its true goal of “making intelligent machines.” Deep learning is sometimes considered a 
fancy word for neural networks that have been rebranded. To some extent this is true, but 
deep learning certainly has to do with more than just simple neural networks. Deep learn-
ing–based algorithms include the use of representation learning principles in which differ-
ent representations of the data are learned in different layers, which is also supported in 
automated feature extraction. Put another way, a deep learning approach attempts to build 
machine intelligence by representing data as a layered concept hierarchy in which every layer 
of concepts is constructed from other simpler layers. One of the core components of any 
deep learning algorithm is this layered architecture itself. We essentially try to learn a map-
ping between our data samples and our output in any simple supervised machine learning 
technique, and then try to predict performance for new data samples. In addition to learning 
mapping from inputs to outputs, representative learning tries to understand the representa-
tions in the data itself. This makes deep learning algorithms extremely powerful compared 
to regular techniques that require substantial expertise in areas such as feature extraction and 
engineering. Deep learning is also highly efficient compared to older machine learning algo-
rithms in terms of performance as well as scalability with more and more data. There have 
been several notable deep learning trends and aspects we have observed over the past decade 
(Sarkar et al., 2018). They are summarized as follows.

•	 Deep	learning	algorithms	are	built	on	distributed	representational	learning,	and	with	
more data over time they start to perform better.

•	 Deep	learning	can	be	said	to	be	a	subfiled	of	neural	networks;	when	compared	to	
traditional neural networks, it is much more improved.

•	 Better	software	frameworks,	such	as	TensorFlow,	Theano,	Caffe,	MXNetet,	and	Keras,	
combined with better hardware have allowed the development of incredibly complex, 
multilayered deep learning models with larger sizes.

•	 Deep	learning	has	multiple	benefits	relevant	to	automatic	feature	selection	and	
supervised learning operations that have enabled data scientists and engineers over time 
to solve increasingly sophisticated problems.

The following points define most deep learning algorithms’ relevant features.

•	 Hierarchical	layered	representation	of	concepts.
•	 Distributed	data	representational	training	takes	place	via	a	multilayered	architecture.
•	 More	complex	and	high-level	features	and	notions	are	originated	from	simpler,	low-level	

features.
•	 A	“deep” neural network usually is considered to have at least more than one hidden 

layer besides the input and output layers. Usually it consists of a minimum of three to 
four hidden layers.

•	 Deep	architectures	have	a	multilayered	structure	with	several	nonlinear	processing	units	
for each layer. The output of each layer is the previous layer in the architecture. The input 
is typically the first layer, and the output is the last layer.

•	 It	can	conduct	automatic	extraction	of	features,	classification,	detection	of	anomalies,	and	
many other tasks relevant to machine learning.
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3.5.18 Deep neural networks

The extension of conventional artificial neural networks is deep neural networks. Compared 
to conventional neural networks, there are two main differences that deep neural networks 
have. It is shallow for conventional neural networks to have one or two hidden layers. On 
the other hand, there are many hidden layers in deep neural networks. For instance, a neural 
network of millions of neurons was used by the Google brain project. There is a wide range 
of models for deep neural networks, ranging from DNNs, CNNs, RNNs, and LSTMs. Recent 
studies have even brought us attention-based networks that focus on specific parts of a deep 
neural network. The larger the network and the more layers it has, the more complex the net-
work becomes and the more resources and more time it needs to train. Deep neural networks 
work best with GPU-based architectures that take less time to train than classical CPUs, while 
recent developments have shortened training times considerably (Sarkar et al., 2018).

Example 3.40
The following Python code utilizes deep neural network classifier by employing the TensorFlow 

library. In this example we utilize the Iris dataset, which exists in sklearn.datasets. The Iris dataset 
is divided into training and test set and then classified by using deep neural network classifier. The 
classification accuracy, precision, recall, F1 score, Cohen kappa score, and Matthews correlation co-
efficient are calculated. The classification report and confusion matrix are also given. Note that this 
example is adapted from TensorFlow.org website.

# ======================================================================
# Deep neural network example with Iris dataset using TensorFlow
# ======================================================================
import numpy as np
from sklearn import datasets
from sklearn import metrics
from sklearn import model_selection

import tensorflow as tf

X_FEATURE = 'x' # Name of the input feature.
n_classes = 3
# Load dataset.
iris = datasets.load_iris()
Xtrain, Xtest, ytrain, ytest = model_selection.train_test_split(
  iris.data, iris.target, test_size = 0.3, random_state = 42)

# Build 3 layer DNN with 10, 20, 10 units respectively.
feature_columns = [
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  tf.feature_column.numeric_column(
  X_FEATURE, shape = np.array(Xtrain).shape[1:])]
classifier = tf.estimator.DNNClassifier(
  feature_columns = feature_columns, hidden_units = [50, 150, 50], n_class-
es = n_classes)

# Train.
train_input_fn = tf.compat.v1.estimator.inputs.numpy_input_fn(
  x = {X_FEATURE: Xtrain}, y = ytrain, num_epochs = None, shuffle = True)
classifier.train(input_fn = train_input_fn, steps = 200)

# Predict.
test_input_fn = tf.compat.v1.estimator.inputs.numpy_input_fn(
x = {X_FEATURE: Xtest}, y = ytest, num_epochs = 1, shuffle = False)
predictions = classifier.predict(input_fn = test_input_fn)
ypred = np.array(list(p['class_ids'] for p in predictions))
ypred = ypred.reshape(np.array(ytest).shape)

# Score with sklearn.
score = metrics.accuracy_score(ytest, ypred)
print('Accuracy (sklearn): {0:f}'.format(score))

# Score with tensorflow.
scores = classifier.evaluate(input_fn = test_input_fn)
print('Accuracy (tensorflow): {0:f}'.format(scores['accuracy']))

#Evaluate the Model and Print Performance Metrics
from sklearn import metrics
print('Accuracy:', np.round(metrics.accuracy_score(ytest,ypred),4))
print('Precision:', np.round(metrics.precision_score(ytest,
      ypred,average = 'weighted'),4))
print('Recall:', np.round(metrics.recall_score(ytest,ypred,
      average = 'weighted'),4))
print('F1 Score:', np.round(metrics.f1_score(ytest,ypred,
      average = 'weighted'),4))
print('Cohen Kappa Score:', np.round(metrics.cohen_kappa_score(ytest, 
ypred),4))
print('Matthews Corrcoef:', np.round(metrics.matthews_corrcoef(ytest, 
ypred),4))
print('\t\tClassification Report:\n', metrics.classification_report(ypred, 
ytest))

from sklearn.metrics import confusion_matrix
from io import BytesIO #neded for plot
import seaborn as sns; sns.set()
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Example 3.41
The following Python code utilizes deep neural network classifier by employing the TensorFlow 

library with Keras APIs. In this example we utilize the Iris dataset, which exists in sklearn.datasets. 
The Iris dataset is divided into training and test set and then classified by using deep neural net-
work classifier using Keras API and TensorFlow backend. The classification accuracy is used as a 
performance measure. Note that this example is adapted from TensorFlow.org website.

# ======================================================================
#Deep neural network example with Iris dataset using Keras API and 
TensorFlow backend
# ======================================================================
from keras.models import Sequential
from keras.layers import Dense
from sklearn import datasets

#Load Iris Dataset
iris = datasets.load_iris()
X = iris.data
y = iris.target

#Encode the Target Vector
from keras.utils import np_utils
dummy_y = np_utils.to_categorical(y)

#Create Train and Test Dataset
from sklearn.model_selection import train_test_split
Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, test_size = 0.3, ran-
dom_state = 0)

# Initialize the constructor
model = Sequential()
# Add an input layer
model.add(Dense(50, activation = 'relu', input_shape = (4,)))
# Add two hidden layer
model.add(Dense(100, activation = 'sigmoid'))

import matplotlib.pyplot as plt
#Plot Confusion Matrix
mat = confusion_matrix(ytest, ypred)
sns.heatmap(mat.T, square = True, annot = True, fmt = 'd', cbar = False)
plt.xlabel('true label')
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3.5.19 Recurrent neural networks

A recurrent neural network (RNN) is a special kind of artificial neural network that permits 
continuing information related to past knowledge by utilizing a special kind of looped archi-
tecture. They are employed in many areas regarding data with sequences, such as predicting 
the next word of a sentence. These looped networks are termed recurrent because they make 
the same operations and computation for every element in a sequence of input data. RNNs 
have memory, which assist in taking information from past sequences (Sarkar et al., 2018).

RNNs were first developed in the 1980s but have recently gained attention due to a num-
ber of scientific and hardware inventions that make them computationally efficient for train-
ing. RNNs differ from feed-forward networks since they influence a particular type of neural 
layer, known as recurrent layers, that allows the network to maintain the state between net-
work usage. To understand better how RNNs operate, let’s examine how one functions after 
being properly trained. We create a new example of our model each time we want to process 
a new sequence. By dividing the lifetime of the network instance into discrete time steps, we 
can think about networks that contain recurrent layers. We feed the next element of the input 
into the model at each time step. Feedforward links reflect information flow from one neuron 
to another in which the data being moved from the current time step is the calculated neuro-
nal activation. However, recurrent connections constitute information flow in which the data 
is the stored neuronal activation from the preceding time step. Therefore, neuron activations 
in a recurrent network reflect the network instance’s accumulating state. The initial neuron 
activations in the recurrent layer are parameters of the model, and we define the optimal 
values for them just as we define the optimal values for every connection’s weights during 
the training process. It turns out that we can actually express the instance as a feed-forward 
network (although irregularly structured) given a fixed lifetime (say, t time steps) of an RNN 
instance. By measuring the gradient dependent on the unrolled model, we can now train the 
RNN as well. It ensures that all the methods of backpropagation used for feedforward net-
works can also be applied for RNN training. We have to adjust the weights depending on the 

model.add(Dense(50, activation = 'sigmoid'))
# Add an output layer
model.add(Dense(1, activation = 'sigmoid'))

# Compile model
model.compile(loss = 'binary_crossentropy', optimizer = 'adam', met-
rics = ['accuracy'])
# Fit model
history = model.fit(Xtrain, ytrain, validation_data = (Xtest, ytest), ep-
ochs = 500, verbose = 2)
# Evaluate the model
_, train_acc = model.evaluate(Xtrain, ytrain, verbose = 0)
_, test_acc = model.evaluate(Xtest, ytest, verbose = 0)
print('Train: %.3f, Test: %.3f' % (train_acc, test_acc))
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error derivatives we compute after each batch of training examples we are using. We have 
sets of connections in our unrolled network that are all related to the same connection in the 
original RNN. Nevertheless, it is not ensured that the error derivatives computed for these 
unrolled links will be equivalent in reality. By averaging or summing up the error derivatives 
over all the links that belong to the same set, we can overcome this problem. This allows us to 
use an error derivative that often considers all the dynamics that act on a connection’s weight 
as we try to force the network to build an accurate output (Buduma & Locascio, 2017).

Example 3.42
The following Python code utilizes recurrent neural network (RNN) classifier by employing the 

TensorFlow library with Keras APIs. In this example, we utilize the IMDB dataset, which exists 
in Keras. IMDB dataset has 50,000 movie reviews for text analytics or natural language process-
ing. This dataset for binary sentiment classification includes significantly more data than previ-
ous benchmark datasets. There are 25,000 movie reviews for training and 25,000 for testing. For 
more dataset information, please go to http://ai.stanford.edu/∼amaas/data/sentiment/. RNN 
employed the training and test set to train and test the model. The classification accuracy of training 
and test set are given separately. Note that this example is adapted from the book Deep Learning with 
Python, written by Francois Chollet (Chollet, 2018).

# ======================================================================
# Recurrent neural networks example with IMDB dataset
# ======================================================================
from keras.datasets import imdb
from keras.preprocessing import sequence
from keras.layers import Dense
from keras.models import Sequential
from keras.layers import Embedding, SimpleRNN

max_features = 10000 # number of words to consider as features
maxlen = 500 # cut texts after this number of words (among top max_features 
most common words)
batch_size = 32

print('Loading data...')
(Xtrain, ytrain), (Xtest, ytest) = imdb.load_data(num_words = max_features)
print(len(Xtrain), 'train sequences')
print(len(Xtest), 'test sequences')

print('Pad sequences (samples x time)')
Xtrain = sequence.pad_sequences(Xtrain, maxlen = maxlen)
Xtest = sequence.pad_sequences(Xtest, maxlen = maxlen)
print('input_train shape:', Xtrain.shape)
print('input_test shape:', Xtest.shape)
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3.5.20 Autoencoders

An autoencoder is a specific type of artificial neural network that is mainly employed for 
handling unsupervised machine learning tasks. Its main goal is to learn data approxima-
tions, representations, and encodings. Autoencoders can be employed for creating generative 
models, using dimensionality reduction, and detecting anomalies (Sarkar et al., 2018). An 
autoencoder is a sort of unsupervised neural network that is used for dimensionality reduc-
tion and feature extraction. In particular, an autoencoder is a feedforward neural network 
that is trained to predict the input itself. The system can minimize the reconstruction error by 
ensuring the hidden units capture the most appropriate features of the data. More effective 
descriptions can be learned by utilizing deep autoencoders. Unluckily training such models 
using back-propagation does not work well since the gradient signal becomes too small as it 
passes back through multiple layers, and the learning algorithm often gets stuck in poor local 
minima. One solution to this problem is to greedily train a series of restricted Boltzmann 
machines (RBM) and to employ these to initialize an autoencoder. The whole system can 
then be fine-tuned utilizing backprop in the usual fashion (Murphy, 2012).

3.5.21 Long short-term memory (LSTM) networks

RNNs are good at working on sequence-based data, however as the sequences rise, they 
begin to lose historical context in the sequence over time, and therefore outputs are not always 
expected. This is where long short-term memory networks (LSTMs) are useful. LSTMs can 

#Create Model
model = Sequential()
model.add(Embedding(max_features, 32))
model.add(SimpleRNN(32))
model.add(Dense(1, activation = 'sigmoid'))

# Compile model
model.compile(optimizer = 'rmsprop', loss = 'binary_crossentropy', met-
rics = ['acc'])
# Fit model
history = model.fit(Xtrain, ytrain,
     epochs = 10,
     batch_size = 128,
     validation_split = 0.2)

# Evaluate the model
_, train_acc = model.evaluate(Xtrain, ytrain, verbose = 0)
_, test_acc = model.evaluate(Xtest, ytest, verbose = 0)
print('Training Accuracy: %.3f, Testing Accuracy: %.3f' % (train_acc, 
test_acc))
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remember information from quite long sequence-based data and prevent problems, such 
as the vanishing gradient problem that usually occurs in backpropagation trained ANNs. 
LSTMs generally have three to four gates, including input, output, and a particular forget 
gate. Typically, the input gate helps or eliminates incoming stimuli and inputs to change the 
state of the memory cell. When needed, the output gate normally propagates the value to 
other neurons. The forget gate controls the self-recurrent link of the memory cell to remember 
and forget previous states whenever required. In particular, several LSTM cells are stacked 
in any deep learning network to resolve real-world problems such as sequence prediction 
(Sarkar et al., 2018).

The basic principle behind the development for long short-term memory (LSTM) was that 
the network would be built to efficiently transfer important information several timesteps 
into the future. There are several key components in the LSTM module. The memory cell 
is one of the core components of the LSTM architecture in which a tensor is defined by the 
bolded loop in the center of the figure. The memory cell retains crucial information it has 
learned over time, and the network is built over many timesteps to successfully preserve the 
valuable information in the memory cell. For three different phases, the LSTM model modi-
fies the memory cell for new information at each step. First, the unit needs to identify how 
much of the previous memory should be kept. The basic idea of gate keep is simple. The 
memory state tensor from the previous step is rich in information, but some of that informa-
tion may be repetitive and needs to be erased as a result. We figure out which elements are 
still relevant in the memory state tensor and which elements are irrelevant by trying to calcu-
late a bit tensor (a zero and one tensor), which we are multiplying with the previous state. If 
a specific location in the bit tensor retains a one, this implies that the position in the memory 
cell is still valid and should be retained. If that specific location holds a zero instead, this indi-
cates that the place in the memory cell is no longer relevant and should be eased. Through 
concatenating the input of this timestep and the output of the LSTM unit from the previous 
timestep, we approximate this bit tensor and add a sigmoid layer to the resultant tensor. As 
you may recall, a sigmoidal neuron produces a value that is either close to zero or close to 
one most of the time; the only exception is when the input is nearly zero. As a consequence, a 
good approximation of a bit tensor is the output of the sigmoidal layer, and we can use this to 
complete the keep gate. Once we have worked out which information is to be kept in the old 
state and which is to be deleted, we are ready to think about what memory state information 
we would like to write. This is split into two major parts. The first component is to figure out 
what information we would like to write to the state. This is calculated to create an interme-
diate tensor by the tanh layer. The second component is to work out which components we 
really need to include in the new state of this computed tensor and which we want to discard 
before writing. We do this by approximating a bit vector of zeros and ones employing the 
same methodology (a sigmoidal layer) that we used in the keep gate. Using our intermediate 
tensor, we multiply the bit vector and then add the result to construct the new state vector for 
the LSTM (Buduma & Locascio, 2017).

Finally, we would like the LSTM unit to provide an output at each timestep. While the state 
vector could be viewed explicitly as the output, the LSTM system is built to provide more 
versatility by generating an output tensor that is an “interpretation” or external communica-
tion of what the state vector reflects. We use an almost identical framework as the write gate: 
(1) the tanh layer creates an intermediate tensor from the state vector, (2) the sigmoid layer 
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uses the current input and previous output to create a bit tensor mask, and (3) the interme-
diate tensor is multiplied by the bit tensor to generate the final output. So why is this better 
than utilizing a unit of raw RNN? The main point concerns how news spreads through the 
network over time as we unroll the LSTM module. The propagation of the state vector, whose 
relations are mainly constant over time, can be seen at the very top. As a consequence, the 
gradient related to the current output by an origin of several timesteps does not attenuate as 
significantly as in the standard RNN model. It ensures that the LSTM can learn much more 
easily regarding long-term relationships than our original RNN formulation. Ultimately, we 
want to know how simple it is with LSTM units to create arbitrary architectures. How can 
LSTMs be “composable?” Do we have to sacrifice the flexibility instead of a vanilla RNN to 
use LSTM units? Just as we can just stack RNN layers to construct more functional models 
with more capacity, we can stack LSTM units similarly where the second unit’s input is the 
first unit’s output, the third unit’s input is the second unit’s output, and so on. This ensures 
that we can easily replace an LSTM system anywhere we use a vanilla RNN layer. Now that 
we have solved the problem of vanishing gradients and acknowledge the inner workings of 
LSTM units, we are ready to dive into our first RNN model’s implementation (Buduma & 
Locascio, 2017).

Example 3.43
The following Python code utilizes LSTM classifier by employing the TensorFlow library with 

Keras APIs. In this example, we utilize the IMDB dataset, which exists in Keras. IMDB dataset 
has 50,000 movie reviews for text analytics or natural language processing. This dataset for binary 
sentiment classification includes significantly more data than previous benchmark datasets. There 
are 25,000 movie reviews for training and 25,000 for testing. For more dataset information, go to 
http://ai.stanford.edu/∼amaas/data/sentiment/. The LSTM employed the training and test set to 
train and test the model. The classification accuracy of training and test set is given separately. Note 
that this example is adapted from the book Deep Learning with Python, written by Francois Chollet 
(Chollet, 2018).

# ======================================================================
# LSTM example in Keras using IMDB
# ======================================================================
from keras.datasets import imdb
from keras.preprocessing import sequence
from keras.layers import Dense
from keras.models import Sequential
from keras.layers import Embedding, LSTM

max_features = 10000 # number of words to consider as features
maxlen = 500 # cut texts after this number of words (among top max_features 
most common words)
batch_size = 32
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3.5.22 Convolutional neural networks

A convolutional neural network (CNN) is a modification of the artificial neural network 
that focuses on imitating functionality and behavior of our visual cortex. The aim of the hidden 
units is to learn nonlinear variations of the original inputs; this is called extraction of features 
or creation of features. Then these hidden features are transferred to the final Generalized 
Linear Model (GLM) as input. This approach is particularly useful for issues where the origi-
nal input features are not individually informative. For example, each pixel in an image is not 
very informative; it is the pixel combination that shows us what objects exist. On the other 
side, the feature (word count) is informative on its own for tasks such as text classification 
using a bag-of-words representation, thus it is less significant to extract higher-order features. 

print('Loading data...')
(Xtrain, ytrain), (Xtest, ytest) = imdb.load_data(num_words = max_features)
print(len(Xtrain), 'train sequences')
print(len(Xtest), 'test sequences')

print('Pad sequences (samples x time)')
Xtrain = sequence.pad_sequences(Xtrain, maxlen = maxlen)
Xtest = sequence.pad_sequences(Xtest, maxlen = maxlen)
print('input_train shape:', Xtrain.shape)
print('input_test shape:', Xtest.shape)

#Create Model
model = Sequential()
model.add(Embedding(max_features, 32))
model.add(LSTM(32))
model.add(Dense(1, activation = 'sigmoid'))

# Compile model
model.compile(optimizer = 'rmsprop', loss = 'binary_crossentropy', met-
rics = ['acc'])
# Fit model
history = model.fit(Xtrain, ytrain,
        epochs = 2,
        batch_size = 128,
        validation_split = 0.2)

# Evaluate the model
_, train_acc = model.evaluate(Xtrain, ytrain, verbose = 0)
_, test_acc = model.evaluate(Xtest, ytest, verbose = 0)
print('Training Accuracy: %.3f, Testing Accuracy: %.3f' % (train_acc, 
test_acc))
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Therefore it is not surprising that much of the research of neural networks is motivated by 
the recognition of visual patterns, although they were also used for certain data types, includ-
ing text. The convolutional neural network is a type of MLP that is particularly well-suited 
for one-dimensional signals, such as speech, biomedical signals, or text, or two-dimensional 
signals, such as images. This is an MLP in which there are local receptive areas for the hidden 
units (as in the primary visual cortex) and the weights are added and shared across the image 
to reduce the numbers of variables. The consequence of such spatial parameter fastening 
is, of course, that any informative features that are “discovered” in some part of the image 
can be replicated elsewhere without needing to be learned individually. The resultant net-
work shows a translation invariance, implying that patterns can be classified anywhere they 
appear within the input image (Murphy, 2012).

CNN is not only a deep neural network with many hidden layers but also a large network 
that simulates and understands stimuli as the visual cortex of the brain processes. Thus on 
their first encounter, even neural network specialists still find it difficult to understand this 
term. That is how much CNN varies from previous neural networks in theory and operation. 
CNN’s output layer usually uses the neural network for multiclass classification. However, 
utilizing the original images for image recognition directly results in poor results, regard-
less of the method of recognition; the images should be processed to contrast the features. 
Otherwise, the process of recognition would have resulted in very poor results. For this pur-
pose, different techniques have been created for extracting image features. The feature extrac-
tor was developed by specific field specialists; hence, it needed considerable cost and time 
while producing an inconsistent performance level. Such feature extractors are independent 
of machine learning. CNN uses the feature extractor in the training process instead of manu-
ally implementing it. CNN’s feature extractor consists of special types of neural networks that 
decide the weights through the training process. The main feature and strength of CNN is 
that it transformed the manual feature extraction process into the automated one. CNN pro-
vides better image recognition when its neural network feature extraction becomes deeper 
(contains more layers), at the cost of the learning method complexities that had made CNN 
inefficient and neglected for some time. CNN is a neural network that extracts input image 
features and another neural network that classifies the image features. The input image is 
used by the feature extraction network. The extracted feature signals are utilized by the neu-
ral network for classification. The neural network classification then works on the basis of the 
image features and produces the output. The neural network for feature extraction includes 
convolution layer piles and sets of pooling layers. As its name implies, the convolution layer 
transforms the image using the process of convolution. It can be described as a series of digi-
tal filters. The layer of pooling transforms the neighboring pixels into a single pixel. The pool-
ing layer then decreases the image dimension. As CNN’s primary concern is the image; the 
convolution and pooling layer procedures are intuitively in a two-dimensional plane. This is 
one of CNN’s distinctions from other neural networks (Kim, 2017).

3.5.22.1 Convolution layer
New images are produced by the convolution layer called feature maps. The feature map 

demonstrates the original image’s unique features. Contrary to the other neural network 
structures, the convolution layer works in a distinct way. The convolution layer does not use 
connection weights and a weighted sum. Rather, it includes image-converting filters. These 
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filters are called convolution filters. The feature map is generated by the process of inputting 
the image through the convolution filters. Convolution is a process that is rather difficult to 
explain in text, as it is on the two-dimensional plane. The theory and measurement steps of 
convolution, however, are simple. The values in the elements of this feature map depend on 
whether or not the image matrix matches the convolution filter, similar to the first convolu-
tion process. The feature map generated by the convolution filter is processed by the activa-
tion function before the output is produced by the layer. The convolution layer’s activation 
function is similar to that of the conventional neural network. Although the ReLU function 
is utilized in many current implementations, the sigmoid function and the tanh function are 
often utilized as well (Kim, 2017).

3.5.22.2 Pooling layer
The pooling layer decreases the image size as it combines adjacent pixels of an image area 

into a single representative value. Pooling is a popular approach that has already been used 
by many other image processing techniques. We must decide how to choose the pooling 
pixels from the image and how to set the representing value in order to implement the opera-
tions in the pooling layer. The adjacent pixels are typically chosen from the square matrix, and 
the combined number of pixels differs from problem to problem (Kim, 2017).

Example 3.44
The following Python code utilizes deep neural network classifier by using the TensorFlow li-

brary with Keras APIs. In this example we utilize the MNIST dataset, which exists in keras.datasets. 
The MNIST dataset contains 60,000 training and 10,000 test images. The images are classified by 
using convolutional neural network classifier. The classification accuracy is used as a performance 
measure. Note that this example is adapted from TensorFlow.org website.

# ======================================================================
# Convolutional neural network example
# ======================================================================
from keras import models
from keras import layers
from keras.datasets import mnist
(train_images, train_labels), (test_images, test_labels) = mnist.load_
data()

train_images = train_images.reshape((60000, 28, 28, 1))
test_images = test_images.reshape((10000, 28, 28, 1))

train_images, test_images = train_images / 255.0, test_images / 255.0

classes = [0,1,2,3,4,5,6,7,8,9]
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3.6 Unsupervised learning

In supervised learning, the purpose is to map from the input to an output with correct 
values that are supplied by a supervisor. In unsupervised learning, there is no such supervi-
sor and there is only input data. The goal is to discover the uniformities in the input. There 
is a configuration to the input space such that particular patterns appear more often than 
others, and we want to find out what usually happens and what does not. In statistics, this is 
termed density estimation. One approach for density estimation is clustering, in which the goal 
is to find clusters or groupings of input. In the case of a company with data of past custom-
ers, the customer data includes demographic information as well as past dealings with the 
company, and the company needs to find out the distribution of the profile of its customers 
to find out what kind of customers regularly appear. In such a case, a clustering model dis-
tributes customers similar in their attributes to the same group, providing the company with 
natural groupings of its customers; this is called customer segmentation. Once such groups are 
discovered, the company can choose strategies regarding services and products that are spe-
cific to different groups; this is known as customer relationship management. Such a grouping 
also allows for discovering outliers who are distinct from other customers (Alpaydin, 2014).

Numerous well-known clustering algorithms as well as K-means learn predictive cluster-
ing. Hence, they can learn a clustering model from training data, which can be utilized later 
to allocate new data to clusters. This preserves our distinction between clustering random 
data and learning a clustering model from training data. Nevertheless, this distinction is not 
especially appropriate for descriptive clustering methods. Actually, the task becomes learn-
ing an appropriate clustering model for given data. What differentiates a good clustering is 

#Built the Model
model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation = 'relu', input_shape = (28, 
28, 1)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation = 'relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation = 'relu'))
model.add(layers.Flatten())
model.add(layers.Dense(64, activation = 'relu'))
model.add(layers.Dense(10, activation = 'softmax'))
model.compile(optimizer = 'adam',
       loss = 'sparse_categorical_crossentropy',
       metrics = ['accuracy'])
       #Fit the model and Test it
model.fit(x = train_images,
       y = train_labels,
       epochs = 5,
       validation_data = (test_images, test_labels))
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that the data is divided into coherent clusters or groups. This accepts some way of evaluating 
the similarity or, as is generally more appropriate, the dissimilarity or distance of an arbitrary 
pair	of	instances.	If	our	features	are	numerical,	the	widely	used	distance	measure	is	Euclidean	
distance, but there are other alternatives as well. Most distance-based clustering approaches 
are based on the possibility of defining a “center of mass,” or exemplar, for an arbitrary set of 
instances, in such a way that the exemplar minimizes some distance-related quantity over 
all instances in the set, called its scatter. A noteworthy question is how clustering techniques 
should be assessed. In the absence of labeled data, we cannot employ a test set in the same 
way that we did in classification or regression. We can utilize within-cluster scatter as a mea-
sure of the quality of a clustering (Flach, 2012).

In some situations, we do not have the freedom or flexibility of having prelabeled train-
ing; regardless, we need to extract helpful knowledge or examples from our information. In 
this situation, unsupervised learning techniques are incredible. These techniques are termed 
as unsupervised because the model or algorithm attempts to learn fundamental latent struc-
tures, relations, and patterns from given information without any assistance or supervision, 
such as giving information in the form of labeled outcomes or outputs. Unsupervised learn-
ing approaches can be classified as relevant to unsupervised learning in the following broad 
areas of machine learning tasks (Sarkar et al., 2018).

•	 clustering
•	 dimensionality	reduction
•	 anomaly	detection
•	 association	rule-mining

Clustering techniques are machine learning approaches that attempt to find similar pat-
terns and relations between data samples in the dataset, and then cluster these samples into 
different groups so that every group or cluster of data samples has some correlation based on 
the actual attributes or characteristics. Such approaches are fully unsupervised as they seek 
to cluster data by looking at data features without prior training, guidance, or knowledge of 
data features, relations, and associations (Sarkar et al., 2018).

There are different forms of clustering techniques, which can be categorized as follows:

•	 Centroid-based	approaches,	such	as	K-medoids	and	K-means
•	 Hierarchical	clustering	approaches,	such	as	divisive	and	agglomerative
•	 Distribution-based	clustering	approaches,	such	as	Gaussian	mixture	models
•	 Density-based	techniques	such	as	optics	dbscan

3.6.1 K-means algorithm

In a K- means problem there is no effective solution to identifying the global minimum, 
and we need to utilize a heuristic algorithm. It can be seen that an iteration of K-means may 
never improve the scatter within the cluster, resulting in the algorithm approaching a station-
ary point in which no further development is possible. It is worth noting that there might be 
several stationary points even in the simplest data set. Generally speaking, while K-means 
converge in finite time to a stationary point, there can be no certainty whether the convergence 
point is actually the global minimum or not, no matter how far we are from it (Flach, 2012).
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Example 3.45
The following Python code utilizes k-means clustering to find the center of the clusters of breast 

cancer data by employing the scikit-learn library APIs. In this example we utilize the breast cancer 
dataset, which exists in sklearn.datasets. The cluster centers are plotted. Note that this example is 
adapted from scikit-learn.

# ======================================================================
# K-means clustering example
# ======================================================================
from sklearn import datasets
import matplotlib.pyplot as plt
import numpy as np
# ######################################################################
# Import some data to play with
Breast_Cancer = datasets.load_breast_cancer()
X = Breast_Cancer.data
y = Breast_Cancer.target

# Plot the original data points
plt.scatter(X[:, 0], X[:, 1], c = y, cmap = plt.cm.Set1,
     edgecolor = 'k')
plt.xlabel('Attribute I')
plt.ylabel('Attribute II')
plt.title('Original data Scatter')
plt.xticks(())
plt.yticks(())
#%%
from sklearn.cluster import KMeans

" " "
sklearn.cluster.KMeans(n_clusters = 2, init = 'k-means++', n_init = 10, max_
iter = 300, tol = 0.0001,
precompute_distances = 'auto', verbose = 0, random_state = None, 
copy_x = True, n_jobs = None,
algorithm = 'auto')
“ “ “

#Find Cluster Centers
kmeans = KMeans(n_clusters = 2)
kmeans.fit(X)
y_kmeans = kmeans.predict(X)

#Plot the Cluster Centers
plt.scatter(X[:, 0], X[:, 1], c = y_kmeans, s = 50, cmap = 'viridis')
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3.6.2 Silhouettes

How can we detect the poor quality of the clustering algorithm? Silhouettes are a useful 
technique. For each example that is grouped by cluster, a silhouette sorts and plots s(x). In 
this	particular	situation,	in	the	construction	of	the	silhouette	squared	Euclidean	distance	is	
utilized, but the approach can be extended to other distance metrics. It can be clearly seen 
that the first clustering is much stronger than the second. We can estimate the average silhou-
ette values per cluster and over the entire dataset in addition to the graphical representation 
(Flach, 2012).

centers = kmeans.cluster_centers_
plt.scatter(centers[:, 0], centers[:, 1], c = 'black', s = 200, alpha = 0.5);
plt.xlabel('Attribute I')
plt.ylabel('Attribute II')
plt.title('Cluster Centers')
plt.xticks(())
plt.yticks(())

Example 3.46
The following Python code utilizes k-means clustering to find the silhouettes of synthetic data by 

employing the scikit-learn library APIs. In this example we utilize the generated sample data from 
make_blobs, which exists in the scikit-learn library. The silhouettes and cluster centers are plotted 
for different cases. Note that this example is taken from scikit-learn.

# ======================================================================
#Silhouettes example
# ======================================================================
from sklearn.datasets import make_blobs
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_samples, silhouette_score

import matplotlib.pyplot as plt
import matplotlib.cm as cm
import numpy as np

print(__doc__)

# Generating the sample data from make_blobs
# This particular setting has one distinct cluster and 3 clusters placed 
close
# together.
X, y = make_blobs(n_samples = 500,
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     n_features = 2,
     centers = 4,
     cluster_std = 1,
     center_box = (-10.0, 10.0),
     shuffle = True,
     random_state = 1) # For reproducibility

range_n_clusters = [2, 3, 4, 5, 6]

for n_clusters in range_n_clusters:
# Create a subplot with 1 row and 2 columns
fig, (ax1, ax2) = plt.subplots(1, 2)
fig.set_size_inches(18, 7)

# The 1st subplot is the silhouette plot
# The silhouette coefficient can range from -1, 1 but in this example all
# lie within [-0.1, 1]
ax1.set_xlim([-0.1, 1])
# The (n_clusters+1)*10 is for inserting blank space between silhouette
# plots of individual clusters, to demarcate them clearly.
ax1.set_ylim([0, len(X) + (n_clusters + 1) * 10])

# Initialize the clusterer with n_clusters value and a random generator
# seed of 10 for reproducibility.
clusterer = KMeans(n_clusters = n_clusters, random_state = 10)
cluster_labels = clusterer.fit_predict(X)

# The silhouette_score gives the average value for all the samples.
# This gives a perspective into the density and separation of the formed

# clusters
silhouette_avg = silhouette_score(X, cluster_labels)
print("For n_clusters =", n_clusters,
"The average silhouette_score is :", silhouette_avg)

# Compute the silhouette scores for each sample
sample_silhouette_values = silhouette_samples(X, cluster_labels)

y_lower = 10
for i in range(n_clusters):
# Aggregate the silhouette scores for samples belonging to
# cluster i, and sort them
ith_cluster_silhouette_values = \
sample_silhouette_values[cluster_labels == i]

ith_cluster_silhouette_values.sort()
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size_cluster_i = ith_cluster_silhouette_values.shape[0]
y_upper = y_lower + size_cluster_i

color = cm.nipy_spectral(float(i) / n_clusters)
ax1.fill_betweenx(np.arange(y_lower, y_upper),
0, ith_cluster_silhouette_values,
facecolor = color, edgecolor = color, alpha = 0.7)

# Label the silhouette plots with their cluster numbers at the middle
ax1.text(-0.05, y_lower + 0.5 * size_cluster_i, str(i))

# Compute the new y_lower for next plot
y_lower = y_upper + 10 # 10 for the 0 samples

ax1.set_title("The silhouette plot for the various clusters.")
ax1.set_xlabel("The silhouette coefficient values")
ax1.set_ylabel("Cluster label")

# The vertical line for average silhouette score of all the values
ax1.axvline(x = silhouette_avg, color = "red", linestyle = "--")

ax1.set_yticks([]) # Clear the yaxis labels / ticks
ax1.set_xticks([-0.1, 0, 0.2, 0.4, 0.6, 0.8, 1])

# 2nd Plot showing the actual clusters formed
colors = cm.nipy_spectral(cluster_labels.astype(float) / n_clusters)
ax2.scatter(X[:, 0], X[:, 1], marker = '.', s = 30, lw = 0, alpha = 0.7,
   c = colors, edgecolor = 'k')

# Labeling the clusters
centers = clusterer.cluster_centers_
# Draw white circles at cluster centers
ax2.scatter(centers[:, 0], centers[:, 1], marker = 'o',
c = "white", alpha = 1, s = 200, edgecolor = 'k')

for i, c in enumerate(centers):
ax2.scatter(c[0], c[1], marker = '$%d$' % i, alpha = 1,
s = 50, edgecolor = 'k')

ax2.set_title("The visualization of the clustered data.")
ax2.set_xlabel("Feature space for the 1st feature")
ax2.set_ylabel("Feature space for the 2nd feature")

plt.suptitle(("Silhouette analysis for KMeans clustering on sample data "
"with n_clusters = %d" % n_clusters),
fontsize = 14, fontweight = 'bold')
plt.show()
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3.6.3 Anomaly detection

Anomaly detection technique is also called outlier detection, where we discover cases of 
abnormal events and anomalies that normally do not appear on the basis of historical data 
samples. Often abnormalities occur rarely, and as a result become unusual occurrences, or 
anomalies may not be rare in different instances, but they may arise in very short bursts over 
time, so they have unique patterns. Unsupervised learning techniques may be utilized to 
detect anomalies in such a way that they train the algorithm with normal, nonanomalous data 
samples on the training dataset. Once the algorithm learns the necessary data interpretations, 
patterns, and attribute relations in normal samples for any new fact sample, it can discover it 
as an anomalous or ordinary data point by using its discovered information. Anomaly-based 
detection techniques are highly popular in real-world situations, such as detection of security 
attacks or infringements, savings card fraud, fabrication anomalies, network problems, and 
many more (Sarkar et al., 2018).

Example 3.47
The following Python code presents characteristics of various anomaly detection algorithms 

on two-dimensional datasets by using the scikit-learn library APIs. Datasets include one or two 
modes to demonstrate the capability of algorithms to deal with multimodal data. For each data-
set, 15% of samples are produced as random uniform noise. This percentage is the value provided 
to the nu parameter of the OneClassSVM and the contamination parameter of the other outlier 
detection algorithms. Decision boundaries among inliers and outliers are demonstrated in black, 
except for local outlier factor (LOF), as it has no forecast technique to be utilized with new data 
once it is employed for outlier detection. In this example we utilize the generated sample data 
from make_moons, make_blobs, which exists in the scikit-learn library. In this example sklearn.
svm.OneClassSVM is sensitive to outliers and thus does not perform very well for outlier detection; 
sklearn.covariance.EllipticEnvelope	assumes	the	data	is	Gaussian	and	learns	an	ellipse	but	is	robust	
to outliers; and sklearn.ensemble.IsolationForest and sklearn.neighbors.LocalOutlierFactor seem to 
perform reasonably well for multimodal datasets. Note that this example is taken from scikit-learn.

# ======================================================================
# Anomaly detection
# ======================================================================
# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>
# Albert Thomas <albert.thomas@telecom-paristech.fr>
# License: BSD 3 clause

import time

import numpy as np
import matplotlib
import matplotlib.pyplot as plt
from sklearn import svm
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from sklearn.datasets import make_moons, make_blobs
from sklearn.covariance import EllipticEnvelope
from sklearn.ensemble import IsolationForest
from sklearn.neighbors import LocalOutlierFactor

print(__doc__)

matplotlib.rcParams['contour.negative_linestyle'] = 'solid'

# Example settings
n_samples = 300
outliers_fraction = 0.15
n_outliers = int(outliers_fraction * n_samples)
n_inliers = n_samples - n_outliers

# define outlier/anomaly detection methods to be compared
anomaly_algorithms = [
 ("Robust covariance", 
EllipticEnvelope(contamination = outliers_fraction)),
 ("One-Class SVM", svm.OneClassSVM(nu = outliers_fraction, kernel = "rbf",
         gamma = 0.1)),
("Isolation Forest", IsolationForest(behaviour = 'new',
         contamination = outliers_fraction,
         random_state = 42)),
 ("Local Outlier Factor", LocalOutlierFactor(
  n_neighbors = 35, contamination = outliers_fraction))]

# Define datasets
blobs_params = dict(random_state = 0, n_samples = n_inliers, n_features = 2)
datasets = [
 make_blobs(centers = [[0, 0], [0, 0]], cluster_std = 0.5,
   **blobs_params)[0],
 make_blobs(centers = [[2, 2], [-2, -2]], cluster_std = [0.5, 0.5],
   **blobs_params)[0],
 make_blobs(centers = [[2, 2], [-2, -2]], cluster_std = [1.5, .3],
   **blobs_params)[0],
 4. * (make_moons(n_samples = n_samples, noise = .05, random_state = 0)[0] -
    np.array([0.5, 0.25])),
 14. * (np.random.RandomState(42).rand(n_samples, 2) - 0.5)]
# Compare given classifiers under given settings
xx, yy = np.meshgrid(np.linspace(-7, 7, 150),
           np.linspace(-7, 7, 150))



198 3. Machine learning techniques

 

plt.figure(figsize = (len(anomaly_algorithms) * 2 + 3, 12.5))
plt.subplots_adjust(left = .02, right = .98, bottom = .001, top = .96, 
wspace = .05,
        hspace = .01)

plot_num = 1
rng = np.random.RandomState(42)

for i_dataset, X in enumerate(datasets):
# Add outliers
X = np.concatenate([X, rng.uniform(low = -6, high = 6,
size = (n_outliers, 2))], axis = 0)

for name, algorithm in anomaly_algorithms:
t0 = time.time()
algorithm.fit(X)
t1 = time.time()
plt.subplot(len(datasets), len(anomaly_algorithms), plot_num)
if i_dataset == 0:
plt.title(name, size = 18)

# fit the data and tag outliers
if name == "Local Outlier Factor":
y_pred = algorithm.fit_predict(X)
else:
y_pred = algorithm.fit(X).predict(X)

# plot the levels lines and the points
if name != "Local Outlier Factor": # LOF does not implement predict
Z = algorithm.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
plt.contour(xx, yy, Z, levels = [0], linewidths = 2, colors = 'black')

colors = np.array(['#377eb8', '#ff7f00'])
plt.scatter(X[:, 0], X[:, 1], s = 10, color = colors[(y_pred + 1) // 2])

plt.xlim(-7, 7)
plt.ylim(-7, 7)
plt.xticks(())
plt.yticks(())
plt.text(.99, .01, ('%.2fs' % (t1 - t0)).lstrip('0'),
transform = plt.gca().transAxes, size = 15,
horizontalalignment = 'right')
plot_num += 1

plt.show()
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3.6.4 Association rule-mining

Association rule-mining is usually a data mining approach used to explore and interpret 
large transactional datasets to identify unique patterns and rules. During transactions, these 
patterns define fascinating relationships and interactions between different items. Moreover, 
association rule-mining is often referred to as market basket study, which is utilized to ana-
lyze habits in customer purchase. Association rules help identify and forecast transactional 
behaviors based on information from training transactions utilizing beneficial properties. 
Using this approach, we can answer questions such as what items human beings tend to buy 
together, indicating frequent sets of goods. We can also associate or correlate products and 
items (Sarkar et al., 2018).

3.7 Reinforcement learning

The output of the machine is a sequence of acts in some implementations. In such a sce-
nario, a single action is not important; the strategy, which is the sequence of right actions to 
achieve the goal, is necessary. In any intermediate state there is no such item as extraordinary 
intervention; an action is adequate if it is a good policy step. In such a scenario, to be able to 
create a policy the machine learning algorithm must be able to examine the efficacy of policies 
and learn from past action sequences. These methods of learning reinforcement are recog-
nized as algorithms for reinforcement learning. A suitable analogy is game playing, where a 
single move alone is not very important; a series of right moves is better. A move is appropri-
ate when this is part of a correct move for game playing. Game playing is an essential area 
of research for machine learning and artificial intelligence. This is because games are easy 
to describe and are quite challenging to play well at the same time. A game like chess has a 
limited number of rules, but it is very complicated because of the huge number of possible 
moves in each state and the large number of moves a game involves. Once we have appealing 
algorithms that can learn how to play games well, we can also apply them to applications that 
are more economically beneficial. Another field of reinforcement learning implementation is a 
robot navigating in an environment in search of a goal zone. The robot will move in a number 
of directions at any moment. After a number of trials, it must learn, from an initial state, the 
right sequence of acts to achieve the target state, doing so as quickly as possible and without 
hitting any of the obstacles (Alpaydin, 2014).

The main goal in solving a problem of machine learning is to create smart programs or 
intelligent agents through the learning process and to respond to changing environments. 
Reinforcement learning is one such machine-learning process. Learners and software pro-
gram agents benefit through explicit environmental interaction with this method. This imi-
tates the human being’s learning approach. Moreover, the agent is able to learn even if the 
entire information or model about the environment is not accessible. An agent provides feed-
back as a reward or punishment for every behavior. Those conditions are mapped to actions 
in an environment during the learning process. Reinforcement learning algorithms optimize 
the incentives received in interactions with the environment at some point and establish state 
mapping of actions as a strategy for decision-making. The policy could be chosen immedi-
ately, or it can adapt to the environmental changes as well. Reinforcement learning differs 
from supervised learning, where the learning is from examples provided with the help of an 
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expert external supervisor. It is a technique for training the approximator of a parameterized 
function. However, learning from interaction is not enough. It is more like learning from 
external instructions, so guidance arises from the situation and environment. It is often dif-
ficult to achieve examples of desired actions in interactive problems that are both accurate 
and representative of all the circumstances under which the agent will respond. The position 
one would presume is that learning is the most useful in unknown territory; an agent should 
be able to learn from its own experience as well as from the environment. Reinforcement 
learning thus incorporates the discipline of supervised learning with dynamic programming 
to build a machine learning framework that is very similar to the methods utilized through 
human learning. The tradeoff between exploration and exploitation is one of the challenges 
that arises in reinforcement learning and does not exist in other types of learning. To gain 
incentive, a reinforcement-learning machine should choose actions that are implemented pre-
viously and considered to be effective in delivering incentive. But it has to seek actions that 
have not been implemented before in order to explore such actions. The machine should 
receive the advantage of what is already learned to gain incentive, but it also must learn in 
order to make better choices of action in the future. The dilemma is that without failure in 
the mission there will be no discovery or development. The machine will pursue a range of 
actions and progressively choose the ones that seem to be best. To obtain a reliable estimate 
of its predicted reward, each behavior should be attempted in many instances on a stochastic 
process. Throughout supervised learning, as is usually described, the challenge of balancing 
development and invention does not exist. Hence, experts have a responsibility to explore 
invention in supervised learning. Reinforcement learning is different in numerous ways from 
the more extensively studied problem of supervised learning. The main difference is that 
input-output pair representations do not exist. Alternatively, the machine is notified with 
immediate reward, and the resulting condition appears after taking an action, but it is not the 
notification of what action must have taken in its long-term interests. It is important that the 
machine gains valuable experience with potential machine conditions, transitions, actions, 
and incentives to act effectively (Kulkarni, 2012).

3.8 Instance-based learning

There are various approaches to constructing machine learning models using techniques 
that attempt to generalize based on input data. Instance-based learning includes machine 
learning algorithms and techniques that use raw data points themselves to determine the 
effects of newer, previously unseen data samples rather than constructing a specific model 
on training data and then testing it. A simple example might be a K-nearest neighbors tech-
nique. The machine learning technique recognizes the interpretation of the data from the 
features, along with its dimensions, position of every data point, and so on. It utilizes a simi-
larity	measure	such	as	Euclidean	distance	for	any	new	data	point	to	locate	the	three	nearest	
input data points to this new data point. When a new data point is chosen, a majority of the 
results are simply taken for these three training factors and predict it as the response/label for 
this new data point. Therefore, instance-based learning works by means of seeking the input 
data points and using a similarity measure to predict and generalize new data points (Sarkar 
et al., 2018).
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3.9 Summary

This chapter presents a select group of packages that we will use to store, analyze, and 
model our data on a regular basis. These libraries and frameworks can be considered the key 
elements of the toolbox of a data scientist. The list of packages that we cover is far from com-
plete, but the most relevant packages are presented. We strongly suggest that you become 
more familiar with the packages by going through the documentation and related videos. 
Throughout subsequent chapters, we will continue to incorporate and clarify other important 
features and aspects of these frameworks. The examples in this chapter will give you an excel-
lent grasp of understanding machine learning and solving problems in a clear and concise 
way, along with associated theoretical information. Often the process of learning models with 
various data is a reiteration of these simple steps and principles. You will learn how to use 
the set of tools in the coming chapters to address more complex data processing, wrangling, 
analysis, and visualization issues.
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4
Classification examples for healthcare

4.1 Introduction

Generally the biomedical data classification process can be divided into four phases, 
namely (1) data acquisition and segmentation, (2) data preprocessing, (3) feature extraction/
dimension reduction, and (4) recognition and classification. As seen in Fig. 4.1, the biomedical 
data is recorded from the human body and then preprocessed. Data preprocessing is a tech-
nique that is utilized to transform the raw data into a useful and effective format. The data 
may contain noise—many irrelevant and missing parts—which should be eliminated. Then, 
the features are extracted from the biomedical data acquired and processed and transformed 
to a feature vector. The appropriate structure in the raw data is described by the feature vec-
tor. In the next step, a dimension reduction is employed to eliminate the redundant informa-
tion from the feature vector, generating a reduced feature vector. In the last step, a classifier 
classifies the reduced feature vector (Subasi, 2019c).

4.2 EEG signal analysis

Electrical signals generated by the brain describe the brain function and the condition of 
the entire body. They offer the inspiration to use digital signal processing techniques for the 
electroencephalogram (EEG) obtained from the human brain. The physiological characteris-
tics of brain activities have various issues related to the characteristics of the original sources 
and their real patterns. It is useful to understand the neurophysiological properties and neu-
ronal functions of the brain in conjunction with the working principle fundamental signal 
generation and acquisition when dealing with these signals for recognition. EEG introduces 
the way of diagnosis of numerous neurological disorders and anomalies in the human body. 
This shows that the EEG has rich potential in using advanced signal processing methods to 
support the clinician in their decisions (Sanei & Chambers, 2013; Subasi, 2019c).

EEG signals are a noninvasive medical tool for analyzing several brain disorders and for 
better understanding of the human brain. But the variety of EEG patterns cannot be fully 
explained by any single mathematical or biological model. Thus understanding EEG sig-
nals essentially remains a phenomenological medical discipline (Barlow, 1993). EEGs are 
recordings of the electrical potentials created by the brain, usually less than 300 µV. An 
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electroencephalographer, an individual trained to qualitatively distinguish normal and 
abnormal EEG activity within quite long EEG records, was for several years the only person 
qualified for visual analysis of the EEG. Hence clinicians and researchers were left with a 
bunch of EEG paper records. Yet, the arrival of modern powerful computers and associated 
technologies opened a whole new door of possibilities for utilizing different techniques to 
quantify EEG signals (Bronzino, 1999).The analysis is significantly accelerated by a choice of 
digital signal processing techniques with distinct purposes like noise reduction and feature 
extraction that are not visually obtainable. EEG is an extremely effective tool for the analysis 
of numerous disorders like epilepsy, sleep disorders, and dementia. Furthermore, the EEG 
signals are important for real-time monitoring of patients with encephalopathies or the ones 
in comas (Sörnmo & Laguna, 2005; Subasi, 2019c). A general framework for EEG signal analy-
sis is shown in Fig. 4.2.

4.2.1 Epileptic seizure prediction and detection

EEG analysis has enhanced significantly with the widespread usage of mathematical 
machine learning techniques. Machine learning techniques have also enabled the classifica-
tion of patterns within the EEG to improve recognition, making EEG signals useful for rec-
ognition of brain disorders and key pathologies. Thus numerous studies on characteristics 
of EEG signals associated with neurological disorders have been conducted (Begg, Lai, & 
Palaniswami, 2008). Epilepsy is a neurological disorder that affects over 50 million people 
worldwide. It is the second most common neurological disorder after stroke. Epilepsy is 
a serious disorder described by temporary changes in the bioelectrical functioning of the 
brain. These variations produce abnormal neuronal synchronization and seizures, which 
affect awareness, sensation, or movement. Epileptic seizures are triggered by particularly 
synchronized activity of large groups of neurons. Epileptic seizures are sudden bursts of wild 
electrical activity in a group of neurons of the cerebral cortex. Due to the location of the 

FIGURE 4.1 A general framework for biomedical data classification. Source: Adapted from Subasi (2019c).
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focus (origin) of the electrical activity of numerous brain regions, epileptic seizures may be 
expressed in different ways (Sörnmo & Laguna, 2005; Subasi, 2019c).

Seizure EEG signals include standard patterns that health professionals use to distinguish 
from normal (nonseizure) EEG signals. Hence their recognition can be utilized to respond 
to an upcoming or ongoing seizure. Moreover, automated recognition techniques have been 
assessed to reduce the amount of data and enable quicker and more accurate detection of 
pathological EEG waveforms that characterize epileptic seizures (Begg et al., 2008). It is 
generally necessary to record the EEG during long periods of time to catch an ictal EEG. In 
this case, the subject is often recorded on video in the hospital for a few days. Neurologists 
can therefore draw a parallel between EEG and visual recordings for improving their assess-
ments. This form of recording is called a video EEG. Another form of recording can be car-
ried out at home during at least one day and is called an ambulatory EEG. The EEG is 
recorded during daily activities using a small digital recording device. This is a cheaper 
technique than video EEG and includes both sleeping and waking phases. If the subject 
scratches his or her head, a noise is introduced into the EEG recording. Neurologists utilize 
different patterns within ictal (seizure) EEG waveforms to distinguish them from interictal 
(nonseizure) EEG waveforms. Any form of long-term EEG monitoring produces massive 
amounts of data. This data needs a lot of time to be appropriately analyzed. An efficient 
seizure prediction algorithm can warn a patient wearing an ambulatory recording device to 
consider appropriate safety precautions before the seizure occurs (Sörnmo & Laguna, 2005; 
Subasi, 2019c).

Recently, there have been many improvements in biomedical devices and healthcare tech-
nologies to help meet the needs of current healthcare diagnoses and treatments. Even though 
the innovative medical devices in healthcare centers provide fast and accurate analysis, it is 
necessary to continuously monitor patients with chronic diseases such as epilepsy (Chiauzzi, 

FIGURE 4.2 A general framework for EEG signals analysis. Source: Adapted from Subasi (2019a).
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Rodarte, & DasMahapatra, 2015). Fig. 4.3 shows the cloud-based mobile patient monitoring 
for epileptic seizure prediction. In this framework, mobile devices collect EEG signals con-
tinuously from smart headset sensors and acquiring devices to inform via internet connection 
emergency personnel, clinicians, and patients’ families of any emergency situations (Hsieh & 
Hsu, 2012). In this approach, different signal processing and machine learning techniques can 
be used to analyze the EEG signals for epileptic seizure prediction. Epileptic seizures arise 
randomly and are difficult to predict (Menshawy, Benharref, & Serhani, 2015). The proper 
technique for predicting epileptic seizures is to monitor the patient continuously. The new 
trend of cloud-based, mobile patient-monitoring systems became possible due to innovative 
developments in smart wearable sensors, mobile sensing devices, and smartphones along-
side wireless and cellular communication networks. Smart sensors can be integrated eas-
ily with a smartphone to establish a vital pillar for the development of a vital, cloud-based, 
mobile health-monitoring system. A smart sensor accurately collects EEG signals directly 
from the patient’s brain and transmits the collected EEG signals to the smartphone. Then the 
smartphone sends the collected EEG signal to the cloud to continuously track the status of the 
patient. If a seizure is predicted, the application on the cloud server sends this information 
to the emergency department, clinician, and family of the patient (Serhani, El Menshawy, & 
Benharref, 2016). The epileptic seizure prediction framework shown in Fig. 4.3 is composed 
of (1) signal acquisition and transmission module, (2) feature extraction module, and (3) clas-
sification module. The smartphone is connected to the cloud via appropriate communication 
protocol (Subasi, Bandic, & Qaisar, 2020)

FIGURE 4.3 A framework for cloud-based mobile epileptic patient monitoring. Source: Adapted from (Subasi 
et al. 2020a).
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Example 4.1
The following Python code is used to extract features from the EEG signals by employing dis-

crete wavelet transform (DWT), and then it uses statistical values of DWT sub-bands. Next it clas-
sifies these data using different classifiers by employing separate training and testing datasets. The 
classification accuracy, precision, recall, F1 score, Cohen kappa score, and Matthews correlation 
coefficient are calculated. The classification report and confusion matrix are also given.

Dataset information: This epilepsy dataset is a widely used EEG dataset that has five sets de-
noted A–E, each containing 100 single-channel EEG segments of 23.6-sec duration. Sets A and B 
consist of EEG recordings of five healthy volunteers utilizing a standardized electrode placement 
scheme. Subjects were relaxed in an awake state with eyes open (A-Z.zip) and eyes closed (B-O.zip), 
respectively. Sets C-N.zip, D-F.zip, and E-S.zip are taken from EEG archive of presurgical diagnosis. 
EEG signals are collected from subjects who had achieved complete seizure control after resection 
of one of the hippocampal formations, which was correctly identified as the epileptogenic zone. Set 
D was recorded from the epileptogenic zone, and those in set C from the hippocampal formation 
of the opposite hemisphere of the brain. While sets C and D contain only activity recorded during 
seizure-free intervals, set E only contains seizure activity. Here segments were chosen from all re-
cordings revealing ictal activity. After 12-bit analog-to-digital conversion, the data were sampled at 
173.61 Hz. Band-pass filter settings were 0.53–40 Hz (12 dB/oct.). You can download data from the 
following web site:

http://epileptologie-bonn.de/cms/front_content.php?idcat=193&lang=3&changelang=3
"""
Created on Thu May 9 12:18:30 2019
@author: asubasi
"""
# descriptive statistics
import scipy as sp
import scipy.io as sio
import pywt
import numpy as np
import scipy.stats as stats
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
from sklearn import metrics
from io import BytesIO #needed for plot
import seaborn as sns; sns.set()
import matplotlib.pyplot as plt
import seaborn as sns
#Mother Wavelet db1
waveletname=’db1’
level=6
#Load mat file
mat_contents = sio.loadmat(’AS_BONN_ALL_EEG_DATA_1024.mat’)
sorted(mat_contents.keys())
EpilepticZone_Interictal=mat_contents[’EpilepticZone_Interictal’]
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Epileptic_Ictal=mat_contents[’Epileptic_Ictal’]
NonEpilepticZone_Interictal=mat_contents[’NonEpilepticZone_Interictal_’]
Normal_Eyes_Closed=mat_contents[’Normal_Eye_Closed’]
Normal_Eyes_Open=mat_contents[’Normal_Eyes_Open’]

Labels = [] #Empty List For Labels
Length = 1024; # Length of signal
Nofsignals=len(Normal_Eyes_Open[0]) ; #Total Number of Signal for each 
class
NofClasses=3 #Number of Classes
numfeatures =48 #Number of features extracted from DWT decomposition
#Create Empty Array For Features
Extracted_Features=np.ndarray(shape=(NofClasses*Nofsignals,numfeatures), 
dtype=float, order=’F’)
# ======================================================================
# Define utility functions
# ======================================================================
def print_confusion_matrix(y_test, y_pred):
matrix = confusion_matrix(y_test, y_pred)
plt.figure(figsize=(10, 8))
sns.heatmap(matrix,cmap=’coolwarm’,linecolor=’white’,linewidths=1,
      annot=True,
      fmt=’d’)
plt.title(’Confusion Matrix’)
plt.ylabel(’True Label’)
plt.xlabel(’Predicted Label’)
plt.show()

def print_performance_metrics(y_test, y_pred):
print(’Accuracy:’, np.round(metrics.accuracy_score(y_test, y_pred),4))
print(’Precision:’, np.round(metrics.precision_score(y_test,
            y_pred,average=’weighted’),4))
print(’Recall:’, np.round(metrics.recall_score(y_test, y_pred,
                average=’weighted’),4))
print(’F1 Score:’, np.round(metrics.f1_score(y_test, y_pred,
                average=’weighted’),4))
print(’Cohen Kappa Score:’, np.round(metrics.cohen_kappa_score(y_test, 
y_pred),4))
print(’Matthews Corrcoef:’, np.round(metrics.matthews_corrcoef(y_test, 
y_pred),4))
print(’\t\tClassification Report:\n’, metrics.classification_report(y_
test, y_pred))

def print_confusion_matrix_and_save(y_test, y_pred):
mat = confusion_matrix(y_test, y_pred)
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sns.heatmap(mat, square=True, annot=True, fmt=’d’, cbar=False)
plt.title(’Confusion Matrix’)
plt.ylabel(’True Label’)
plt.xlabel(’Predicted Label’)
plt.show()

plt.savefig(“Confusion.jpg”)
# Save SVG in a fake file object.
f = BytesIO()
plt.savefig(f, format=“svg”)

def plot_history(history):
accuracy = history.history[’accuracy’]
val_accuracy = history.history[’val_accuracy’]
loss = history.history[’loss’]
val_loss = history.history[’val_loss’]
x = range(1, len(accuracy) + 1)

plt.figure(figsize=(12, 5))
plt.subplot(1, 2, 1)
plt.plot(x, accuracy, ’b’, label=’Training acc’)
plt.plot(x, val_accuracy, ’r’, label=’Validation acc’)
plt.title(’Training and validation accuracy’)
plt.legend()
plt.subplot(1, 2, 2)
plt.plot(x, loss, ’b’, label=’Training loss’)
plt.plot(x, val_loss, ’r’, label=’Validation loss’)
plt.title(’Training and validation loss’)
plt.legend()

# ======================================================================
# Feature extraction using the statistical values of discrete wavelet 
transform
# ======================================================================
def DWT_Feature_Extraction(signal, i, wname, level):

coeff = pywt.wavedec(signal, wname, level=level)
cA6,cD6,cD5,cD4, cD3, cD2, cD1=coeff
#Mean Values of each subbands
Extracted_Features[i,0]=sp.mean(abs(cD1[:]))
Extracted_Features[i,1]=sp.mean(abs(cD2[:]))
Extracted_Features[i,2]=sp.mean(abs(cD3[:]))
Extracted_Features[i,3]=sp.mean(abs(cD4[:]))
Extracted_Features[i,4]=sp.mean(abs(cD5[:]))
Extracted_Features[i,5]=sp.mean(abs(cD6[:]))
Extracted_Features[i,6]=sp.mean(abs(cA6[:]))
#Standart Deviation of each subbands
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Extracted_Features[i,7]=sp.std(cD1[:]);
Extracted_Features[i,8]=sp.std(cD2[:]);
Extracted_Features[i,9]=sp.std(cD3[:]);
Extracted_Features[i,10]=sp.std(cD4[:]);
Extracted_Features[i,11]=sp.std(cD5[:]);
Extracted_Features[i,12]=sp.std(cD6[:]);
Extracted_Features[i,13]=sp.std(cA6[:]);
#Skewness of each subbands
Extracted_Features[i,14]=stats.skew(cD1[:]);
Extracted_Features[i,15]=stats.skew(cD2[:]);
Extracted_Features[i,16]=stats.skew(cD3[:]);
Extracted_Features[i,17]=stats.skew(cD4[:]);
Extracted_Features[i,18]=stats.skew(cD5[:]);
Extracted_Features[i,19]=stats.skew(cD6[:]);
Extracted_Features[i,20]=stats.skew(cA6[:]);
#Kurtosis of each subbands
Extracted_Features[i,21]=stats.kurtosis(cD1[:]);
Extracted_Features[i,22]=stats.kurtosis(cD2[:]);
Extracted_Features[i,23]=stats.kurtosis(cD3[:]);
Extracted_Features[i,24]=stats.kurtosis(cD4[:]);
Extracted_Features[i,25]=stats.kurtosis(cD5[:]);
Extracted_Features[i,26]=stats.kurtosis(cD6[:]);
Extracted_Features[i,27]=stats.kurtosis(cA6[:]);
#Median Values of each subbands
Extracted_Features[i,28]=sp.median(cD1[:]);
Extracted_Features[i,29]=sp.median(cD2[:]);
Extracted_Features[i,30]=sp.median(cD3[:]);
Extracted_Features[i,31]=sp.median(cD4[:]);
Extracted_Features[i,32]=sp.median(cD5[:]);
Extracted_Features[i,33]=sp.median(cD6[:]);
Extracted_Features[i,34]=sp.median(cA6[:]);
#RMS Values of each subbands
Extracted_Features[i,35]=np.sqrt(np.mean(cD1[:]**2));
Extracted_Features[i,36]=np.sqrt(np.mean(cD2[:]**2));
Extracted_Features[i,37]=np.sqrt(np.mean(cD3[:]**2));
Extracted_Features[i,38]=np.sqrt(np.mean(cD4[:]**2));
Extracted_Features[i,39]=np.sqrt(np.mean(cD5[:]**2));
Extracted_Features[i,40]=np.sqrt(np.mean(cD6[:]**2));
Extracted_Features[i,41]=np.sqrt(np.mean(cA6[:]**2));
#Ratio of subbands
Extracted_Features[i,42]=sp.mean(abs(cD1[:]))/sp.mean(abs(cD2[:]))
Extracted_Features[i,43]=sp.mean(abs(cD2[:]))/sp.mean(abs(cD3[:]))
Extracted_Features[i,44]=sp.mean(abs(cD3[:]))/sp.mean(abs(cD4[:]))
Extracted_Features[i,45]=sp.mean(abs(cD4[:]))/sp.mean(abs(cD5[:]))
Extracted_Features[i,46]=sp.mean(abs(cD5[:]))/sp.mean(abs(cD6[:]))
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Extracted_Features[i,47]=sp.mean(abs(cD6[:]))/sp.mean(abs(cA6[:]))
return Extracted_Features

# ======================================================================
# Feature extraction from normal EEG signal
# ======================================================================
for i in range(Nofsignals):
DWT_Feature_Extraction(Normal_Eyes_Open[:,i], i, waveletname, level)
Labels.append(“NORMAL”)

# ======================================================================
# Feature extraction from interictal EEG signal
# ======================================================================
for i in range(Nofsignals, 2*Nofsignals):
DWT_Feature_Extraction(EpilepticZone_Interictal[:,i-Nofsignals], i, 
waveletname, level)
Labels.append(“INTERICTAL”)

# ======================================================================
# Feature extraction from ictal EEG signal
# ======================================================================
for i in range(2*Nofsignals, 3*Nofsignals):
DWT_Feature_Extraction(Epileptic_Ictal[:,i-2*Nofsignals], i, wavelet-
name, level)
Labels.append(“ICTAL”)

#%%
# ======================================================================
# Classification
# ======================================================================
X = Extracted_Features
y = Labels
# Import train_test_split function
from sklearn.model_selection import train_test_split
# Split dataset into training set and test set
# 70% training and 30% test
Xtrain, Xtest, ytrain, ytest = train_test_split(X, y,test_size=0.3, ran-
dom_state=0)
#%%
# ======================================================================
# LDA classification with training and test set
# ======================================================================
#Import LDA model
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
#Create a LDA Classifier
clf = LinearDiscriminantAnalysis(solver=’lsqr’, shrinkage=None)
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#Train the model using the training sets
clf.fit(Xtrain,ytrain)
#Predict the response for test dataset
ypred = clf.predict(Xtest)
#Evaluate the Model and Print Performance Metrics
print_performance_metrics(ytest, ypred)

#Plot Confusion Matrix
print_confusion_matrix_and_save(ytest, ypred)

#%%
# ======================================================================
# Naive Bayes classification with training and test set
# ======================================================================
#Import Gaussian Naive Bayes model
from sklearn.naive_bayes import GaussianNB
#Create a Gaussian Classifier
gnb = GaussianNB()
#Train the model using the training sets
gnb.fit(Xtrain, ytrain)
#Predict the response for test dataset
ypred = gnb.predict(Xtest)

#Evaluate the Model and Print Performance Metrics
print_performance_metrics(ytest, ypred)

#Plot Confusion Matrix
print_confusion_matrix_and_save(ytest, ypred)

#%%
# ======================================================================
# Quadratic discriminant analysis (QDA) example
# ======================================================================
import numpy as np
from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis
from sklearn.model_selection import train_test_split
Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, test_size=0.3, 
random_state=1)

# Quadratic Discriminant Analysis
clf = QuadraticDiscriminantAnalysis(store_covariance=True)
clf.fit(Xtrain,ytrain)
ypred = clf.predict(Xtest)
#Evaluate the Model and Print Performance Metrics
print_performance_metrics(ytest, ypred)

#Plot Confusion Matrix
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print_confusion_matrix_and_save(ytest, ypred)

#%%
from sklearn.neural_network import MLPClassifier
#Create Train and Test set
Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, test_size=0.3, ran-
dom_state=0)

"""mlp=MLPClassifier(hidden_layer_sizes=(100, ), activation=’relu’, 
solver=’adam’,

alpha=0.0001, batch_size=’auto’, learning_rate=’constant’,
learning_rate_init=0.001, power_t=0.5, max_iter=200,
shuffle=True, random_state=None, tol=0.0001, verbose=False,
warm_start=False, momentum=0.9, nesterovs_momentum=True,
early_stopping=False, validation_fraction=0.1, beta_1=0.9,
beta_2=0.999, epsilon=1e-08, n_iter_no_change=10)"""

#Create the Model
mlp = MLPClassifier(hidden_layer_sizes=(50, ), learning_rate_init=0.001,

alpha=1, momentum=0.7,max_iter=1000)
#Train the Model with Training dataset
mlp.fit(Xtrain,ytrain)
#Test the Model with Testing dataset
ypred = mlp.predict(Xtest)

#Evaluate the Model and Print Performance Metrics
print_performance_metrics(ytest, ypred)

#Plot Confusion Matrix
print_confusion_matrix_and_save(ytest, ypred)

#%%
# ======================================================================
# k-NN example with training and test set
# ======================================================================
from sklearn.neighbors import KNeighborsClassifier

#Create Train and Test set
Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, test_size=0.3, ran-
dom_state=0)
#Create the Model
clf = KNeighborsClassifier(n_neighbors=1)
#Train the model with Training Dataset
clf.fit(Xtrain,ytrain)
#Test the model with Testset
ypred = clf.predict(Xtest)
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#Evaluate the Model and Print Performance Metrics
print_performance_metrics(ytest, ypred)

#Plot Confusion Matrix
print_confusion_matrix_and_save(ytest, ypred)

#%%
# ======================================================================
# SVM example with training and test set
# ======================================================================
from sklearn import svm
Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, test_size=0.3, ran-
dom_state=0)

""" The parameters and kernels of SVM classifierr can be changed as follows
C = 10.0 # SVM regularization parameter
svm.SVC(kernel=’linear’, C=C)
svm.LinearSVC(C=C, max_iter=10000)
svm.SVC(kernel=’rbf’, gamma=0.7, C=C)
svm.SVC(kernel=’poly’, degree=3, gamma=’auto’, C=C)
"""
C = 10.0 # SVM regularization parameter
#Create the Model
clf =svm.SVC(kernel=’poly’, degree=4, gamma=’auto’, C=C)
#Train the model with Training Dataset
clf.fit(Xtrain,ytrain)
#Test the model with Testset
ypred = clf.predict(Xtest)

#Evaluate the Model and Print Performance Metrics
print_performance_metrics(ytest, ypred)

#Plot Confusion Matrix
print_confusion_matrix_and_save(ytest, ypred)

#%%
# ======================================================================
# Decision tree example with training and test set
# ======================================================================
from sklearn import tree
Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, test_size=0.3, ran-
dom_state=0)
#Create the Model
clf = tree.DecisionTreeClassifier()
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#Train the Model with Training dataset
clf.fit(Xtrain,ytrain)
#Test the Model with Testing dataset
ypred = clf.predict(Xtest)

#Evaluate the Model and Print Performance Metrics
print_performance_metrics(ytest, ypred)

#Plot Confusion Matrix
print_confusion_matrix_and_save(ytest, ypred)

#%%
# ======================================================================
# Extra trees classification example with training and test set
# ======================================================================
#Import Extra Trees model
from sklearn.ensemble import ExtraTreesClassifier

# Split dataset into training set and test set
# 70% training and 30% test
Xtrain, Xtest, ytrain, ytest = train_test_split(X, y,test_size=0.3, ran-
dom_state=0)

#Create the Model
clf = ExtraTreesClassifier(n_estimators=100, max_features=48)

#Train the model using the training sets
clf.fit(Xtrain,ytrain)
#Predict the response for test dataset
ypred = clf.predict(Xtest)

#Evaluate the Model and Print Performance Metrics
print_performance_metrics(ytest, ypred)

#Plot Confusion Matrix
print_confusion_matrix_and_save(ytest, ypred)

#%%
# ======================================================================
# Bagging example with training and test set
# ======================================================================
#Import Bagging ensemble model
from sklearn.ensemble import BaggingClassifier
#Import Tree model as a base classifier
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from sklearn import tree

# Split dataset into training set and test set
# 70% training and 30% test
Xtrain, Xtest, ytrain, ytest = train_test_split(X, y,test_size=0.3, ran-
dom_state=0)

#Create a Bagging Ensemble Classifier
"""BaggingClassifier(base_estimator=None, n_estimators=10, max_sam-
ples=1.0,
max_features=1.0, bootstrap=True, bootstrap_features=False, oob_
score=False,
warm_start=False, n_jobs=None, random_state=None, verbose=0)"""
bagging = BaggingClassifier(tree.DecisionTreeClassifier(),
         max_samples=0.5, max_features=0.5)
#Train the model using the training sets
bagging.fit(Xtrain,ytrain)
#Predict the response for test dataset
ypred = bagging.predict(Xtest)

#Evaluate the Model and Print Performance Metrics
print_performance_metrics(ytest, ypred)

#Plot Confusion Matrix
print_confusion_matrix_and_save(ytest, ypred)

#%%
# ======================================================================
# Random forest example with training and test set
# ======================================================================
from sklearn.ensemble import RandomForestClassifier

#In order to change to accuracy increase n_estimators
"""RandomForestClassifier(n_estimators=’warn’, criterion=’gini’, max_
depth=None,
min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0,
max_features=’auto’, max_leaf_nodes=None, min_impurity_decrease=0.0,
min_impurity_split=None, bootstrap=True, oob_score=False, n_jobs=None,
random_state=None, verbose=0, warm_start=False, class_weight=None)"""
clf = RandomForestClassifier(n_estimators=200)
#Create the Model
#Train the model with Training Dataset
clf.fit(Xtrain,ytrain)
#Test the model with Testset
ypred = clf.predict(Xtest)
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#Evaluate the Model and Print Performance Metrics
print_performance_metrics(ytest, ypred)

#Plot Confusion Matrix
print_confusion_matrix_and_save(ytest, ypred)

#%%
# ======================================================================
# AdaBoost example with training and test set
# ======================================================================
#Import AdaBoost ensemble model
from sklearn.ensemble import AdaBoostClassifier
#Import Tree model as a base classifier
from sklearn import tree

# Split dataset into training set and test set
# 70% training and 30% test
Xtrain, Xtest, ytrain, ytest = train_test_split(X, y,test_size=0.3, ran-
dom_state=0)

#Create an AdaBoost Ensemble Classifier
""" AdaBoostClassifier(base_estimator=None, n_estimators=50, learning_
rate=1.0,

algorithm=’SAMME.R’, random_state=None)"""
clf=AdaBoostClassifier(tree.DecisionTreeClassifier(),n_estimators=100, 
algorithm=’SAMME’,learning_rate=0.5)

#Train the model using the training sets
clf.fit(Xtrain,ytrain)
#Predict the response for test dataset
ypred = clf.predict(Xtest)

#Evaluate the Model and Print Performance Metrics
print_performance_metrics(ytest, ypred)

#Plot Confusion Matrix
print_confusion_matrix_and_save(ytest, ypred)

#%%
# ======================================================================
# Gradient boosting example with training and test set
# ======================================================================
#Import Gradient Boosting ensemble model
from sklearn.ensemble import GradientBoostingClassifier
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# Split dataset into training set and test set
# 70% training and 30% test
Xtrain, Xtest, ytrain, ytest = train_test_split(X, y,test_size=0.3, ran-
dom_state=0)

#Create the Model
clf = GradientBoostingClassifier(n_estimators=100, learning_rate=1.0,
     max_depth=1, random_state=0)

#Train the model using the training sets
clf.fit(Xtrain,ytrain)
#Predict the response for test dataset
ypred = clf.predict(Xtest)

#Evaluate the Model and Print Performance Metrics
print_performance_metrics(ytest, ypred)

#Plot Confusion Matrix
print_confusion_matrix_and_save(ytest, ypred)

#%%
# ======================================================================
# Stacking meta classifier example
# ======================================================================
#Before running you should install mlxtend.classifier for Staking using pip 
install mlxtend
import numpy as np
import warnings
from sklearn import model_selection
from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.neural_network import MLPClassifier
from sklearn.ensemble import RandomForestClassifier
from mlxtend.classifier import StackingClassifier
from sklearn.model_selection import train_test_split
from sklearn import tree

#Create Train and Test set
Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, test_size=0.3, ran-
dom_state=0)

warnings.simplefilter(’ignore’)
#Create the Model



 4.2 EEG signal analysis 219

 

clf1 = KNeighborsClassifier(n_neighbors=1)
clf2 = RandomForestClassifier(random_state=1)
clf3 = MLPClassifier(hidden_layer_sizes=(100, ), learning_rate_init=0.001,
      alpha=1, momentum=0.9,max_iter=1000)
DT = tree.DecisionTreeClassifier()
sclf = StackingClassifier(classifiers=[clf1, clf2, clf3],
       meta_classifier=DT)
#Evaluate the Model and Print Performance Metrics
print_performance_metrics(ytest, ypred)

#Plot Confusion Matrix
print_confusion_matrix_and_save(ytest, ypred)

#%%
# ======================================================================
# Voting example with training and test set
# ======================================================================
from sklearn import datasets
from sklearn.model_selection import cross_val_score
from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import GaussianNB
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import VotingClassifier
from sklearn.model_selection import train_test_split

#Create Train and Test set
Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, test_size=0.3, ran-
dom_state=0)

#Create the Models
clf1 = KNeighborsClassifier(n_neighbors=1)
clf2 = RandomForestClassifier(random_state=1)
clf3 = MLPClassifier(hidden_layer_sizes=(100, ), learning_rate_init=0.001,
      alpha=1, momentum=0.9,max_iter=1000)
eclf = VotingClassifier(estimators=[(’kNN’, clf1), (’RF’, clf2), (’MLP’, 
clf3)], voting=’hard’)

#Train the model using the training sets
eclf.fit(Xtrain,ytrain)
#Predict the response for test dataset
ypred = eclf.predict(Xtest)

#Evaluate the Model and Print Performance Metrics
print_performance_metrics(ytest, ypred)
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#Plot Confusion Matrix
print_confusion_matrix_and_save(ytest, ypred)

#%%
# ======================================================================
# Deep neural network example using Keras
# ======================================================================
from keras.models import Sequential
from keras.layers import Dense, Activation
from keras.utils.np_utils import to_categorical
from keras.utils.vis_utils import plot_model
from sklearn import preprocessing
lb = preprocessing.LabelBinarizer()
y=lb.fit_transform( Labels)
X = Extracted_Features
# Import train_test_split function
from sklearn.model_selection import train_test_split
# Split dataset into training set and test set
# 70% training and 30% test
Xtrain, Xtest, ytrain, ytest = train_test_split(X, y,test_size=0.3, ran-
dom_state=0)
InputDataDimension=numfeatures
#NofClasses
# ======================================================================
# Create a model
# ======================================================================
model = Sequential()
model.add(Dense(128, input_dim=InputDataDimension, init=’uniform’, 
activation=’relu’))
model.add(Dense(32, activation=’relu’))
model.add(Dense(NofClasses, activation=’softmax’))
#%%
# ======================================================================
# Compile the model
# ======================================================================
model.compile(loss=’categorical_crossentropy’, optimizer=’adam’, 
metrics=[’accuracy’])
# ======================================================================
# Train and validate the model
# ======================================================================
history = model.fit(Xtrain, ytrain, validation_split=0.33, epochs=50, 
batch_size=25,verbose=2)
#%%
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# ======================================================================
# Evaluate the model
# ======================================================================
test_loss, test_acc = model.evaluate(Xtest, ytest, verbose=0)
print(’\nTest accuracy:’, test_acc)

#%%
# ======================================================================
# Plot the history
# ======================================================================
#Plot the Model Accuracy and Loss for Training and Validation dataset
plot_history(history)

#%%
#Test the Model with testing data
ypred_test = model.predict(Xtest,)
# Round the test predictions
max_y_pred_test = np.round(ypred_test)
#Convert binary Labels back to numbers
ypred=max_y_pred_test.argmax(axis=1)
ytest=ytest.argmax(axis=1)
#%%
#Print the Confusion Matrix
print_confusion_matrix(ytest,ypred)
#%%
#Evaluate the Model and Print Performance Metrics
print_performance_metrics(ytest,ypred)
#%%
#Print and Save the Confusion Matrix
print_confusion_matrix_and_save(ytest,ypred)
#%%
from keras.models import Sequential
from keras.layers import Dense, Activation
from keras.utils.np_utils import to_categorical
from keras.utils.vis_utils import plot_model
from sklearn import preprocessing
lb = preprocessing.LabelBinarizer()
y=lb.fit_transform( Labels)
X = Extracted_Features
# Import train_test_split function
from sklearn.model_selection import train_test_split
# Split dataset into training set and test set
# 70% training and 30% test
Xtrain, Xtest, ytrain, ytest = train_test_split(X, y,test_size=0.3, ran-
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dom_state=0)
InputDataDimension=numfeatures
# ======================================================================
# Build a deep model using Keras
# ======================================================================
model = Sequential()
model.add(Dense(128, input_dim=InputDataDimension, init=’uniform’, 
activation=’relu’))
model.add(Dense(64, activation=’relu’))
model.add(Dense(32, activation=’relu’))
model.add(Dense(NofClasses, activation=’softmax’))
#%%
# ======================================================================
# Compile the model
# ======================================================================
model.compile(loss=’categorical_crossentropy’, optimizer=’adam’,
metrics=[’accuracy’])
# ======================================================================
# Train and validate the model
# ======================================================================
history = model.fit(Xtrain, ytrain, validation_split=0.33, epochs=50, 
batch_size=25,verbose=2)
#%%
# ======================================================================
# Evaluate the model
# ======================================================================
test_loss, test_acc = model.evaluate(Xtest, ytest, verbose=0)
print(’\nTest accuracy:’, test_acc)

#%%
# ======================================================================
# Plot the history
# ======================================================================
#Plot the model accuracy and loss for training and validation dataset
plot_history(history)

#%%
#Test the Model with testing data
ypred_test = model.predict(Xtest,)
# Round the test predictions
max_y_pred_test = np.round(ypred_test)
#Convert binary Labels back to numbers
ypred=max_y_pred_test.argmax(axis=1)
ytest=ytest.argmax(axis=1)
#%%



 4.2 EEG signal analysis 223

 

#Print the Confusion Matrix
print_confusion_matrix(ytest,ypred)
#%%
#Evaluate the Model and Print Performance Metrics
print_performance_metrics(ytest,ypred)
#%%
#Print and Save the Confusion Matrix
print_confusion_matrix_and_save(ytest,ypred)

#%%
“’”Adapted From Scikit Learn“’”
# ======================================================================
# ROC curves for the multiclass problem
# ======================================================================
import numpy as np
import matplotlib.pyplot as plt
from itertools import cycle
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn import svm
from sklearn.metrics import roc_curve, auc
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import label_binarize
from sklearn.multiclass import OneVsRestClassifier
from scipy import interp
X = Extracted_Features
y = Labels
# Import train_test_split function
from sklearn.model_selection import train_test_split
# Split dataset into training set and test set
# 70% training and 30% test
Xtrain, Xtest, ytrain, ytest = train_test_split(X, y,test_size=0.3, ran-
dom_state=0)
# Binarize the output
y = label_binarize(y, classes=[’NORMAL’,’INTERICTAL’,’ICTAL’ ])
n_classes = y.shape[1]

#%%
# shuffle and split training and test sets
random_state = np.random.RandomState(0)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.5,
                        random_state=0)

# Learn to predict each class against the other
“““classifier = OneVsRestClassifier(svm.SVC(kernel=’linear’, 
probability=True,
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           random_state=random_state))”””
classifier = OneVsRestClassifier(LinearDiscriminantAnalysis(solver=’lsqr’, 
shrinkage=None))
y_score = classifier.fit(X_train, y_train).decision_function(X_test)

# Compute ROC curve and ROC area for each class
fpr = dict()
tpr = dict()
roc_auc = dict()
for i in range(n_classes):
fpr[i], tpr[i], _ = roc_curve(y_test[:, i], y_score[:, i])
roc_auc[i] = auc(fpr[i], tpr[i])

# Compute micro-average ROC curve and ROC area
fpr[“micro”], tpr[“micro”], _ = roc_curve(y_test.ravel(), y_score.ravel())
roc_auc[“micro”] = auc(fpr[“micro”], tpr[“micro”])

########################################################################
# Plot of a ROC curve for a specific class
plt.figure()
lw = 2
plt.plot(fpr[2], tpr[2], color=’darkorange’,
    lw=lw, label=’ROC curve (area = %0.2f)’ % roc_auc[2])
plt.plot([0, 1], [0, 1], color=’navy’, lw=lw, linestyle=’--’)
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel(’False Positive Rate’)
plt.ylabel(’True Positive Rate’)
plt.title(’Receiver operating characteristic’)
plt.legend(loc=“lower right”)
plt.show()
########################################################################
# Plot ROC curves for the multiclass problem

# Compute macro-average ROC curve and ROC area

# First aggregate all false positive rates
all_fpr = np.unique(np.concatenate([fpr[i] for i in range(n_classes)]))

# Then interpolate all ROC curves at this points
mean_tpr = np.zeros_like(all_fpr)
for i in range(n_classes):

mean_tpr += interp(all_fpr, fpr[i], tpr[i])
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# Finally average it and compute AUC
mean_tpr /= n_classes

fpr[“macro”] = all_fpr
tpr[“macro”] = mean_tpr
roc_auc[“macro”] = auc(fpr[“macro”], tpr[“macro”])

# Plot all ROC curves
plt.figure()
plt.plot(fpr[“micro”], tpr[“micro”],

label=’micro-average ROC curve (area = {0:0.2f})’
”.format(roc_auc[“micro”]),

color=’deeppink’, linestyle=’:’, linewidth=4)

plt.plot(fpr[“macro”], tpr[“macro”],
label=’macro-average ROC curve (area = {0:0.2f})’

”.format(roc_auc[“macro”]),
color=’navy’, linestyle=’:’, linewidth=4)

colors = cycle([’aqua’, ’darkorange’, ’cornflowerblue’])
for i, color in zip(range(n_classes), colors):

plt.plot(fpr[i], tpr[i], color=color, lw=lw,
    label=’ROC curve of class {0} (area = {1:0.2f})’
    ”.format(i, roc_auc[i]))

plt.plot([0, 1], [0, 1], ’k--’, lw=lw)
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel(’False Positive Rate’)
plt.ylabel(’True Positive Rate’)
plt.title(’Some extension of Receiver operating characteristic to 
multi-class’)
plt.legend(loc=“lower right”)
plt.show()

4.2.2 Emotion recognition

Emotions are a psychophysiological process triggered by the conscious and/or uncon-
scious perceptions of a human being and are often associated with temperament, disposition, 
personality, mood, and motivation. Emotions play a crucial role in human communication 
and can be expressed either verbally, through emotional vocabulary, or by nonverbal cues 
such as intonation of voice, facial expressions, and gestures (Koelstra et al., 2012). More 
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common emotions, such as anger, happiness, surprise, fear, shame, disgust, sadness, inter-
est, contempt, suffering, love, tension, and mirth, have been investigated by researchers 
in emotion understanding, control, and regulation mainly by analyzing the brain signals 
and images. EEG signal processing and analysis techniques have been utilized for emotion 
detection and recognition. Studies in engineering, computer science, neuroscience, and psy-
chology aim to develop devices that recognize, monitor, and model emotions. In computer 
science, efficient evaluation is a division of the study using machine learning that deals with 
the design of systems and devices for processing, interpretation, and recognition of human 
emotions. Hence new techniques can be generated indirectly to evaluate stress, frustration, 
and mood through natural interactions and conversations. In addition, making computers 
more emotionally intelligent, particularly responding to a person’s frustration in a way that 
lessens negative feelings, can be an essential research direction in emotion recognition and 
regulation. EEG helps connectivity, localization, and synchronization of the brain for different 
emotions to extract and process highly valuable emotion-related information. Classification 
and recognition of emotional EEG signals are generally complex, and sophisticated signal 
processing techniques are needed (Sanei, 2013; Subasi, 2019c). A general framework for emo-
tion recognition is shown in Fig. 4.4.

Example 4.2
The following Python code is used to extract features from EEG signals showing negative, posi-

tive, and neutral emotions using stationary wavelet transform (SWT). Next it uses statistical values 
of SWT sub-bands, and then classifies these data using random forest classifier by employing train-
ing and testing datasets. The classification accuracy, precision, recall, F1 score, Cohen kappa score, 

FIGURE 4.4 A general framework for emotion recognition.
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and Matthews correlation coefficient are calculated. The classification report and confusion matrix 
are also given. For this example, SEED emotion recognition data are used.

Dataset information: The SEED database contains EEG signals of 15 subjects that were recorded 
while the subjects were watching emotional film clips. Each subject is asked to carry out the experi-
ments in three sessions. There are 45 experiments in this dataset in total. These are the emotional 
film clips chosen to be used as stimuli in the experiments. The selection criteria for film clips are: (1) 
the length of the whole experiment should not be too long in case subjects become fatigued, (2) the 
videos should be understood without explanation, and (3) the videos should elicit a single desired 
target emotion. Different film clips (positive, neutral, and negative emotions) were chosen to receive 
highest match across participants. The length of each film clip is about 4 minutes. Each film clip is 
well-designed to produce consistent emotions and maximize the emotion itself. There are 15 trials 
for each experiment in total. There is a 15s hint before each clip and 10s feedback after each clip. The 
order of demonstration is organized in such a way that two film clips targeting the same emotion 
are not presented successively. For feedback, participants are asked to define their emotional re-
sponses to every film clip by responding to the questionnaire immediately after watching each clip. 
The EEG signals of each subject were recorded as separate files containing the name of the subjects 
and the date. Fifteen subjects (seven males and eight females, mean: 23.27, SD: 2.37) participated in 
the experiments. These files contain a preprocessed, down-sampled, and segmented version of the 
EEG data. The data was down-sampled to 200 Hz. A bandpass frequency filter from 0–75 Hz was 
used. The EEG segments associated with every movie were extracted. There are a total of 45 .mat 
files, one for each experiment. Every person carried out the experiment three times within a week. 
Every subject file includes 16 arrays; 15 arrays include preprocessed and segmented EEG data of 15 
trials in one experiment. An array named LABELS contains the label of the corresponding emotion-
al labels (−1 for negative, 0 for neutral, and +1 for positive). The EEG is acquired according to the 
international 10-20 system for 62 channels. The data can be downloaded from the following website:

http://bcmi.sjtu.edu.cn/∼seed/index.html

"""
Created on Thu May 9 12:18:30 2019
@author: asubasi
"""

# ======================================================================
# Feature extraction using the statistical values of stationary wavelet 
transform
# ======================================================================

import scipy.io as sio
# descriptive statistics
import scipy as sp
import pywt
import matplotlib.pyplot as plt
import numpy as np
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import scipy.stats as stats
waveletname=’db1’
level=6 #Decomposition Level
#Load mat file
mat_contents = sio.loadmat(’EMOTIONSDAT.mat’)
sorted(mat_contents.keys())
#Load each datset separately
NEGATIVE=mat_contents[’NEGATIVE’]
NEUTRAL=mat_contents[’NEUTRAL’]
POSITIVE=mat_contents[’POSITIVE’]

Labels = [] #Empty List For Labels
Length = 4096; # Length of signal
Nofsignal=100; #Total Number of Signal for each class
numrows =83 #Number of features extracted from Wavelet Packet 
Decomposition
#Create Empty Array For Features
Extracted_Features=np.ndarray(shape=(3*Nofsignal,numrows), 
dtype=float, order=’F’)
# ======================================================================
# Define utility functions
# ======================================================================
def SWT_Feature_Extraction(signal, i, wname, level):
coeffs = pywt.swt(signal, wname, level=level)
#Mean Values of each subbands
Extracted_Features[i,0]=sp.mean(abs(coeffs[0][0]))
Extracted_Features[i,1]=sp.mean(abs(coeffs[1][0]))
Extracted_Features[i,2]=sp.mean(abs(coeffs[2][0]))
Extracted_Features[i,3]=sp.mean(abs(coeffs[3][0]))
Extracted_Features[i,4]=sp.mean(abs(coeffs[4][0]))
Extracted_Features[i,5]=sp.mean(abs(coeffs[5][0]))
Extracted_Features[i,6]=sp.mean(abs(coeffs[0][1]))
Extracted_Features[i,7]=sp.mean(abs(coeffs[1][1]))
Extracted_Features[i,8]=sp.mean(abs(coeffs[2][1]))
Extracted_Features[i,9]=sp.mean(abs(coeffs[3][1]))
Extracted_Features[i,10]=sp.mean(abs(coeffs[4][1]))
Extracted_Features[i,11]=sp.mean(abs(coeffs[5][1]))
#Standart Deviation of each subbands
Extracted_Features[i,12]=sp.std(coeffs[0][0])
Extracted_Features[i,13]=sp.std(coeffs[1][0])
Extracted_Features[i,14]=sp.std(coeffs[2][0])
Extracted_Features[i,15]=sp.std(coeffs[3][0])
Extracted_Features[i,16]=sp.std(coeffs[4][0])
Extracted_Features[i,17]=sp.std(coeffs[5][0])



 4.2 EEG signal analysis 229

 

Extracted_Features[i,18]=sp.std(coeffs[0][1])
Extracted_Features[i,19]=sp.std(coeffs[1][1])
Extracted_Features[i,20]=sp.std(coeffs[2][1])
Extracted_Features[i,21]=sp.std(coeffs[3][1])
Extracted_Features[i,22]=sp.std(coeffs[4][1])
Extracted_Features[i,23]=sp.std(coeffs[5][1])
#Median Values of each subbands
Extracted_Features[i,24]=sp.median(coeffs[0][0])
Extracted_Features[i,25]=sp.median(coeffs[1][0])
Extracted_Features[i,26]=sp.median(coeffs[2][0])
Extracted_Features[i,27]=sp.median(coeffs[3][0])
Extracted_Features[i,28]=sp.median(coeffs[4][0])
Extracted_Features[i,29]=sp.median(coeffs[5][0])
Extracted_Features[i,30]=sp.median(coeffs[0][1])
Extracted_Features[i,31]=sp.median(coeffs[1][1])
Extracted_Features[i,32]=sp.median(coeffs[2][1])
Extracted_Features[i,33]=sp.median(coeffs[3][1])
Extracted_Features[i,34]=sp.median(coeffs[4][1])
Extracted_Features[i,35]=sp.median(coeffs[5][1])
#Skewness of each subbands
Extracted_Features[i,36]=stats.skew(coeffs[0][0])
Extracted_Features[i,37]=stats.skew(coeffs[1][0])
Extracted_Features[i,38]=stats.skew(coeffs[2][0])
Extracted_Features[i,39]=stats.skew(coeffs[3][0])
Extracted_Features[i,40]=stats.skew(coeffs[4][0])
Extracted_Features[i,41]=stats.skew(coeffs[5][0])
Extracted_Features[i,42]=stats.skew(coeffs[0][1])
Extracted_Features[i,43]=stats.skew(coeffs[1][1])
Extracted_Features[i,44]=stats.skew(coeffs[2][1])
Extracted_Features[i,45]=stats.skew(coeffs[3][1])
Extracted_Features[i,46]=stats.skew(coeffs[4][1])
Extracted_Features[i,47]=stats.skew(coeffs[5][1])
#Kurtosis of each subbands
Extracted_Features[i,48]=stats.kurtosis(coeffs[0][0])
Extracted_Features[i,49]=stats.kurtosis(coeffs[1][0])
Extracted_Features[i,50]=stats.kurtosis(coeffs[2][0])
Extracted_Features[i,51]=stats.kurtosis(coeffs[3][0])
Extracted_Features[i,52]=stats.kurtosis(coeffs[4][0])
Extracted_Features[i,53]=stats.kurtosis(coeffs[5][0])
Extracted_Features[i,54]=stats.kurtosis(coeffs[0][1])
Extracted_Features[i,55]=stats.kurtosis(coeffs[1][1])
Extracted_Features[i,56]=stats.kurtosis(coeffs[2][1])
Extracted_Features[i,57]=stats.kurtosis(coeffs[3][1])
Extracted_Features[i,58]=stats.kurtosis(coeffs[4][1])
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Extracted_Features[i,59]=stats.kurtosis(coeffs[5][1])
#RMS Values of each subbands
Extracted_Features[i,60]=np.sqrt(np.mean(coeffs[0][0]**2))
Extracted_Features[i,61]=np.sqrt(np.mean(coeffs[1][0]**2))
Extracted_Features[i,62]=np.sqrt(np.mean(coeffs[2][0]**2))
Extracted_Features[i,63]=np.sqrt(np.mean(coeffs[3][0]**2))
Extracted_Features[i,64]=np.sqrt(np.mean(coeffs[4][0]**2))
Extracted_Features[i,65]=np.sqrt(np.mean(coeffs[5][0]**2))
Extracted_Features[i,66]=np.sqrt(np.mean(coeffs[0][1]**2))
Extracted_Features[i,67]=np.sqrt(np.mean(coeffs[1][1]**2))
Extracted_Features[i,68]=np.sqrt(np.mean(coeffs[2][1]**2))
Extracted_Features[i,69]=np.sqrt(np.mean(coeffs[3][1]**2))
Extracted_Features[i,70]=np.sqrt(np.mean(coeffs[4][1]**2))
Extracted_Features[i,71]=np.sqrt(np.mean(coeffs[5][1]**2))
#Ratio of subbands
Extracted_Features[i,72]=sp.mean(abs(coeffs[0][0]))/sp.mean(abs (coeffs 
[1][0]))
Extracted_Features[i,73]=sp.mean(abs(coeffs[1][0]))/sp.mean(abs(coeffs 
[2][0]))
Extracted_Features[i,74]=sp.mean(abs(coeffs[2][0]))/sp.mean(abs (coeffs 
[3][0]))
Extracted_Features[i,75]=sp.mean(abs(coeffs[3][0]))/sp.mean(abs(coeffs 
[4][0]))
Extracted_Features[i,76]=sp.mean(abs(coeffs[4][0]))/sp.mean (abs(coeffs[5]
[0]))
Extracted_Features[i,77]=sp.mean(abs(coeffs[5][0]))/sp.mean(abs  
(coeffs [0][1]))
Extracted_Features[i,78]=sp.mean(abs(coeffs[0][1]))/sp.mean(abs  
(coeffs[1][1]))
Extracted_Features[i,79]=sp.mean(abs(coeffs[1][1]))/sp.mean(abs(coeffs 
[2][1]))
Extracted_Features[i,80]=sp.mean(abs(coeffs[2][1]))/sp.mean(abs  
(coeffs[3][1]))
Extracted_Features[i,81]=sp.mean(abs(coeffs[3][1]))/sp.mean(abs(coeffs 
[4][1]))
Extracted_Features[i,82]=sp.mean(abs(coeffs[4][1]))/sp.mean(abs  
(coeffs[5][1]))
#%%
# =====================================================================
# Feature extraction from negative emotion EEG signal
# =====================================================================
for i in range(Nofsignal):
SWT_Feature_Extraction(NEGATIVE[i,:], i, waveletname, level)
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Labels.append(“NEGATIVE”)

# =====================================================================
# Feature extraction from neutral emotion EEG signal
# ======================================================================
for i in range(Nofsignal, 2*Nofsignal):
SWT_Feature_Extraction(NEUTRAL[i-Nofsignal,:], i, waveletname, level)
Labels.append(“NEUTRAL”)

# ======================================================================
# Feature extraction from positive emotion EEG signal
# ======================================================================
for i in range(2*Nofsignal, 3*Nofsignal):
SWT_Feature_Extraction(POSITIVE[i-2*Nofsignal,:], i, waveletname, level)
Labels.append(“POSITIVE”)

#%%
# ======================================================================
# Classification
# ======================================================================
X = Extracted_Features
y = Labels
# Import train_test_split function
from sklearn.model_selection import train_test_split
# Split dataset into training set and test set
# 70% training and 30% test
Xtrain, Xtest, ytrain, ytest = train_test_split(X, y,test_size=0.3, ran-
dom_state=1)

#%%
# ======================================================================
# Random forest example with training and test set
# ======================================================================
from sklearn.ensemble import RandomForestClassifier

#In order to change to accuracy increase n_estimators
"""RandomForestClassifier(n_estimators=’warn’, criterion=’gini’, max_
depth=None,
min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0,
max_features=’auto’, max_leaf_nodes=None, min_impurity_decrease=0.0,
min_impurity_split=None, bootstrap=True, oob_score=False, n_jobs=None,
random_state=None, verbose=0, warm_start=False, class_weight=None)"""
clf = RandomForestClassifier(n_estimators=200)
#Create the Model
#Train the model with Training Dataset
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clf.fit(Xtrain,ytrain)
#Test the model with Testset
ypred = clf.predict(Xtest)

#Evaluate the Model and Print Performance Metrics
from sklearn import metrics
print(’Accuracy:’, np.round(metrics.accuracy_score(ytest,ypred),4))
print(’Precision:’, np.round(metrics.precision_score(ytest,
  ypred,average=’weighted’),4))
print(’Recall:’, np.round(metrics.recall_score(ytest,ypred,
  average=’weighted’),4))
print(’F1 Score:’, np.round(metrics.f1_score(ytest,ypred,
average=’weighted’),4))
print(’Cohen Kappa Score:’, np.round(metrics.cohen_kappa_score(ytest, 
ypred),4))
print(’Matthews Corrcoef:’, np.round(metrics.matthews_corrcoef(ytest,
ypred),4))
print(’\t\tClassification Report:\n’, metrics.classification_report(ypred, 
ytest))

#Plot Confusion Matrix
from sklearn.metrics import confusion_matrix
print(“Confusion Matrix:\n”,confusion_matrix(ytest, ypred))

#%%
# ======================================================================
# Random forest example with cross-validation
# ======================================================================
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import cross_val_score
#In order to change to accuracy increase n_estimators
# fit model no training data
model = RandomForestClassifier(n_estimators=200)

CV=10 #10-Fold Cross Validation
#Evaluate Model Using 10-Fold Cross Validation and Print Performance 
Metrics
Acc_scores = cross_val_score(model, X, y, cv=CV)
print(“Accuracy: %0.3f (+/- %0.3f)” % (Acc_scores.mean(), Acc_scores.
std() * 2))
f1_scores = cross_val_score(model, X, y, cv=CV,scoring=’f1_macro’)
print(“F1 score: %0.3f (+/- %0.3f)” % (f1_scores.mean(), f1_scores.std() 
* 2))
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4.2.3 Classification of focal and nonfocal epileptic EEG signals

The brain is divided into a number of regions that generate a synaptic electric current or 
local magnetic field. Localization of brain signal sources from EEGs has been an active area 
of research in recent years. Such source localization is essential to studying physiological, 
mental, pathological, and functional abnormalities of the brain, as well as various bodily 
disabilities, and ultimately to define the sources of abnormalities such as tumors and epi-
lepsy. Although typically the localization of brain sources is a problematic task, there are 
some simple circumstances in which localization can be simplified (Sanei & Chambers, 2013; 
Subasi, 2019c).

The focus of epilepsy is defined by a clinical diagnosis based on the related channel, which 
produced abnormal signals.

Therefore, the EEG is a decisive method for epilepsy evaluation. The main issue for neu-
rosurgery is noninvasive initial seizure discharge localization, identifying the region of the 
brain that contains the abnormal activity source. Although the epilepsy diagnosis depends on 
individual medical history, the EEG is vital for detection and diagnosis (Subasi, 2019c).

EEG signals recorded from the brain help us to understand brain functions. The aim of 
these records is to localize the areas of the brain where seizures begin and to assess if the 
patient may benefit from neurosurgical resection of these brain areas. Therefore these types 
of intracranial epilepsy patient recordings are challenging areas of application for analyz-
ing the signal. This results in two different types of signals: the first type is recorded from 
areas of the brain where the changes of ictal EEG signal were noticed (“focal signals”), and 
the second type recorded from areas of the brain that were not included at the seizure’s 
onset (“nonfocal signals”). The ictal areas may produce an interictal spike at the time of 
its onset, and therefore the clusters covering most spikes start at the most active zone. 
Localization of this zone and focus of activity in the brain determined by these spike clus-
ters could provide evidence for exact locations of epileptogenic tissue in surgical evalua-
tions (Subasi, 2019c).

Precision_scores = cross_val_score(model, X, y, cv=CV,scoring=’precision_
macro’)
print(“Precision score: %0.3f (+/- %0.3f)” % (Precision_scores.mean(), 
Precision_scores.std() * 2))
Recall_scores = cross_val_score(model, X, y, cv=CV,scoring=’recall_macro’)
print(“Recall score: %0.3f (+/- %0.3f)” % (Recall_scores.mean(), Recall_
scores.std() * 2))
from sklearn.metrics import cohen_kappa_score, make_scorer
kappa_scorer = make_scorer(cohen_kappa_score)
Kappa_scores = cross_val_score(model, X, y, cv=CV,scoring=kappa_scorer)
print(“Kappa score: %0.3f (+/- %0.3f)” % (Kappa_scores.mean(), Kappa_
scores.std() * 2))
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Example 4.3
The following Python code is used to extract features from the focal–nonfocal EEG signals using 

wavelet packed decomposition (WPD) and statistical values of WPD sub-bands. Next it classifies 
these data using various classifiers and 10-fold cross-validation. The classification accuracy, preci-
sion, recall, F1 score, Cohen kappa score, and Matthews correlation coefficient are calculated. For 
this example, epileptic source localization data is used.

Dataset information: There are two types of files, F and N, that involve focal and nonfocal sig-
nal pairs, respectively. Each zip file contains 750 separate text files. The number in the file name is 
related to the index of the signal pair included in this file. Every text file includes one distinct signal 
pair. The x-signal is involved in the first column; the y-signal is involved in the second column. The 
two columns are divided by commas. All files have 10,240 rows. Succeeding rows are related to the 
subsequent samples. The files have no headers (Andrzejak, Schindler, & Rummel, 2012). You can 
download the data from the following web site:

http://ntsa.upf.edu/downloads/andrzejak-rg-schindler-k-rummel-c-2012-nonrandomness-
nonlinear-dependence-and

"""
Created on Thu May 9 12:18:30 2019
@author: asubasi
"""
# descriptive statistics
import scipy as sp
import scipy.io as sio
import pywt
import numpy as np
import scipy.stats as stats
from sklearn.metrics import cohen_kappa_score, make_scorer
from sklearn.model_selection import cross_val_score
wname = pywt.Wavelet(’db1’)
level=6 #Number of decomposition level
#Load mat file
mat_contents = sio.loadmat(’FOCAL_NFOCAL.mat’)
sorted(mat_contents.keys())

FOCAL=mat_contents[’focal_5000’]
NONFOCAL=mat_contents[’nfocal_5000’]

Labels = [] #Empty List For Labels
NofClasses=2 #Number of Classes
Length = 4096; # Length of signal
Nofsignal=100; #Number of Signal for each Class
numfeatures =83 #Number of features extracted from Wavelet Packet 
Decomposition
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#Create Empty Array For Features
Extracted_Features=np.ndarray(shape=(NofClasses*Nofsignal,numfeatures), 
dtype=float, order=’F’)
# ======================================================================
# Define utility functions
# ======================================================================
def kFold_Cross_Validation_Metrics(model,CV):
Acc_scores = cross_val_score(model, X, y, cv=CV)
print(“Accuracy: %0.3f (+/- %0.3f)” % (Acc_scores.mean(), Acc_scores.
std() * 2))
f1_scores = cross_val_score(model, X, y, cv=CV,scoring=’f1_macro’)
print(“F1 score: %0.3f (+/- %0.3f)” % (f1_scores.mean(), f1_scores.std() 
* 2))
Precision_scores = cross_val_score(model, X, y, cv=CV,scoring=’precision_
macro’)
print(“Precision score: %0.3f (+/- %0.3f)” % (Precision_scores.mean(), 
Precision_scores.std() * 2))
Recall_scores = cross_val_score(model, X, y, cv=CV,scoring=’recall_macro’)
print(“Recall score: %0.3f (+/- %0.3f)” % (Recall_scores.mean(), Re-
call_scores.std() * 2))
kappa_scorer = make_scorer(cohen_kappa_score)
Kappa_scores = cross_val_score(model, X, y, cv=CV,scoring=kappa_scorer)
print(“Kappa score: %0.3f (+/- %0.3f)” % (Kappa_scores.mean(), Kappa_
scores.std() * 2))

# ======================================================================
# Feature extraction using the statistical values of wavelet packet 
transform
# ======================================================================
def WPD_Feature_Extraction(signal, i, wname, level):
#Mean Values of each subbands
wp= pywt.WaveletPacket(signal, wname, mode=’symmetric’, maxlevel=level)
Extracted_Features[i,0]=sp.mean(abs(wp[’a’].data))
Extracted_Features[i,1]=sp.mean(abs(wp[’aa’].data))
Extracted_Features[i,2]=sp.mean(abs(wp[’aaa’].data))
Extracted_Features[i,3]=sp.mean(abs(wp[’aaaa’].data))
Extracted_Features[i,4]=sp.mean(abs(wp[’aaaaa’].data))
Extracted_Features[i,5]=sp.mean(abs(wp[’aaaaaa’].data))
Extracted_Features[i,6]=sp.mean(abs(wp[’d’].data))
Extracted_Features[i,7]=sp.mean(abs(wp[’dd’].data))
Extracted_Features[i,8]=sp.mean(abs(wp[’ddd’].data))
Extracted_Features[i,9]=sp.mean(abs(wp[’dddd’].data))
Extracted_Features[i,10]=sp.mean(abs(wp[’ddddd’].data))
Extracted_Features[i,11]=sp.mean(abs(wp[’dddddd’].data))
#Standart Deviation of each subbands
Extracted_Features[i,12]=sp.std(wp[’a’].data)
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Extracted_Features[i,13]=sp.std(wp[’aa’].data)
Extracted_Features[i,14]=sp.std(wp[’aaa’].data)
Extracted_Features[i,15]=sp.std(wp[’aaaa’].data)
Extracted_Features[i,16]=sp.std(wp[’aaaaa’].data)
Extracted_Features[i,17]=sp.std(wp[’aaaaaa’].data)
Extracted_Features[i,18]=sp.std(wp[’d’].data)
Extracted_Features[i,19]=sp.std(wp[’dd’].data)
Extracted_Features[i,20]=sp.std(wp[’ddd’].data)
Extracted_Features[i,21]=sp.std(wp[’dddd’].data)
Extracted_Features[i,22]=sp.std(wp[’ddddd’].data)
Extracted_Features[i,23]=sp.std(wp[’dddddd’].data)
#Median Values of each subbands
Extracted_Features[i,24]=sp.median(wp[’a’].data)
Extracted_Features[i,25]=sp.median(wp[’aa’].data)
Extracted_Features[i,26]=sp.median(wp[’aaa’].data)
Extracted_Features[i,27]=sp.median(wp[’aaaa’].data)
Extracted_Features[i,28]=sp.median(wp[’aaaaa’].data)
Extracted_Features[i,29]=sp.median(wp[’aaaaaa’].data)
Extracted_Features[i,30]=sp.median(wp[’d’].data)
Extracted_Features[i,31]=sp.median(wp[’dd’].data)
Extracted_Features[i,32]=sp.median(wp[’ddd’].data)
Extracted_Features[i,33]=sp.median(wp[’dddd’].data)
Extracted_Features[i,34]=sp.median(wp[’ddddd’].data)
Extracted_Features[i,35]=sp.median(wp[’dddddd’].data)
#Skewness of each subbands
Extracted_Features[i,36]=stats.skew(wp[’a’].data)
Extracted_Features[i,37]=stats.skew(wp[’aa’].data)
Extracted_Features[i,38]=stats.skew(wp[’aaa’].data)
Extracted_Features[i,39]=stats.skew(wp[’aaaa’].data)
Extracted_Features[i,40]=stats.skew(wp[’aaaaa’].data)
Extracted_Features[i,41]=stats.skew(wp[’aaaaaa’].data)
Extracted_Features[i,42]=stats.skew(wp[’d’].data)
Extracted_Features[i,43]=stats.skew(wp[’dd’].data)
Extracted_Features[i,44]=stats.skew(wp[’ddd’].data)
Extracted_Features[i,45]=stats.skew(wp[’dddd’].data)
Extracted_Features[i,46]=stats.skew(wp[’ddddd’].data)
Extracted_Features[i,47]=stats.skew(wp[’dddddd’].data)
#Kurtosis of each subbands
Extracted_Features[i,48]=stats.kurtosis(wp[’a’].data)
Extracted_Features[i,49]=stats.kurtosis(wp[’aa’].data)
Extracted_Features[i,50]=stats.kurtosis(wp[’aaa’].data)
Extracted_Features[i,51]=stats.kurtosis(wp[’aaaa’].data)
Extracted_Features[i,52]=stats.kurtosis(wp[’aaaaa’].data)
Extracted_Features[i,53]=stats.kurtosis(wp[’aaaaaa’].data)
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Extracted_Features[i,54]=stats.kurtosis(wp[’d’].data)
Extracted_Features[i,55]=stats.kurtosis(wp[’dd’].data)
Extracted_Features[i,56]=stats.kurtosis(wp[’ddd’].data)
Extracted_Features[i,57]=stats.kurtosis(wp[’dddd’].data)
Extracted_Features[i,58]=stats.kurtosis(wp[’ddddd’].data)
Extracted_Features[i,59]=stats.kurtosis(wp[’dddddd’].data)
#RMS Values of each subbands
Extracted_Features[i,60]=np.sqrt(np.mean(wp[’a’].data**2))
Extracted_Features[i,61]=np.sqrt(np.mean(wp[’aa’].data**2))
Extracted_Features[i,62]=np.sqrt(np.mean(wp[’aaa’].data**2))
Extracted_Features[i,63]=np.sqrt(np.mean(wp[’aaaa’].data**2))
Extracted_Features[i,64]=np.sqrt(np.mean(wp[’aaaaa’].data**2))
Extracted_Features[i,65]=np.sqrt(np.mean(wp[’aaaaaa’].data**2))
Extracted_Features[i,66]=np.sqrt(np.mean(wp[’d’].data**2))
Extracted_Features[i,67]=np.sqrt(np.mean(wp[’dd’].data**2))
Extracted_Features[i,68]=np.sqrt(np.mean(wp[’ddd’].data**2))
Extracted_Features[i,69]=np.sqrt(np.mean(wp[’dddd’].data**2))
Extracted_Features[i,70]=np.sqrt(np.mean(wp[’ddddd’].data**2))
Extracted_Features[i,71]=np.sqrt(np.mean(wp[’dddddd’].data**2))
#Ratio of subbands
Extracted_Features[i,72]=sp.mean(abs(wp[’a’].data))/sp.mean(abs(wp[’aa’]. 
data))
Extracted_Features[i,73]=sp.mean(abs(wp[’aa’].data))/sp.mean(abs(wp[’aaa’]. 
data))
Extracted_Features[i,74]=sp.mean(abs(wp[’aaa’].data))/sp.mean(abs(wp 
[’aaaa’].data))
Extracted_Features[i,75]=sp.mean(abs(wp[’aaaa’].data))/sp.mean(abs 
(wp[’aaaaa’].data))
Extracted_Features[i,76]=sp.mean(abs(wp[’aaaaa’].data))/sp.mean(abs(wp 
[’aaaaaa’].data))
Extracted_Features[i,77]=sp.mean(abs(wp[’aaaaaa’].data))/sp.mean(abs 
(wp[’d’].data))
Extracted_Features[i,78]=sp.mean(abs(wp[’d’].data))/sp.mean(abs(wp 
[’dd’].data))
Extracted_Features[i,79]=sp.mean(abs(wp[’dd’].data))/sp.mean(abs(wp 
[’ddd’].data))
Extracted_Features[i,80]=sp.mean(abs(wp[’ddd’].data))/sp.mean(abs 
(wp[’dddd’].data))
Extracted_Features[i,81]=sp.mean(abs(wp[’dddd’].data))/sp.mean(abs(wp 
[’ddddd’].data))
Extracted_Features[i,82]=sp.mean(abs(wp[’ddddd’].data))/sp.mean(abs(wp 
[’dddddd’].data))
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# ======================================================================
# Feature extraction from focal EEG signal
# ======================================================================
for i in range(Nofsignal):
WPD_Feature_Extraction(FOCAL[:,i], i, wname, level)
Labels.append(“FOCAL”)

# ======================================================================
# Feature extraction from nonfocal EEG signal
# ======================================================================
for i in range(Nofsignal, 2*Nofsignal):
WPD_Feature_Extraction(NONFOCAL[:,i-Nofsignal], i, wname, level)
Labels.append(“NONFOCAL”)

#%%
# ======================================================================
# Classification
# ======================================================================
X = Extracted_Features
y = Labels
#To prevent warnings
import warnings
warnings.filterwarnings(“ignore”)
#%%
# ======================================================================
# Logistic regression example with cross-validation
# ======================================================================
from sklearn.linear_model import LogisticRegressionCV
CV=10 #10-Fold Cross Validation
#Create the Model
model = LogisticRegressionCV(cv=CV, random_state=0,

 multi_class=’multinomial’).fit(X, y)
#Evaluate Model Using 10-Fold Cross Validation and Print Performance 
Measures
kFold_Cross_Validation_Metrics(model,CV)
#%%
# ======================================================================
# LDA example with cross-validation
# ======================================================================
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
# fit model no training data
#lda = LinearDiscriminantAnalysis(solver=“svd”, store_covariance=True)
#model = LinearDiscriminantAnalysis(solver=’lsqr’, shrinkage=’auto’)
model = LinearDiscriminantAnalysis(solver=’lsqr’, shrinkage=None)
CV=10 #10-Fold Cross Validation



 4.2 EEG signal analysis 239

 

#Evaluate Model Using 10-Fold Cross Validation
kFold_Cross_Validation_Metrics(model,CV)
#%%
# ======================================================================
# Naive Bayes example with cross-validation
# ======================================================================
#Import Gaussian Naive Bayes model
from sklearn.naive_bayes import GaussianNB
#Create a Gaussian Classifier
model = GaussianNB()
CV=10 #10-Fold Cross Validation
#Evaluate Model Using 10-Fold Cross Validation and Print Performance 
Metrics
kFold_Cross_Validation_Metrics(model,CV)
#%%
# ======================================================================
# MLP example with cross-validation
# ======================================================================
from sklearn.neural_network import MLPClassifier
#Create the Model
model = MLPClassifier(hidden_layer_sizes=(60, ), learning_rate_init=0.001,

 alpha=1, momentum=0.9,max_iter=1000)
CV=10 #10-Fold Cross Validation
#Evaluate Model Using 10-Fold Cross Validation and Print Performance 
Metrics
kFold_Cross_Validation_Metrics(model,CV)
#%%
from sklearn.linear_model import LogisticRegression
from elm import ELMClassifier
from random_hidden_layer import RBFRandomHiddenLayer
from random_hidden_layer import SimpleRandomHiddenLayer

nh = 75 #Number of Hidden Layer

# pass user defined transfer func
sinsq = (lambda x: np.power(np.sin(x), 2.0))
srhl_sinsq = SimpleRandomHiddenLayer(n_hidden=nh,

activation_func=sinsq,
random_state=0)

# use internal transfer funcs
srhl_tanh = SimpleRandomHiddenLayer(n_hidden=nh,

activation_func=’tanh’,
random_state=0)
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srhl_tribas = SimpleRandomHiddenLayer(n_hidden=nh,
activation_func=’tribas’,
random_state=0)

srhl_hardlim = SimpleRandomHiddenLayer(n_hidden=nh,
activation_func=’hardlim’,
random_state=0)

# use gaussian RBF
#In order to get better accuracy decrease gamma=0.0001
srhl_rbf = RBFRandomHiddenLayer(n_hidden=nh*2, gamma=0.1, random_state=0)

log_reg = LogisticRegression()

#ELMClassifier(srhl_tanh)
#ELMClassifier(srhl_tanh, regressor=log_reg)
#ELMClassifier(srhl_sinsq)
#ELMClassifier(srhl_tribas)
#ELMClassifier(srhl_hardlim)
#ELMClassifier(srhl_rbf)
# fit model no training data
model = ELMClassifier(srhl_rbf)
CV=10 #10-Fold Cross Validation
#Evaluate Model Using 10-Fold Cross Validation and Print Performance 
Metrics
kFold_Cross_Validation_Metrics(model,CV)
#%%
# ======================================================================
# k-NN example with cross-validation
# ======================================================================
from sklearn.neighbors import KNeighborsClassifier
#Create a Model
model = KNeighborsClassifier(n_neighbors=5)

CV=10 #10-Fold Cross Validation
#Evaluate Model Using 10-Fold Cross Validation and Print Performance 
Metrics
kFold_Cross_Validation_Metrics(model,CV)

#%%
# ======================================================================
# SVM example with cross-validation
# ======================================================================
from sklearn import svm
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""" The parameters and kernels of SVM classifierr can be changed as follows
C = 10.0 # SVM regularization parameter
svm.SVC(kernel=’linear’, C=C)
svm.LinearSVC(C=C, max_iter=10000)
svm.SVC(kernel=’rbf’, gamma=0.7, C=C)
svm.SVC(kernel=’poly’, degree=3, gamma=’auto’, C=C))
"""
C = 50.0 # SVM regularization parameter
# fit model no training data
model = svm.SVC(kernel=’linear’, C=C)

CV=10 #10-Fold Cross Validation
#Evaluate Model Using 10-Fold Cross Validation and Print Performance 
Metrics
kFold_Cross_Validation_Metrics(model,CV)
#%%
# ======================================================================
# Decision tree example with cross-validation
# ======================================================================
from sklearn import tree
# fit model no training data
model = tree.DecisionTreeClassifier()

CV=10 #10-Fold Cross Validation
#Evaluate Model Using 10-Fold Cross Validation and Print Performance 
Metrics
kFold_Cross_Validation_Metrics(model,CV)

#%%
# ======================================================================
# Extra trees example with cross-validation
# ======================================================================
#Import Extra Trees model
from sklearn.ensemble import ExtraTreesClassifier
# fit model no training data
model = ExtraTreesClassifier(n_estimators=100, max_features=83)

CV=10 #10-Fold Cross Validation
#Evaluate Model Using 10-Fold Cross Validation and Print Performance 
Metrics
kFold_Cross_Validation_Metrics(model,CV)
#%%
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# ======================================================================
# Bagging example with cross-validation
# ======================================================================
#Import Bagging ensemble model
from sklearn.ensemble import BaggingClassifier
#Import Tree model as a base classifier
from sklearn import tree

"""BaggingClassifier(base_estimator=None, n_estimators=10, max_sam-
ples=1.0,
max_features=1.0, bootstrap=True, bootstrap_features=False, oob_
score=False,
warm_start=False, n_jobs=None, random_state=None, verbose=0)"""
#Create a Bagging Ensemble Classifier
model = BaggingClassifier(tree.DecisionTreeClassifier(),

 max_samples=0.5, max_features=0.5)

CV=10 #10-Fold Cross Validation
#Evaluate Model Using 10-Fold Cross Validation and Print Performance 
Metrics
kFold_Cross_Validation_Metrics(model,CV)
#%%
# ======================================================================
# Random forest example with cross-validation
# ======================================================================
from sklearn.ensemble import RandomForestClassifier
#In order to change to accuracy increase n_estimators
# fit model no training data
model = RandomForestClassifier(n_estimators=200)

CV=10 #10-Fold Cross Validation
#Evaluate Model Using 10-Fold Cross Validation and Print Performance 
Metrics
kFold_Cross_Validation_Metrics(model,CV)

#%%
#Import Adaboost Ensemble model
from sklearn.ensemble import AdaBoostClassifier
#Import Tree model as a base classifier
from sklearn import tree
#Create an Adaboost Ensemble Classifier
""" AdaBoostClassifier(base_estimator=None, n_estimators=50, learning_
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rate=1.0,
                   algorithm=’SAMME.R’, random_state=None)"""
model = clf=AdaBoostClassifier(tree.DecisionTreeClassifier(),
n_estimators=10,
          algorithm=’SAMME’,learning_rate=0.5)
CV=10 #10-Fold Cross Validation
#Evaluate Model Using 10-Fold Cross Validation and Print Performance 
Metrics
kFold_Cross_Validation_Metrics(model,CV)
#%%
# ======================================================================
# Gradient boosting example with cross-validation
# ======================================================================
#Import Gradient Boosting ensemble model
from sklearn.ensemble import GradientBoostingClassifier
# fit model no training data
model = GradientBoostingClassifier(n_estimators=100, learning_rate=1.0,
            max_depth=1, random_state=0)

CV=10 #10-Fold Cross Validation
#Evaluate Model Using 10-Fold Cross Validation and Print Performance 
Metrics
kFold_Cross_Validation_Metrics(model,CV)
#%%
# ======================================================================
# Voting example with cross-validation
# ======================================================================

from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import GaussianNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.neural_network import MLPClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import VotingClassifier
#Create the Model
clf1 = KNeighborsClassifier(n_neighbors=1)
clf2 = RandomForestClassifier(random_state=1)
clf3 = MLPClassifier(hidden_layer_sizes=(100, ), learning_rate_init=0.001,
      alpha=1, momentum=0.9,max_iter=1000)
eclf = VotingClassifier(estimators=[(’kNN’, clf1), (’RF’, clf2), (’MLP’, 
clf3)], voting=’hard’)
CV=10 #10-Fold Cross Validation
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#Evaluate Model Using 10-Fold Cross Validation and Print Performance 
Metrics
kFold_Cross_Validation_Metrics(model,CV)

#%%
from keras.models import Sequential
from keras.layers import Dense, Activation
from keras.utils.np_utils import to_categorical
from keras.utils.vis_utils import plot_model
from keras.wrappers.scikit_learn import KerasClassifier
from sklearn import preprocessing
lb = preprocessing.LabelBinarizer()
y=lb.fit_transform(Labels)
X = Extracted_Features

#from keras.utils import to_categorical
y_binary = to_categorical(y)
#%%
# ======================================================================
# Keras DNN example with cross-validation
# ======================================================================
# define a Keras model
InputDataDimension=numfeatures
def my_model():

# create model
model = Sequential()
model.add(Dense(128, input_dim=InputDataDimension,
activation=’relu’))
model.add(Dense(NofClasses, activation=’softmax’))
# Compile model
model.compile(loss=’categorical_crossentropy’,
optimizer=’adam’, metrics=[’accuracy’])
return model

estimator = KerasClassifier(build_fn=my_model, epochs=100, batch_size=5, 
verbose=1)
from sklearn.model_selection import KFold
kfold = KFold(n_splits=5, shuffle=True)
from sklearn.model_selection import cross_val_score
results = cross_val_score(estimator, X, y_binary, cv=kfold)
print(“Accuracy: %.2f%% (%.2f%%)” % (results.mean()*100, results.
std()*100))
#%%
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# ======================================================================
# ROC analysis for binary classification
# ======================================================================
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.metrics import roc_curve, auc
from sklearn.model_selection import StratifiedKFold
from scipy import interp
import matplotlib.pyplot as plt
random_state = np.random.RandomState(0)
X = Extracted_Features
y = Labels
########################################################################
from sklearn.preprocessing import label_binarize
y = label_binarize(y, classes=[’FOCAL’,’NONFOCAL’ ])
n_classes = y.shape[1]
# Run classifier with cross-validation and plot ROC curves
cv = StratifiedKFold(n_splits=5)
classifier = LinearDiscriminantAnalysis(solver=’lsqr’, shrinkage=None)

tprs = []
aucs = []
mean_fpr = np.linspace(0, 1, 100)

i = 0
for train, test in cv.split(X, y):

probas_ = classifier.fit(X[train], y[train]).predict_proba(X[test])
# Compute ROC curve and area the curve
fpr, tpr, thresholds = roc_curve(y[test], probas_[:, 1])
tprs.append(interp(mean_fpr, fpr, tpr))
tprs[-1][0] = 0.0
roc_auc = auc(fpr, tpr)
aucs.append(roc_auc)
plt.plot(fpr, tpr, lw=1, alpha=0.3,
   label=’ROC fold %d (AUC = %0.2f)’ % (i, roc_auc))

i += 1
plt.plot([0, 1], [0, 1], linestyle=’--’, lw=2, color=’r’,
 label=’Chance’, alpha=.8)

mean_tpr = np.mean(tprs, axis=0)
mean_tpr[-1] = 1.0
mean_auc = auc(mean_fpr, mean_tpr)
std_auc = np.std(aucs)
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4.2.4 Migraine detection

Migraine is a continuing neurological disorder with extremely serious indicators such as 
pulsating pain in one or both sides of the brain, and sensitivity to the light. Notably, it is 
the third most widespread disorder, influencing one in every seven people. It is worth men-
tioning that the migraine is generally rated as the seventh most disabling disorder and the 
first among the neurological disorders. But migraine would often be misdiagnosed, because 
of its overlapping symptoms with other disorders such as tension headache, epilepsy and 
strokes. In the past decades, many studies have been performed aiming at the highly pre-
cise migraine identification. One specific technique from these studies has already shown 
promising results, which is flash stimulation. The foundation of this method is the analysis of 
the subject’s neural responses, recorded with multichannel electroencephalography (EEG) 
under flash stimulation at different frequencies for variable amounts of seconds. One study 
in the literature found flash frequency at 4 Hz to be the most accurate (Akben, Subasi, & 
Tuncel, 2012) (Subasi, Ahmed, Aličković, & Rashik Hassan, 2019). A general framework for 
migraine detection is presented in Fig. 4.5.

plt.plot(mean_fpr, mean_tpr, color=’b’,
label=r’Mean ROC (AUC = %0.2f $\pm$ %0.2f)’ % (mean_auc, std_
auc),
lw=2, alpha=.8)
std_tpr = np.std(tprs, axis=0)
tprs_upper = np.minimum(mean_tpr + std_tpr, 1)
tprs_lower = np.maximum(mean_tpr - std_tpr, 0)
plt.fill_between(mean_fpr, tprs_lower, tprs_upper, 
color=’grey’, alpha=.2,
 label=r’$\pm$ 1 std. dev.’)
plt.xlim([-0.05, 1.05])
plt.ylim([-0.05, 1.05])
plt.xlabel(’False Positive Rate’)
plt.ylabel(’True Positive Rate’)
plt.title(’Receiver operating characteristic example’)
plt.legend(loc=“lower right”)
plt.show()



 4.2 EEG signal analysis 247

 

Example 4.4
The following Python code is used to extract features from healthy and migraine EEG signals by 

employing wavelet packet decomposition (WPD). Next it uses statistical values of WPD sub-bands, 
and then it classifies these data using extra tree classifier with separate training and testing datasets. 
The classification accuracy, precision, recall, F1 score, Cohen kappa score, and Matthews correlation 
coefficient are calculated. The classification report and confusion matrix are also given.

Data Set Information: An 18-channel (10-20 system) Nicolet One machine is used to record the 
data. EEG data was collected from migraineurs and healthy subjects at the Neurology Department 
at Kahramanmaras Sutcu Imam University. Our dataset can be described as follows:

•	 In	all,	15	migraineurs	(2	males,	13	females,	without	aura)	of	ages	20	to	34	years	(mean	
age ± standard deviation 27 ± 4.4 years, diagnosed according to the criteria proposed by the 
International Headache Society, or IHS) and 15 control subjects (5 males, 10 females) of ages 19 
to 35 years (mean age ± standard deviation: 26 ± 5.3 years) participated in the experiment.

•	 The	experiment	was	conducted	in	a	dimly	lit	room.
•	 None	of	the	participants	had	taken	any	drugs	before	the	recordings.
•	 All	participants	were	in	the	interictal	(pain-free)	state	while	in	a	couchant	position.
•	 The	10-20	EEG	system	was	used	to	collect	the	EEG	data.
•	 EEG	signals	were	collected	at	256	Hz	sampling	frequency.
•	 Each	stimulation	was	30	seconds	long	at	the	frequency	of	4	Hz.

FIGURE 4.5 A general framework for migraine detection. Source: Adapted from Subasi et al. (2019d).
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EEG frequency range from 0 to 100 Hz (Niedermeyer & da Silva, 2005). In addition, the EEG 
frequency bands delta (1–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz), and gamma (30–
100 Hz) are all within the 0–100 Hz range. According to Nyquist theorem, in order to capture all use-
ful information from the EEG signals, the minimum sampling rate should be at least 200 Hz. Note 
that the sampling rate used in this study is 256 Hz, which is noticeably above the required 200 Hz. 
This dataset was used in Akben et al. (2012) and Subasi et al. (2019d), where a different analysis 
strategy was considered.

"""
Created on Thu May 9 12:18:30 2019
@author: asubasi
"""
# ======================================================================
# Feature extraction using the statistical values of wavelet packet 
transform
# ======================================================================
# descriptive statistics
import scipy as sp
import scipy.io as sio
import pywt
import numpy as np
import scipy.stats as stats

wname = pywt.Wavelet(’db1’)
level=6 #Number of decomposition level
#Load mat file
mat_contents = sio.loadmat(’Migraine.mat’)
sorted(mat_contents.keys())
HEALTHY=mat_contents[’Healthy’]
MIGRAINE=mat_contents[’Migraineur’]
Labels = [] #Empty List For Labels
NofClasses=2 #Number of Classes
Length = 768; # Length of signal
Nofsignal=135; #Number of Signal for each Class
numrows =83 #Number of features extracted from Wavelet Packet 
Decomposition
#Create Empty Array For Features
Extracted_Features=np.ndarray(shape=(NofClasses*Nofsignal,numrows), 
dtype=float, order=’F’)
# ======================================================================
# Utility function for feature extraction
# ======================================================================
def WPD_Feature_Extraction(signal, i, wname, level):
#Mean Values of each subbands
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wp= pywt.WaveletPacket(signal, wname, mode=’symmetric’, maxlevel=level)
Extracted_Features[i,0]=sp.mean(abs(wp[’a’].data))
Extracted_Features[i,1]=sp.mean(abs(wp[’aa’].data))
Extracted_Features[i,2]=sp.mean(abs(wp[’aaa’].data))
Extracted_Features[i,3]=sp.mean(abs(wp[’aaaa’].data))
Extracted_Features[i,4]=sp.mean(abs(wp[’aaaaa’].data))
Extracted_Features[i,5]=sp.mean(abs(wp[’aaaaaa’].data))
Extracted_Features[i,6]=sp.mean(abs(wp[’d’].data))
Extracted_Features[i,7]=sp.mean(abs(wp[’dd’].data))
Extracted_Features[i,8]=sp.mean(abs(wp[’ddd’].data))
Extracted_Features[i,9]=sp.mean(abs(wp[’dddd’].data))
Extracted_Features[i,10]=sp.mean(abs(wp[’ddddd’].data))
Extracted_Features[i,11]=sp.mean(abs(wp[’dddddd’].data))
#Standart Deviation of each subbands
Extracted_Features[i,12]=sp.std(wp[’a’].data)
Extracted_Features[i,13]=sp.std(wp[’aa’].data)
Extracted_Features[i,14]=sp.std(wp[’aaa’].data)
Extracted_Features[i,15]=sp.std(wp[’aaaa’].data)
Extracted_Features[i,16]=sp.std(wp[’aaaaa’].data)
Extracted_Features[i,17]=sp.std(wp[’aaaaaa’].data)
Extracted_Features[i,18]=sp.std(wp[’d’].data)
Extracted_Features[i,19]=sp.std(wp[’dd’].data)
Extracted_Features[i,20]=sp.std(wp[’ddd’].data)
Extracted_Features[i,21]=sp.std(wp[’dddd’].data)
Extracted_Features[i,22]=sp.std(wp[’ddddd’].data)
Extracted_Features[i,23]=sp.std(wp[’dddddd’].data)
#Median Values of each subbands
Extracted_Features[i,24]=sp.median(wp[’a’].data)
Extracted_Features[i,25]=sp.median(wp[’aa’].data)
Extracted_Features[i,26]=sp.median(wp[’aaa’].data)
Extracted_Features[i,27]=sp.median(wp[’aaaa’].data)
Extracted_Features[i,28]=sp.median(wp[’aaaaa’].data)
Extracted_Features[i,29]=sp.median(wp[’aaaaaa’].data)
Extracted_Features[i,30]=sp.median(wp[’d’].data)
Extracted_Features[i,31]=sp.median(wp[’dd’].data)
Extracted_Features[i,32]=sp.median(wp[’ddd’].data)
Extracted_Features[i,33]=sp.median(wp[’dddd’].data)
Extracted_Features[i,34]=sp.median(wp[’ddddd’].data)
Extracted_Features[i,35]=sp.median(wp[’dddddd’].data)
#Skewness of each subbands
Extracted_Features[i,36]=stats.skew(wp[’a’].data)
Extracted_Features[i,37]=stats.skew(wp[’aa’].data)
Extracted_Features[i,38]=stats.skew(wp[’aaa’].data)
Extracted_Features[i,39]=stats.skew(wp[’aaaa’].data)
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Extracted_Features[i,40]=stats.skew(wp[’aaaaa’].data)
Extracted_Features[i,41]=stats.skew(wp[’aaaaaa’].data)
Extracted_Features[i,42]=stats.skew(wp[’d’].data)
Extracted_Features[i,43]=stats.skew(wp[’dd’].data)
Extracted_Features[i,44]=stats.skew(wp[’ddd’].data)
Extracted_Features[i,45]=stats.skew(wp[’dddd’].data)
Extracted_Features[i,46]=stats.skew(wp[’ddddd’].data)
Extracted_Features[i,47]=stats.skew(wp[’dddddd’].data)
#Kurtosis of each subbands
Extracted_Features[i,48]=stats.kurtosis(wp[’a’].data)
Extracted_Features[i,49]=stats.kurtosis(wp[’aa’].data)
Extracted_Features[i,50]=stats.kurtosis(wp[’aaa’].data)
Extracted_Features[i,51]=stats.kurtosis(wp[’aaaa’].data)
Extracted_Features[i,52]=stats.kurtosis(wp[’aaaaa’].data)
Extracted_Features[i,53]=stats.kurtosis(wp[’aaaaaa’].data)
Extracted_Features[i,54]=stats.kurtosis(wp[’d’].data)
Extracted_Features[i,55]=stats.kurtosis(wp[’dd’].data)
Extracted_Features[i,56]=stats.kurtosis(wp[’ddd’].data)
Extracted_Features[i,57]=stats.kurtosis(wp[’dddd’].data)
Extracted_Features[i,58]=stats.kurtosis(wp[’ddddd’].data)
Extracted_Features[i,59]=stats.kurtosis(wp[’dddddd’].data)
#RMS Values of each subbands
Extracted_Features[i,60]=np.sqrt(np.mean(wp[’a’].data**2))
Extracted_Features[i,61]=np.sqrt(np.mean(wp[’aa’].data**2))
Extracted_Features[i,62]=np.sqrt(np.mean(wp[’aaa’].data**2))
Extracted_Features[i,63]=np.sqrt(np.mean(wp[’aaaa’].data**2))
Extracted_Features[i,64]=np.sqrt(np.mean(wp[’aaaaa’].data**2))
Extracted_Features[i,65]=np.sqrt(np.mean(wp[’aaaaaa’].data**2))
Extracted_Features[i,66]=np.sqrt(np.mean(wp[’d’].data**2))
Extracted_Features[i,67]=np.sqrt(np.mean(wp[’dd’].data**2))
Extracted_Features[i,68]=np.sqrt(np.mean(wp[’ddd’].data**2))
Extracted_Features[i,69]=np.sqrt(np.mean(wp[’dddd’].data**2))
Extracted_Features[i,70]=np.sqrt(np.mean(wp[’ddddd’].data**2))
Extracted_Features[i,71]=np.sqrt(np.mean(wp[’dddddd’].data**2))
#Ratio of subbands
 Extracted_Features[i,72]=sp.mean(abs(wp[’a’].data))/sp.mean(abs(wp[’aa’].
data))
 Extracted_Features[i,73]=sp.mean(abs(wp[’aa’].data))/sp.mean(abs 
(wp[’aaa’].data))
 Extracted_Features[i,74]=sp.mean(abs(wp[’aaa’].data))/sp.mean(abs(wp 
[’aaaa’].data))
 Extracted_Features[i,75]=sp.mean(abs(wp[’aaaa’].data))/sp.mean(abs(wp 
[’aaaaa’].data))
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 Extracted_Features[i,76]=sp.mean(abs(wp[’aaaaa’].data))/sp.mean(abs(wp 
[’aaaaaa’].data))
 Extracted_Features[i,77]=sp.mean(abs(wp[’aaaaaa’].data))/sp.mean(abs 
(wp[’d’].data))
 Extracted_Features[i,78]=sp.mean(abs(wp[’d’].data))/sp.mean(abs(wp 
[’dd’].data))
 Extracted_Features[i,79]=sp.mean(abs(wp[’dd’].data))/sp.mean(abs(wp 
[’ddd’].data))
 Extracted_Features[i,80]=sp.mean(abs(wp[’ddd’].data))/sp.mean(abs 
(wp[’dddd’].data))
 Extracted_Features[i,81]=sp.mean(abs(wp[’dddd’].data))/sp.mean(abs(wp 
[’ddddd’].data))
 Extracted_Features[i,82]=sp.mean(abs(wp[’ddddd’].data))/sp.mean(abs(wp 
[’dddddd’].data))

#%%
# ======================================================================
# Feature extraction from healthy EEG signal
# ======================================================================
for i in range(Nofsignal):
  WPD_Feature_Extraction(HEALTHY[:,i], i, wname, level)
  Labels.append(“HEALTHY”)
# ======================================================================
# Feature extraction from migraine EEG signal
# ======================================================================
for i in range(Nofsignal, 2*Nofsignal):
  WPD_Feature_Extraction(MIGRAINE[:,i-Nofsignal], i, wname, level)
  Labels.append(“MIGRAINE”)
#%%
# ======================================================================
# Classification
# ======================================================================
X = Extracted_Features
y = Labels
# Import train_test_split function
from sklearn.model_selection import train_test_split
# Split dataset into training set and test set
# 70% training and 30% test
Xtrain, Xtest, ytrain, ytest = train_test_split(X, y,test_size=0.3, 
random_state=1)
#%%
# ======================================================================
# Extra trees classification example with training and test set
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# ======================================================================
#Import Extra Trees model
from sklearn.ensemble import ExtraTreesClassifier
# Split dataset into training set and test set
# 70% training and 30% test
Xtrain, Xtest, ytrain, ytest = train_test_split(X, y,test_size=0.3, 
random_state=0)
#Create the Model
clf = model = ExtraTreesClassifier(n_estimators=100, max_features=48)
#Train the model using the training sets
clf.fit(Xtrain,ytrain)
#Predict the response for test dataset
ypred = clf.predict(Xtest)

#Evaluate the Model and Print Performance Metrics
from sklearn import metrics
print(’Accuracy:’, np.round(metrics.accuracy_score(ytest,ypred),4))
print(’Precision:’, np.round(metrics.precision_score(ytest,
 ypred,average=’weighted’),4))
print(’Recall:’, np.round(metrics.recall_score(ytest,ypred,
  average=’weighted’),4))
print(’F1 Score:’, np.round(metrics.f1_score(ytest,ypred,
  average=’weighted’),4))
print(’Cohen Kappa Score:’, np.round(metrics.cohen_kappa_score(ytest, 
ypred),4))
print(’Matthews Corrcoef:’, np.round(metrics.matthews_corrcoef(ytest, 
ypred),4))
print(’\t\tClassification Report:\n’, metrics.classification_report(ypred, 
ytest))
#Plot Confusion Matrix
from sklearn.metrics import confusion_matrix
print(“Confusion Matrix:\n”,confusion_matrix(ytest, ypred))

4.3 EMG signal analysis

The main responsibility of human skeletal muscular system is to give the forces required 
to do several activities. This system contains two subsystems—the nervous system and 
the muscular system—together creating the neuromuscular system (Begg et al., 2008). The 
motion and arrangement of the limbs are controlled by electrical signals propagating back and 
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forth between the muscles and the peripheral and central nervous system (Bronzino, 1999). 
Nerves might be understood as wires conducting electrical currents; the nerve heads (nuclei) 
begin in the spinal column and their long axonal bodies enlarge distant and deep, excit-
ing single motor units in various muscles. The skeletal-muscular system consists of muscle 
sets attached to bones via tendons, and a motion is completed once nerve signals generate 
muscle contractions and relaxations, which either attract or repel the bone (Begg et al., 2008; 
Subasi, 2019c).

The electromyogram (EMG) signal represents the electrical state of skeletal muscles and 
holds data associated with the structure of the muscles to initiate a variety of body parts to 
activate. The EMG signal carries data associated with the controller effect of the central and 
peripheral nervous systems on the muscles. Naturally, the EMG signal gives an extremely 
useful description of the neuromuscular system since various pathological measures, regard-
less of appearing in the nervous system or the muscle, are visible by changes in the signal fea-
tures. In recent decades, the quality of EMG signal understanding has considerably improved 
with the development of new signal processing techniques to understand the muscles’ elec-
trophysiology (Sörnmo & Laguna, 2005). EMG analysis is more accurate than clinical tests 
in defining muscle fiber types involved in abnormalities. EMG analysis can show irregular 
sensory-nerve phenomenon even though the patient still has normal motor-nerve conduc-
tion. Furthermore, EMG analysis may help a medical doctor diagnose conditions without the 
need for a muscle biopsy (Begg et al., 2008). Progresses in engineering and technology have 
taken electromyography beyond the conventional diagnostic procedures to consider usages 
in different areas such as rehabilitation, ergonomics, movement analysis, exercise physiol-
ogy, and biofeedback, as well as myoelectric control of prosthesis (Sörnmo & Laguna, 2005; 
Subasi, 2019c).

4.3.1 Diagnosis of neuromuscular disorders

Neuromuscular disorders are abnormalities that initially occur in the nervous system, in 
the neuromuscular junctions, and in the muscle fibers. These abnormalities have different 
levels of severity, ranging from negligible damage of muscles to amputation caused by neu-
ron or muscle death. In more severe illnesses like amyotrophic lateral sclerosis (ALS), death is 
generally assured. Premature and correct diagnosis is crucial for improved prognosis and the 
probability of complete rehabilitation. In most cases, clinical testing is inadequate to identify 
and prevent disorders from spreading because a lot of dissimilar abnormalities could result 
from a specific symptom. Accurate diagnosis of the disorder is, for that reason, of supreme 
significance so more decisive treatment can be established. Currently, electrodiagnostic stud-
ies consist of nerve conduction studies, and EMGs are utilized for the evaluation and identi-
fication of patients with neuromuscular disorders. EMG was first employed as a method of 
examining neuromuscular states formed on cell action capabilities throughout muscle activ-
ity. Characteristics of the EMG waveform (0.01–10 mV and 10–2000 Hz on average) can indi-
cate the position, etiology, and kind of anatomy. As an example, EMG signal interval shows 
the position and network metabolic status of the muscle fiber (Emly, Gilmore, & Roy, 1992) 
and irregular spikes can show myopathy. On the other hand, the electrodiagnostic methods 



254 4. Classification examples for healthcare

 

help doctors in disease diagnosis but are hardly ever helpful for confirming the diagnosis, 
and in complicated situations more invasive tools like muscle biopsies or more advanced 
imaging methods like ultrasound or MRI are essential. The interpretation of the EMG is as 
a rule done by trained and expert neurologists who, besides examining EMG waveforms, 
engage in methods pertaining to needle conduction research and muscle acoustics as well. 
Problems occur when there are hardly any specialists to meet the demand of patients and, 
as a result, it is important to develop an automated diagnostic system based on EMG read-
ings. Relevant machine learning techniques could be used for the detection and classifica-
tion of neuromuscular disorders based on EMG processing. These intelligent systems will 
help doctors detect anomalies in the neuromuscular system. The aim of intelligent diagnostic 
and artificially controlled neuromuscular systems is to preprocess the raw EMG signals and 
hence extract characteristic data or features. Extracted features consist of time and frequency 
domain data, Fourier coefficients, autoregressive coefficients, wavelet coefficients, and a 
wide range of quantities derived from other signal processing methods. This data can then be 
employed as input data for classifiers like decision trees and support vector machines to clas-
sify neuromuscular diseases. Neuromuscular disorders are typically anomalies concerning 
the peripheral nervous system. They can be categorized depending on the location of and rea-
son for the disorders. Two main disorders are neuropathy and myopathy (Begg et al., 2008; 
Subasi, 2019c).

Neuropathy is a term that identifies disorders of nerves that cause pain and disability. The 
cause of neuropathic disorders is distinct, including injury, infection, diabetes, alcohol abuse, 
and cancer chemotherapy. Myopathy is a disorder usually associated with the skeletal muscle 
that is caused by injury of a muscle group or some genetic mutation. Myopathy prevents the 
normal functioning of affected muscles. Consequently, the patient suffering with myopathic 
disorders has weak muscles and, depending on the severity of the disorder, has problems 
performing regular tasks or finds it impossible to make any movement without utilizing the 
affected muscles (Begg et al., 2008; Subasi, 2019c).

The needle EMG is the typical clinical recording method utilized for diagnosis of the 
neuromuscular pathology. When, for instance, a patient goes to a doctor for muscle weak-
ness, the doctor will record the needle EMG during contraction of specific muscles. This 
data may help identify irregular activity occurring in circumstances like muscle pain, injury 
to nerves in the arms and legs, pinched nerves, and muscular dystrophy. The needle EMG 
is also examined together with the nerve injury and can be used to determine if the injury 
is restored and has reverted back to normal, with complete muscle reactivity, for example, 
by analyzing alterations in motor unit achievement over a specific time period. The diag-
nostic EMG includes the examination of unexpected motor action, which can happen dur-
ing muscle relaxation. In normal situations, the muscle is electrically quiet when relaxed; 
on the other hand, irregular spontaneous waveforms and waveform patterns can be gen-
erated that are connected with spontaneous muscular activities (Sörnmo & Laguna, 2005; 
Subasi, 2019c). A general framework for diagnosis of neuromuscular disorders using EMG 
signals is shown in Fig. 4.6.
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Example 4.5
The following Python code is used to extract features from the EMG signals by employing sta-

tionary wavelet transform (SWT) and utilizing statistical values of SWT sub-bands. Then it classi-
fies these data using SVM classifier with separate training and testing datasets. The classification 
accuracy, precision, recall, F1 score, Cohen kappa score, and Matthews correlation coefficient are 
calculated. The classification report, confusion matrix, and receiver operating characteristic (ROC) 
area are also given.

Dataset information: EMG signals are taken from the EMGLAB website (http://www.emglab.
net/). The clinical EMG signals were acquired under normal conditions for MUAP analysis. The 
EMG signals are recorded at low voluntary and constant level of contraction with a standard con-
centric needle electrode. The EMG signals were filtered between 2 Hz and 10 kHz and consist of a 
control group and a group of patients with ALS and myopathy. There were 10 normal subjects (4 
females and 6 males) aged 21–37 years in the control group. There were 8 patients (4 females and 
4 males) between 35–67 years old in the ALS group. There were 7 patients (2 females and 5 males) 
between 19–63 years old in the myopathy group (Nikolic, 2001). You can download the data from 
the following web site:
http://www.emglab.net/emglab/Signals/signals.php

"""
Created on Thu May 9 12:18:30 2019

FIGURE 4.6 A general framework for diagnosis of neuromuscular disorders using EMG signals.

http://www.emglab.net/
http://www.emglab.net/
http://www.emglab.net/emglab/Signals/signals.php


256 4. Classification examples for healthcare

 

@author: asubasi
"""
# ======================================================================
# Feature extraction using the statistical values of stationary wavelet 
transform
# ======================================================================
import scipy.io as sio
# descriptive statistics
import scipy as sp
import pywt
import matplotlib.pyplot as plt
import numpy as np
import scipy.stats as stats
waveletname=’db1’
level=6 #Decomposition Level
#Load mat file
mat_contents = sio.loadmat(’EMGDAT.mat’)
sorted(mat_contents.keys())

CONTROL=mat_contents[’CON’]
ALS=mat_contents[’ALS’]
MYOPATHIC=mat_contents[’MYO’]

Labels = [] #Empty List For Labels
Length = 8192; # Length of signal
Nofsignal=200; #Number of Signal
NofClasses=3; #Number of Classes
numrows =83 #Number of features extracted from Wavelet Packet 
Decomposition
#Create Empty Array For Features
Extracted_Features=np.ndarray(shape=(NofClasses*Nofsignal,numrows), 
dtype=float, order=’F’)
# ======================================================================
# Define utility functions for feature extraction
# ======================================================================
def SWT_Feature_Extraction(signal, i, wname, level):

coeffs = pywt.swt(signal, wname, level=level)
#Mean Values of each subbands
Extracted_Features[i,0]=sp.mean(abs(coeffs[0][0]))
Extracted_Features[i,1]=sp.mean(abs(coeffs[1][0]))
Extracted_Features[i,2]=sp.mean(abs(coeffs[2][0]))
Extracted_Features[i,3]=sp.mean(abs(coeffs[3][0]))
Extracted_Features[i,4]=sp.mean(abs(coeffs[4][0]))
Extracted_Features[i,5]=sp.mean(abs(coeffs[5][0]))
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Extracted_Features[i,6]=sp.mean(abs(coeffs[0][1]))
Extracted_Features[i,7]=sp.mean(abs(coeffs[1][1]))
Extracted_Features[i,8]=sp.mean(abs(coeffs[2][1]))
Extracted_Features[i,9]=sp.mean(abs(coeffs[3][1]))
Extracted_Features[i,10]=sp.mean(abs(coeffs[4][1]))
Extracted_Features[i,11]=sp.mean(abs(coeffs[5][1]))
#Standart Deviation of each subbands
Extracted_Features[i,12]=sp.std(coeffs[0][0])
Extracted_Features[i,13]=sp.std(coeffs[1][0])
Extracted_Features[i,14]=sp.std(coeffs[2][0])
Extracted_Features[i,15]=sp.std(coeffs[3][0])
Extracted_Features[i,16]=sp.std(coeffs[4][0])
Extracted_Features[i,17]=sp.std(coeffs[5][0])
Extracted_Features[i,18]=sp.std(coeffs[0][1])
Extracted_Features[i,19]=sp.std(coeffs[1][1])
Extracted_Features[i,20]=sp.std(coeffs[2][1])
Extracted_Features[i,21]=sp.std(coeffs[3][1])
Extracted_Features[i,22]=sp.std(coeffs[4][1])
Extracted_Features[i,23]=sp.std(coeffs[5][1])
#Median Values of each subbands
Extracted_Features[i,24]=sp.median(coeffs[0][0])
Extracted_Features[i,25]=sp.median(coeffs[1][0])
Extracted_Features[i,26]=sp.median(coeffs[2][0])
Extracted_Features[i,27]=sp.median(coeffs[3][0])
Extracted_Features[i,28]=sp.median(coeffs[4][0])
Extracted_Features[i,29]=sp.median(coeffs[5][0])
Extracted_Features[i,30]=sp.median(coeffs[0][1])
Extracted_Features[i,31]=sp.median(coeffs[1][1])
Extracted_Features[i,32]=sp.median(coeffs[2][1])
Extracted_Features[i,33]=sp.median(coeffs[3][1])
Extracted_Features[i,34]=sp.median(coeffs[4][1])
Extracted_Features[i,35]=sp.median(coeffs[5][1])
#Skewness of each subbands
Extracted_Features[i,36]=stats.skew(coeffs[0][0])
Extracted_Features[i,37]=stats.skew(coeffs[1][0])
Extracted_Features[i,38]=stats.skew(coeffs[2][0])
Extracted_Features[i,39]=stats.skew(coeffs[3][0])
Extracted_Features[i,40]=stats.skew(coeffs[4][0])
Extracted_Features[i,41]=stats.skew(coeffs[5][0])
Extracted_Features[i,42]=stats.skew(coeffs[0][1])
Extracted_Features[i,43]=stats.skew(coeffs[1][1])
Extracted_Features[i,44]=stats.skew(coeffs[2][1])
Extracted_Features[i,45]=stats.skew(coeffs[3][1])
Extracted_Features[i,46]=stats.skew(coeffs[4][1])
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Extracted_Features[i,47]=stats.skew(coeffs[5][1])
#Kurtosis of each subbands
Extracted_Features[i,48]=stats.kurtosis(coeffs[0][0])
Extracted_Features[i,49]=stats.kurtosis(coeffs[1][0])
Extracted_Features[i,50]=stats.kurtosis(coeffs[2][0])
Extracted_Features[i,51]=stats.kurtosis(coeffs[3][0])
Extracted_Features[i,52]=stats.kurtosis(coeffs[4][0])
Extracted_Features[i,53]=stats.kurtosis(coeffs[5][0])
Extracted_Features[i,54]=stats.kurtosis(coeffs[0][1])
Extracted_Features[i,55]=stats.kurtosis(coeffs[1][1])
Extracted_Features[i,56]=stats.kurtosis(coeffs[2][1])
Extracted_Features[i,57]=stats.kurtosis(coeffs[3][1])
Extracted_Features[i,58]=stats.kurtosis(coeffs[4][1])
Extracted_Features[i,59]=stats.kurtosis(coeffs[5][1])
#RMS Values of each subbands
Extracted_Features[i,60]=np.sqrt(np.mean(coeffs[0][0]**2))
Extracted_Features[i,61]=np.sqrt(np.mean(coeffs[1][0]**2))
Extracted_Features[i,62]=np.sqrt(np.mean(coeffs[2][0]**2))
Extracted_Features[i,63]=np.sqrt(np.mean(coeffs[3][0]**2))
Extracted_Features[i,64]=np.sqrt(np.mean(coeffs[4][0]**2))
Extracted_Features[i,65]=np.sqrt(np.mean(coeffs[5][0]**2))
Extracted_Features[i,66]=np.sqrt(np.mean(coeffs[0][1]**2))
Extracted_Features[i,67]=np.sqrt(np.mean(coeffs[1][1]**2))
Extracted_Features[i,68]=np.sqrt(np.mean(coeffs[2][1]**2))
Extracted_Features[i,69]=np.sqrt(np.mean(coeffs[3][1]**2))
Extracted_Features[i,70]=np.sqrt(np.mean(coeffs[4][1]**2))
Extracted_Features[i,71]=np.sqrt(np.mean(coeffs[5][1]**2))
#Ratio of subbands
 Extracted_Features[i,72]=sp.mean(abs(coeffs[0][0]))/sp.mean(abs(coeffs[1]
[0]))
 Extracted_Features[i,73]=sp.mean(abs(coeffs[1][0]))/sp.mean(abs(coeffs[2]
[0]))
 Extracted_Features[i,74]=sp.mean(abs(coeffs[2][0]))/sp.mean(abs(coeffs[3]
[0]))
 Extracted_Features[i,75]=sp.mean(abs(coeffs[3][0]))/sp.mean(abs(coeffs[4]
[0]))
 Extracted_Features[i,76]=sp.mean(abs(coeffs[4][0]))/sp.mean(abs(coeffs[5]
[0]))
 Extracted_Features[i,77]=sp.mean(abs(coeffs[5][0]))/sp.mean(abs(coeffs[0]
[1]))
 Extracted_Features[i,78]=sp.mean(abs(coeffs[0][1]))/sp.mean(abs(coeffs 
[1][1]))
 Extracted_Features[i,79]=sp.mean(abs(coeffs[1][1]))/sp.mean(abs(coeffs 
[2][1]))
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 Extracted_Features[i,80]=sp.mean(abs(coeffs[2][1]))/sp.mean(abs (co-
effs[3][1]))
 Extracted_Features[i,81]=sp.mean(abs(coeffs[3][1]))/sp.mean(abs(coeffs 
[4][1]))
 Extracted_Features[i,82]=sp.mean(abs(coeffs[4][1]))/sp.mean(abs 
(coeffs[5][1]))

#%%
# ======================================================================
# Feature extraction from control EMG signal
# ======================================================================
for i in range(Nofsignal):
 SWT_Feature_Extraction(CONTROL[:,i], i, waveletname, level)
 Labels.append(“CONTROL”)
# ======================================================================
# Feature extraction from ALS EMG signal
# ======================================================================
for i in range(Nofsignal, 2*Nofsignal):
 SWT_Feature_Extraction(ALS[:,i-Nofsignal], i, waveletname, level)
 Labels.append(“ALS”)
# ======================================================================
# Feature extraction from myopathic EMG signal
# ======================================================================
for i in range(2*Nofsignal, 3*Nofsignal):
 SWT_Feature_Extraction(MYOPATHIC[:,i-2*Nofsignal], i, waveletname, level)
 Labels.append(“MYOPATHIC”)
#%%
# ======================================================================
# Classification
# ======================================================================
X = Extracted_Features
y = Labels
# Import train_test_split function
from sklearn.model_selection import train_test_split
# Split dataset into training set and test set
# 70% training and 30% test
Xtrain, Xtest, ytrain, ytest = train_test_split(X, y,test_size=0.3, 
random_state=1)
#%%
# ======================================================================
# SVM example with training and test set
# ======================================================================
from sklearn import svm

""" The parameters and kernels of SVM classifierr can be changed as 
follows
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C = 10.0 # SVM regularization parameter
svm.SVC(kernel=’linear’, C=C)
svm.LinearSVC(C=C, max_iter=10000)
svm.SVC(kernel=’rbf’, gamma=0.7, C=C)
svm.SVC(kernel=’poly’, degree=3, gamma=’auto’, C=C)
"""
C = 10.0 # SVM regularization parameter
#Create the Model
clf =svm.SVC(kernel=’linear’, C=C)
#Train the model with Training Dataset
clf.fit(Xtrain,ytrain)
#Test the model with Testset
ypred = clf.predict(Xtest)
#Evaluate the Model and Print Performance Metrics
from sklearn import metrics
print(’Accuracy:’, np.round(metrics.accuracy_score(ytest,ypred),4))
print(’Precision:’, np.round(metrics.precision_score(ytest,
 ypred,average=’weighted’),4))
print(’Recall:’, np.round(metrics.recall_score(ytest,ypred,
  average=’weighted’),4))
print(’F1 Score:’, np.round(metrics.f1_score(ytest,ypred,
  average=’weighted’),4))
print(’Cohen Kappa Score:’, np.round(metrics.cohen_kappa_score(ytest, 
ypred),4))
print(’Matthews Corrcoef:’, np.round(metrics.matthews_corrcoef(ytest, 
ypred),4))
print(’\t\tClassification Report:\n’, metrics.classification_report(ypred, 
ytest))
#Plot Confusion Matrix
from sklearn.metrics import confusion_matrix
print(“Confusion Matrix:\n”,confusion_matrix(ytest, ypred))
#%%
# ======================================================================
# ROC curves for the multiclass problem
# ======================================================================
import numpy as np
import matplotlib.pyplot as plt
from itertools import cycle
from sklearn.metrics import roc_curve, auc
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import label_binarize
from sklearn.multiclass import OneVsRestClassifier
from scipy import interp
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# Binarize the output
y = label_binarize(y, classes=[’CONTROL’,’ALS’,’MYOPATHIC’ ])
n_classes = y.shape[1]
# shuffle and split training and test sets
Xtrain, Xtest, ytrain, ytest = train_test_split(X, y,test_size=0.3, 
random_state=1)
# Learn to predict each class against the other
classifier = OneVsRestClassifier(svm.SVC(kernel=’linear’, C=C))
yscore = classifier.fit(Xtrain, ytrain).decision_function(Xtest)
# Compute ROC curve and ROC area for each class
fpr = dict()
tpr = dict()
roc_auc = dict()
for i in range(n_classes):
 fpr[i], tpr[i], _ = roc_curve(ytest[:, i], yscore[:, i])
 roc_auc[i] = auc(fpr[i], tpr[i])
# Compute micro-average ROC curve and ROC area
fpr[“micro”], tpr[“micro”], _ = roc_curve(ytest.ravel(), yscore.ravel())
roc_auc[“micro”] = auc(fpr[“micro”], tpr[“micro”])
########################################################################
# Plot of a ROC curve for a specific class
plt.figure()
lw = 2
plt.plot(fpr[2], tpr[2], color=’darkorange’,
 lw=lw, label=’ROC curve (area = %0.2f)’ % roc_auc[2])
plt.plot([0, 1], [0, 1], color=’navy’, lw=lw, linestyle=’--’)
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel(’False Positive Rate’)
plt.ylabel(’True Positive Rate’)
plt.title(’Receiver operating characteristic’)
plt.legend(loc=“lower right”)
plt.show()
########################################################################
# Plot ROC curves for the multiclass problem
# Compute macro-average ROC curve and ROC area
# First aggregate all false positive rates
all_fpr = np.unique(np.concatenate([fpr[i] for i in range(n_classes)]))
# Then interpolate all ROC curves at this points
mean_tpr = np.zeros_like(all_fpr)
for i in range(n_classes):
 mean_tpr += interp(all_fpr, fpr[i], tpr[i])
# Finally average it and compute AUC
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4.3.2 EMG signals in prosthesis control

Myoelectric controlled prostheses are utilized by persons with missing upper limbs and 
amputations. The EMG signal is recorded from the surface electrodes located on muscles and 
brought to the prosthesis, where its properties are analyzed and interpreted in order to acti-
vate the necessary function. Considering the category of prosthesis, the regulation data goes 
from simple on/off commands generated by only one muscle to complex multifunction com-
mands generated by an assembly of muscles. The single-muscle regulator is usually based on 
the EMG amplitude in such a way that muscle contractions of various strengths with various 
amplitudes can differentiate among hand closing and opening or elbow flexion and extension. 
A multifunction prosthesis mixes the usage of a couple of electrodes over different muscle 
assemblies applying advanced signal processing techniques to increase the data amount, which 
is capable of being extracted relative to the active muscle state. The multifunction prosthesis 

mean_tpr /= n_classes
fpr[“macro”] = all_fpr
tpr[“macro”] = mean_tpr
roc_auc[“macro”] = auc(fpr[“macro”], tpr[“macro”])
# Plot all ROC curves
plt.figure()
plt.plot(fpr[“micro”], tpr[“micro”],
  label=’micro-average ROC curve (area = {0:0.2f})’
   ”.format(roc_auc[“micro”]),
 color=’deeppink’, linestyle=’:’, linewidth=4)
plt.plot(fpr[“macro”], tpr[“macro”],
 label=’macro-average ROC curve (area = {0:0.2f})’
   ”.format(roc_auc[“macro”]),
 color=’navy’, linestyle=’:’, linewidth=4)
colors = cycle([’aqua’, ’darkorange’, ’cornflowerblue’])
for i, color in zip(range(n_classes), colors):
 plt.plot(fpr[i], tpr[i], color=color, lw=lw,
 label=’ROC curve of class {0} (area = {1:0.2f})’
 ”.format(i, roc_auc[i]))
plt.plot([0, 1], [0, 1], ’k--’, lw=lw)
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel(’False Positive Rate’)
plt.ylabel(’True Positive Rate’)
plt.title(’Detailed Receiver operating characteristic’)
plt.legend(loc=“lower right”)
plt.show()



 4.3 EMG signal analysis 263

 

achieves finer accuracy of the user’s intension by analyzing transient signal patterns based on 
contractions, applying time, frequency, or time-frequency methods. It is crucial to understand 
that the development of algorithms for prosthetic control is associated with real-time control 
(Sörnmo & Laguna, 2005). The human hands are significant because they play a crucial role in 
grasping and manipulating many objects. Even the loss of a single hand affects human activity, 
and the prosthetic hand is a solution in equipping the armless subject. Muscle signals control 
hand prostheses, and control is possible after hand amputation because there are a consider-
able number of muscles in the arm stump to control the prosthesis (Kurzynski, Krysmann, 
Trajdos, & Wolczowski, 2016) (Subasi, 2019c).

Biomedical signals are the set of body signals that describe a physical variable of inter-
est. Biomedical signals such as surface EMG (sEMG) are used to control the prostheses’ 
movement. Upper limb prosthesis structures are mainly based on myoelectric control, 
characterizing EMG signals that arise during muscle contraction on the skin surface. 
Because most of the muscles that produce finger motion are left in the stump after hand 
amputation, these muscles can be utilized to control the prosthesis (Wojtczak, Amaral, 
Dias, Wolczowski, & Kurzynski, 2009). As the analysis of EMG signals is used generally 
in medical diagnostics, sports, rehabilitation, and prosthesis control, the identification of 
EMG signals presents considerable support for the automation of human tasks. A novel 
application of sEMG signal classification is the individual skeletal muscle contraction 
where the related EMG signals are utilized to control a machine action after classification. 
But the challenge is the prosthetic hand control in which the hand can achieve different 
movements, thus allowing for movement and even the playing of musical instruments by 
grasping and manipulating several objects. The loss of a hand lessens the possibility of full 
human function, and the loss of both hands basically reduces independence. The aim of 
the prosthetic hand is to relatively reestablish the function of the lost limb, especially its 
working functions, to be able to enact various movements and to realize different finger 
configurations. The muscle signals that control the prostheses are associated with healthy 
hand and finger movements and should be acquired noninvasively by suitable sensors 
positioned above the muscles on the skin. Therefore, sEMG-controlled prostheses involve 
a surface signal activated by the hand stump muscles and then the recognition of a cat-
egory of intended prosthesis action through classification (Subasi, 2019c; Wołczowski & 
Zdunek, 2017;).

The hand is one of the most crucial components of human beings and is used as a 
basic element in the sense of feeling. The hand is employed in real-life experiences to 
feel surfaces and perform basic lifting functions. With a controlled muscle movement, for 
instance, the basic function of the arm is to grip, lift, wave, and perform other rotation 
motions of the arm. For amputees, the prosthesis hand is an artificial device utilized to 
replace a missing part. The hand prosthesis can be improved and manipulated to perform 
different functions of the hand. For example, the myoelectric arm utilizes a controlled 
muscle contraction produced from an electrical charge to transfer and strengthen the con-
trol center. In this manner, with a controlled movement, an amputee can perform normal 
functions of the arm like gripping, feeling, and waving among other hand-related move-
ments (Subasi, 2019c). A general framework for prosthesis control using sEMG signals is 
shown in Fig. 4.7.
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Example 4.6
The following Python code is used to extract features from sEMG signals using wavelet packed 

decomposition (WPD) and employs statistical values of WPD sub-bands. Then it classifies these 
data using multilayer perceptron classifier employing training and testing datasets. The classifica-
tion accuracy, precision, recall, F1 score, Cohen kappa score, and Matthews correlation coefficient 
are calculated. The classification report and confusion matrix are also given. For this example, sur-
face EMG for basic hand movements dataset will be used.

Dataset information: The data were sampled at 500 Hz, band-pass filtered using a Butterworth 
Band Pass filter with low and high cutoff at 15 Hz and 500 Hz respectively, and a notch filter at 50 
Hz to eliminate line interference artifacts. The signal was recorded from two differential EMG sen-
sors, and the signals were conducted to a two-channel EMG system by Delsys Bagnoli Handheld 
EMG Systems. The experiments include freely and repeatedly grasping different items that were 
crucial to conducting hand movements. The force and speed were purposely left to the subject’s 
will. There were two forearm surface EMG electrodes—flexor carpi ulnaris and extensor carpi ra-
dialis longus and brevis—detained in place by elastic bands, with the reference electrode in the 

FIGURE 4.7 A general framework for prosthesis control using sEMG signals. Source: Adapted from Subasi 
(2019b).
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middle, to collect information about muscle activation. Five healthy subjects (two males and three 
females) of approximately the same age (20 to 22 years old) conducted the six grasps for 30 times 
each. The measured time is 6 sec. There exists a mat file for each subject. The subjects were required 
to carry out repeatedly the following six movements that are considered daily hand grasps:

1. Spherical: for holding spherical tools
2. Tip: for holding small tools
3. Palmar: for grasping with palm facing the object
4. Lateral: for holding thin, flat objects
5. Cylindrical: for holding cylindrical tools
6. Hook: for supporting a heavy load

More information can be found in Sapsanis et al. (Sapsanis et al., 2013 Sapsanis, Georgoulas, & 
Tzes, 2013). You can download the data from the following web site: 

https://archive.ics.uci.edu/ml/datasets/sEMG+for+Basic+Hand+movements#

"""
Created on Thu May 9 12:18:30 2019
@author: absubasi
"""
# ======================================================================
# Feature extraction using the statistical values of wavelet packet 
transform
# ======================================================================
# descriptive statistics
import scipy as sp
import scipy.io as sio
import pywt
import numpy as np
import scipy.stats as stats

wname = pywt.Wavelet(’db1’)
level=6 #Number of decomposition level
#Load mat file
mat_contents = sio.loadmat(’sEMG_UCI_BHM.mat’)
sorted(mat_contents.keys())
CYLINDIRICAL=mat_contents[’F1_cyl_ch1’]
HOOK=mat_contents[’F1_hook_ch1’]
LATERAL=mat_contents[’F1_lat_ch1’]
PALMAR=mat_contents[’F1_palm_ch1’]
SPHERICAL=mat_contents[’F1_spher_ch1’]
TIP=mat_contents[’F1_tip_ch1’]

https://archive.ics.uci.edu/ml/datasets/sEMG+for+Basic+Hand+movements#
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Labels = [] #Empty List For Labels
NofClasses=6 #Number of Classes
Length = 3000; # Length of signal
Nofsignal=30; #Number of Signal for each Class
numrows =83 #Number of features extracted from Wavelet Packet 
Decomposition
#Create Empty Array For Features
Extracted_Features=np.ndarray(shape=(NofClasses*Nofsignal,numrows), 
dtype=float, order=’F’)
# ======================================================================
# Feature extraction using the statistical values of wavelet packet 
transform
# ======================================================================
def WPD_Feature_Extraction(signal, i, wname, level):

#Mean Values of each subbands
wp= pywt.WaveletPacket(signal, wname, mode=’symmetric’, maxlevel=level)
Extracted_Features[i,0]=sp.mean(abs(wp[’a’].data))
Extracted_Features[i,1]=sp.mean(abs(wp[’aa’].data))
Extracted_Features[i,2]=sp.mean(abs(wp[’aaa’].data))
Extracted_Features[i,3]=sp.mean(abs(wp[’aaaa’].data))
Extracted_Features[i,4]=sp.mean(abs(wp[’aaaaa’].data))
Extracted_Features[i,5]=sp.mean(abs(wp[’aaaaaa’].data))
Extracted_Features[i,6]=sp.mean(abs(wp[’d’].data))
Extracted_Features[i,7]=sp.mean(abs(wp[’dd’].data))
Extracted_Features[i,8]=sp.mean(abs(wp[’ddd’].data))
Extracted_Features[i,9]=sp.mean(abs(wp[’dddd’].data))
Extracted_Features[i,10]=sp.mean(abs(wp[’ddddd’].data))
Extracted_Features[i,11]=sp.mean(abs(wp[’dddddd’].data))
#Standart Deviation of each subbands
Extracted_Features[i,12]=sp.std(wp[’a’].data)
Extracted_Features[i,13]=sp.std(wp[’aa’].data)
Extracted_Features[i,14]=sp.std(wp[’aaa’].data)
Extracted_Features[i,15]=sp.std(wp[’aaaa’].data)
Extracted_Features[i,16]=sp.std(wp[’aaaaa’].data)
Extracted_Features[i,17]=sp.std(wp[’aaaaaa’].data)
Extracted_Features[i,18]=sp.std(wp[’d’].data)
Extracted_Features[i,19]=sp.std(wp[’dd’].data)
Extracted_Features[i,20]=sp.std(wp[’ddd’].data)
Extracted_Features[i,21]=sp.std(wp[’dddd’].data)
Extracted_Features[i,22]=sp.std(wp[’ddddd’].data)
Extracted_Features[i,23]=sp.std(wp[’dddddd’].data)
#Median Values of each subbands
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Extracted_Features[i,24]=sp.median(wp[’a’].data)
Extracted_Features[i,25]=sp.median(wp[’aa’].data)
Extracted_Features[i,26]=sp.median(wp[’aaa’].data)
Extracted_Features[i,27]=sp.median(wp[’aaaa’].data)
Extracted_Features[i,28]=sp.median(wp[’aaaaa’].data)
Extracted_Features[i,29]=sp.median(wp[’aaaaaa’].data)
Extracted_Features[i,30]=sp.median(wp[’d’].data)
Extracted_Features[i,31]=sp.median(wp[’dd’].data)
Extracted_Features[i,32]=sp.median(wp[’ddd’].data)
Extracted_Features[i,33]=sp.median(wp[’dddd’].data)
Extracted_Features[i,34]=sp.median(wp[’ddddd’].data)
Extracted_Features[i,35]=sp.median(wp[’dddddd’].data)
#Skewness of each subbands
Extracted_Features[i,36]=stats.skew(wp[’a’].data)
Extracted_Features[i,37]=stats.skew(wp[’aa’].data)
Extracted_Features[i,38]=stats.skew(wp[’aaa’].data)
Extracted_Features[i,39]=stats.skew(wp[’aaaa’].data)
Extracted_Features[i,40]=stats.skew(wp[’aaaaa’].data)
Extracted_Features[i,41]=stats.skew(wp[’aaaaaa’].data)
Extracted_Features[i,42]=stats.skew(wp[’d’].data)
Extracted_Features[i,43]=stats.skew(wp[’dd’].data)
Extracted_Features[i,44]=stats.skew(wp[’ddd’].data)
Extracted_Features[i,45]=stats.skew(wp[’dddd’].data)
Extracted_Features[i,46]=stats.skew(wp[’ddddd’].data)
Extracted_Features[i,47]=stats.skew(wp[’dddddd’].data)
#Kurtosis of each subbands
Extracted_Features[i,48]=stats.kurtosis(wp[’a’].data)
Extracted_Features[i,49]=stats.kurtosis(wp[’aa’].data)
Extracted_Features[i,50]=stats.kurtosis(wp[’aaa’].data)
Extracted_Features[i,51]=stats.kurtosis(wp[’aaaa’].data)
Extracted_Features[i,52]=stats.kurtosis(wp[’aaaaa’].data)
Extracted_Features[i,53]=stats.kurtosis(wp[’aaaaaa’].data)
Extracted_Features[i,54]=stats.kurtosis(wp[’d’].data)
Extracted_Features[i,55]=stats.kurtosis(wp[’dd’].data)
Extracted_Features[i,56]=stats.kurtosis(wp[’ddd’].data)
Extracted_Features[i,57]=stats.kurtosis(wp[’dddd’].data)
Extracted_Features[i,58]=stats.kurtosis(wp[’ddddd’].data)
Extracted_Features[i,59]=stats.kurtosis(wp[’dddddd’].data)
#RMS Values of each subbands
Extracted_Features[i,60]=np.sqrt(np.mean(wp[’a’].data**2))
Extracted_Features[i,61]=np.sqrt(np.mean(wp[’aa’].data**2))
Extracted_Features[i,62]=np.sqrt(np.mean(wp[’aaa’].data**2))
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Extracted_Features[i,63]=np.sqrt(np.mean(wp[’aaaa’].data**2))
Extracted_Features[i,64]=np.sqrt(np.mean(wp[’aaaaa’].data**2))
Extracted_Features[i,65]=np.sqrt(np.mean(wp[’aaaaaa’].data**2))
Extracted_Features[i,66]=np.sqrt(np.mean(wp[’d’].data**2))
Extracted_Features[i,67]=np.sqrt(np.mean(wp[’dd’].data**2))
Extracted_Features[i,68]=np.sqrt(np.mean(wp[’ddd’].data**2))
Extracted_Features[i,69]=np.sqrt(np.mean(wp[’dddd’].data**2))
Extracted_Features[i,70]=np.sqrt(np.mean(wp[’ddddd’].data**2))
Extracted_Features[i,71]=np.sqrt(np.mean(wp[’dddddd’].data**2))
#Ratio of subbands
 Extracted_Features[i,72]=sp.mean(abs(wp[’a’].data))/sp.mean(abs 
(wp[’aa’].data))
 Extracted_Features[i,73]=sp.mean(abs(wp[’aa’].data))/sp.mean(abs(wp 
[’aaa’].data))
 Extracted_Features[i,74]=sp.mean(abs(wp[’aaa’].data))/sp.mean(abs 
(wp[’aaaa’].data))
 Extracted_Features[i,75]=sp.mean(abs(wp[’aaaa’].data))/sp.mean(abs(wp 
[’aaaaa’].data))
 Extracted_Features[i,76]=sp.mean(abs(wp[’aaaaa’].data))/sp.mean(abs 
(wp[’aaaaaa’].data))
 Extracted_Features[i,77]=sp.mean(abs(wp[’aaaaaa’].data))/sp.mean(abs 
(wp[’d’].data))
 Extracted_Features[i,78]=sp.mean(abs(wp[’d’].data))/sp.mean(abs 
(wp[’dd’].data))
 Extracted_Features[i,79]=sp.mean(abs(wp[’dd’].data))/sp.mean(abs(wp 
[’ddd’].data))
 Extracted_Features[i,80]=sp.mean(abs(wp[’ddd’].data))/sp.mean(abs(wp 
[’dddd’].data))
 Extracted_Features[i,81]=sp.mean(abs(wp[’dddd’].data))/sp.mean(abs 
(wp[’ddddd’].data))
 Extracted_Features[i,82]=sp.mean(abs(wp[’ddddd’].data))/sp.mean(abs(wp 
[’dddddd’].data))

#%%
# ======================================================================
# Feature extraction from cylindirical sEMG signal
# ======================================================================
for i in range(Nofsignal):
 WPD_Feature_Extraction(CYLINDIRICAL[i,:], i, wname, level)
 Labels.append(“CYLINDIRICAL”)
# ======================================================================
# Feature extraction from hook sEMG signal
# ======================================================================
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for i in range(Nofsignal, 2*Nofsignal):
 WPD_Feature_Extraction(HOOK[i-Nofsignal,:], i, wname, level)
 Labels.append(“HOOK”)
# ======================================================================
# Feature extraction from lateral sEMG signal
# ======================================================================
for i in range(2*Nofsignal, 3*Nofsignal):
 WPD_Feature_Extraction(LATERAL[i-2*Nofsignal,:], i, wname, level)
 Labels.append(“LATERAL”)
# ======================================================================
# Feature extraction from palmar sEMG signal
# ======================================================================
for i in range(3*Nofsignal, 4*Nofsignal):
 WPD_Feature_Extraction(PALMAR[i-3*Nofsignal,:], i, wname, level)
 Labels.append(“PALMAR”)
# ======================================================================
# Feature extraction from spherical sEMG signal
# ======================================================================
for i in range(4*Nofsignal, 5*Nofsignal):
 WPD_Feature_Extraction(SPHERICAL[i-4*Nofsignal,:], i, wname, level)
 Labels.append(“SPHERICAL”)
# ======================================================================
# Feature extraction from tip sEMG signal
# ======================================================================
for i in range(5*Nofsignal, 6*Nofsignal):
 WPD_Feature_Extraction(TIP[i-5*Nofsignal,:], i, wname, level)
 Labels.append(“TIP”)
#%%
# ======================================================================
# Classification
# ======================================================================
from sklearn.model_selection import cross_val_score
from sklearn.metrics import cohen_kappa_score, make_scorer
X = Extracted_Features
y = Labels
#To prevent warnings
import warnings
warnings.filterwarnings(“ignore”)
# Import train_test_split function
from sklearn.model_selection import train_test_split
# Split dataset into training set and test set
# 70% training and 30% test
Xtrain, Xtest, ytrain, ytest = train_test_split(X, y,test_size=0.3, 
random_state=1)
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#%%
from sklearn.neural_network import MLPClassifier
#Create Train and Test set
Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, test_size=0.3, 
random_state=1)
"""mlp=MLPClassifier(hidden_layer_sizes=(100, ), activation=’relu’, 
solver=’adam’,
 alpha=0.0001, batch_size=’auto’, learning_rate=’constant’,
 learning_rate_init=0.001, power_t=0.5, max_iter=200,
 shuffle=True, random_state=None, tol=0.0001, verbose=False,
 warm_start=False, momentum=0.9, nesterovs_momentum=True,
 early_stopping=False, validation_fraction=0.1, beta_1=0.9,
 beta_2=0.999, epsilon=1e-08, n_iter_no_change=10)"""
#Create the Model
mlp = MLPClassifier(hidden_layer_sizes=(50, ), learning_rate_init=0.001,
 alpha=1, momentum=0.7,max_iter=1000)
#Train the Model with Training dataset
mlp.fit(Xtrain,ytrain)
#Test the Model with Testing dataset
ypred = mlp.predict(Xtest)
#Evaluate the Model and Print Performance Metrics
from sklearn import metrics
print(’Accuracy:’, np.round(metrics.accuracy_score(ytest,ypred),4))
print(’Precision:’, np.round(metrics.precision_score(ytest,
 ypred,average=’weighted’),4))
print(’Recall:’, np.round(metrics.recall_score(ytest,ypred,
  average=’weighted’),4))
print(’F1 Score:’, np.round(metrics.f1_score(ytest,ypred,
  average=’weighted’),4))
print(’Cohen Kappa Score:’, np.round(metrics.cohen_kappa_score(ytest, 
ypred),4))
print(’Matthews Corrcoef:’, np.round(metrics.matthews_corrcoef(ytest, 
ypred),4))
print(’\t\tClassification Report:\n’, metrics.classification_report(ypred, 
ytest))
#Plot Confusion Matrix
from sklearn.metrics import confusion_matrix
print(“Confusion Matrix:\n”,confusion_matrix(ytest, ypred))
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4.3.3 EMG signals in rehabilitation robotics

EMG-controlled assistive devices are also used for stroke treatment in intensive therapy 
environments to help rehabilitation. In such cases, patients’ activity goals can be achieved 
using the sEMG (Lum, Burgar, Shor, Majmundar, & Van der Loos, 2002; Riener, Nef, & 
Colombo, 2005). With recent technological improvements, active exoskeleton robots assist 
rehabilitation applications, human power augmentation, assistive robotics, impairment eval-
uation, and haptic communication in virtual and teleoperated environments. Human body 
commands must be understood by these robots in order to assist humans. Therefore EMG sig-
nals should be acquired and analyzed for control of the exoskeleton robot (Sasaki et al., 2005). 
Exoskeleton robots have two controllers working together simultaneously—the robot control-
ler and the human muscle. Upper-limb exoskeleton robots need to be controlled differently 
than conventional industrial and field robots because humans operate the commands, and 
the control system employs these commands as part of its decision-making components. The 
exoskeleton accurately implements the real-life decisions of the human operator. However, 
there are still challenges to making decisions based on the motion-intention identifications of 
the robot user (Abdullah, Subasi, & Qaisar, 2017; Subasi, 2019c).

The best approach to designing an upper-limb exoskeleton robot controller is to focus on 
the controller input information. In modern techniques, the input consists of human bio-
medical signals and platform-independent control signals. Various strategies are applied in 
different fields of applications. The EMG signals have been successfully used as human bio-
medical signal inputs to some exoskeleton developments like upper-limb exoskeleton robots 
(Lo & Xie, 2012). For example, in Gopura et al. (2009), muscle models based on EMG con-
trol are proposed to control an upper-limb exoskeleton robot with seven degrees of freedom. 
The user can adapt the method. Most upper-limb-disabled people can operate it. Control 
methods for upper-limb exoskeleton robots using EMG are mostly of binary (on–off) nature 
(Lenzi et al., 2009). A good design would allow a high accuracy of the motion-intentions clas-
sification for even a physically weak person who cannot properly generate daily motions 
(Abdullah et al., 2017; Subasi, 2019c).

Example 4.7
The following Python code is used to extract features from sEMG signals related to various phys-

ical actions using WPD and employing statistical values of WPD sub-bands. Then it classifies these 
data using random forest classifier with separate training and testing datasets. The classification 
accuracy, precision, recall, F1 score, Cohen kappa score, and Matthews correlation coefficient are 
calculated. The classification report and confusion matrix are also given. For this example, surface 
EMG physical action dataset will be used.

Dataset information: One female and three male subjects (age 25 to 30), who have experienced 
aggression in circumstances such as physical fighting, are employed in the experiment. Every sub-
ject has to implement 10 normal and 10 aggressive activities through 20 distinct experiments. The 
Essex robot arena was the main experimental hall in which data collection took place. The subjects’ 
performance has been collected by the Delsys EMG apparatus, interfacing human activity with 
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myoelectrical contractions. Based on this context, the data recording procedure included eight skin-
surface electrodes located on the upper arms (biceps and triceps) and upper legs (thighs and ham-
strings). The eight electrodes corresponds to each muscle channel produce eight input time series. 
Each time series contains ∼10,000 samples (∼15 actions per experimental session for each subject). 
You can download the data from the following web site:https://archive.ics.uci.edu/ml/datasets/
EMG+Physical+Action+Data+Set

"""
Created on Thu May 9 12:18:30 2019
@author: absubasi
"""
# ======================================================================
# Feature extraction using the statistical values of wavelet packet 
transform
# ======================================================================
# descriptive statistics
import scipy as sp
import scipy.io as sio
import pywt
import numpy as np
import scipy.stats as stats

wname = pywt.Wavelet(’db1’)
level=6 #Number of decomposition level
#Load mat file
mat_contents = sio.loadmat(’sEMG_UCI_PA_NOR.mat’)
sorted(mat_contents.keys())
BOWING=mat_contents[’Bow’]
CLAPPING=mat_contents[’Cla’]
HANDSHAKING=mat_contents[’Han’]
HUGGING=mat_contents[’Hug’]
JUMPING=mat_contents[’Jum’]
RUNNING=mat_contents[’Run’]
SEATING=mat_contents[’Sea’]
STANDING=mat_contents[’Sta’]
WALKING=mat_contents[’Wal’]
WAVING=mat_contents[’Wav’]
Labels = [] #Empty List For Labels
NofClasses=10 #Number of Classes
Length = 512; # Length of signal
Nofsignal=72; #Number of Signal for each Class
Ch=1 #Channel To be used
numrows =83 #Number of features extracted from Wavelet Packet 
Decomposition
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#Create Empty Array For Features
Extracted_Features=np.ndarray(shape=(NofClasses*Nofsignal,numrows), 
dtype=float, order=’F’)
# ======================================================================
# Utility function for feature extraction using the statistical values 
of WPD
# ======================================================================
def WPD_Feature_Extraction(signal, i, wname, level):

#Mean Values of each subbands
wp= pywt.WaveletPacket(signal, wname, mode=’symmetric’, maxlevel=level)
Extracted_Features[i,0]=sp.mean(abs(wp[’a’].data))
Extracted_Features[i,1]=sp.mean(abs(wp[’aa’].data))
Extracted_Features[i,2]=sp.mean(abs(wp[’aaa’].data))
Extracted_Features[i,3]=sp.mean(abs(wp[’aaaa’].data))
Extracted_Features[i,4]=sp.mean(abs(wp[’aaaaa’].data))
Extracted_Features[i,5]=sp.mean(abs(wp[’aaaaaa’].data))
Extracted_Features[i,6]=sp.mean(abs(wp[’d’].data))
Extracted_Features[i,7]=sp.mean(abs(wp[’dd’].data))
Extracted_Features[i,8]=sp.mean(abs(wp[’ddd’].data))
Extracted_Features[i,9]=sp.mean(abs(wp[’dddd’].data))
Extracted_Features[i,10]=sp.mean(abs(wp[’ddddd’].data))
Extracted_Features[i,11]=sp.mean(abs(wp[’dddddd’].data))
#Standart Deviation of each subbands
Extracted_Features[i,12]=sp.std(wp[’a’].data)
Extracted_Features[i,13]=sp.std(wp[’aa’].data)
Extracted_Features[i,14]=sp.std(wp[’aaa’].data)
Extracted_Features[i,15]=sp.std(wp[’aaaa’].data)
Extracted_Features[i,16]=sp.std(wp[’aaaaa’].data)
Extracted_Features[i,17]=sp.std(wp[’aaaaaa’].data)
Extracted_Features[i,18]=sp.std(wp[’d’].data)
Extracted_Features[i,19]=sp.std(wp[’dd’].data)
Extracted_Features[i,20]=sp.std(wp[’ddd’].data)
Extracted_Features[i,21]=sp.std(wp[’dddd’].data)
Extracted_Features[i,22]=sp.std(wp[’ddddd’].data)
Extracted_Features[i,23]=sp.std(wp[’dddddd’].data)
#Median Values of each subbands
Extracted_Features[i,24]=sp.median(wp[’a’].data)
Extracted_Features[i,25]=sp.median(wp[’aa’].data)
Extracted_Features[i,26]=sp.median(wp[’aaa’].data)
Extracted_Features[i,27]=sp.median(wp[’aaaa’].data)
Extracted_Features[i,28]=sp.median(wp[’aaaaa’].data)
Extracted_Features[i,29]=sp.median(wp[’aaaaaa’].data)
Extracted_Features[i,30]=sp.median(wp[’d’].data)
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Extracted_Features[i,31]=sp.median(wp[’dd’].data)
Extracted_Features[i,32]=sp.median(wp[’ddd’].data)
Extracted_Features[i,33]=sp.median(wp[’dddd’].data)
Extracted_Features[i,34]=sp.median(wp[’ddddd’].data)
Extracted_Features[i,35]=sp.median(wp[’dddddd’].data)
#Skewness of each subbands
Extracted_Features[i,36]=stats.skew(wp[’a’].data)
Extracted_Features[i,37]=stats.skew(wp[’aa’].data)
Extracted_Features[i,38]=stats.skew(wp[’aaa’].data)
Extracted_Features[i,39]=stats.skew(wp[’aaaa’].data)
Extracted_Features[i,40]=stats.skew(wp[’aaaaa’].data)
Extracted_Features[i,41]=stats.skew(wp[’aaaaaa’].data)
Extracted_Features[i,42]=stats.skew(wp[’d’].data)
Extracted_Features[i,43]=stats.skew(wp[’dd’].data)
Extracted_Features[i,44]=stats.skew(wp[’ddd’].data)
Extracted_Features[i,45]=stats.skew(wp[’dddd’].data)
Extracted_Features[i,46]=stats.skew(wp[’ddddd’].data)
Extracted_Features[i,47]=stats.skew(wp[’dddddd’].data)
#Kurtosis of each subbands
Extracted_Features[i,48]=stats.kurtosis(wp[’a’].data)
Extracted_Features[i,49]=stats.kurtosis(wp[’aa’].data)
Extracted_Features[i,50]=stats.kurtosis(wp[’aaa’].data)
Extracted_Features[i,51]=stats.kurtosis(wp[’aaaa’].data)
Extracted_Features[i,52]=stats.kurtosis(wp[’aaaaa’].data)
Extracted_Features[i,53]=stats.kurtosis(wp[’aaaaaa’].data)
Extracted_Features[i,54]=stats.kurtosis(wp[’d’].data)
Extracted_Features[i,55]=stats.kurtosis(wp[’dd’].data)
Extracted_Features[i,56]=stats.kurtosis(wp[’ddd’].data)
Extracted_Features[i,57]=stats.kurtosis(wp[’dddd’].data)
Extracted_Features[i,58]=stats.kurtosis(wp[’ddddd’].data)
Extracted_Features[i,59]=stats.kurtosis(wp[’dddddd’].data)
#RMS Values of each subbands
Extracted_Features[i,60]=np.sqrt(np.mean(wp[’a’].data**2))
Extracted_Features[i,61]=np.sqrt(np.mean(wp[’aa’].data**2))
Extracted_Features[i,62]=np.sqrt(np.mean(wp[’aaa’].data**2))
Extracted_Features[i,63]=np.sqrt(np.mean(wp[’aaaa’].data**2))
Extracted_Features[i,64]=np.sqrt(np.mean(wp[’aaaaa’].data**2))
Extracted_Features[i,65]=np.sqrt(np.mean(wp[’aaaaaa’].data**2))
Extracted_Features[i,66]=np.sqrt(np.mean(wp[’d’].data**2))
Extracted_Features[i,67]=np.sqrt(np.mean(wp[’dd’].data**2))
Extracted_Features[i,68]=np.sqrt(np.mean(wp[’ddd’].data**2))
Extracted_Features[i,69]=np.sqrt(np.mean(wp[’dddd’].data**2))
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Extracted_Features[i,70]=np.sqrt(np.mean(wp[’ddddd’].data**2))
Extracted_Features[i,71]=np.sqrt(np.mean(wp[’dddddd’].data**2))
#Ratio of subbands
 Extracted_Features[i,72]=sp.mean(abs(wp[’a’].data))/sp.mean(abs 
(wp[’aa’].data))
 Extracted_Features[i,73]=sp.mean(abs(wp[’aa’].data))/sp.mean(abs 
(wp[’aaa’].data))
 Extracted_Features[i,74]=sp.mean(abs(wp[’aaa’].data))/sp.mean(abs 
(wp[’aaaa’].data))
 Extracted_Features[i,75]=sp.mean(abs(wp[’aaaa’].data))/sp.mean(abs(wp 
[’aaaaa’].data))
 Extracted_Features[i,76]=sp.mean(abs(wp[’aaaaa’].data))/sp.mean(abs 
(wp[’aaaaaa’].data))
 Extracted_Features[i,77]=sp.mean(abs(wp[’aaaaaa’].data))/sp.mean(abs 
(wp[’d’].data))
 Extracted_Features[i,78]=sp.mean(abs(wp[’d’].data))/sp.mean(abs(wp 
[’dd’].data))
 Extracted_Features[i,79]=sp.mean(abs(wp[’dd’].data))/sp.mean(abs 
(wp[’ddd’].data))
 Extracted_Features[i,80]=sp.mean(abs(wp[’ddd’].data))/sp.mean(abs(wp 
[’dddd’].data))
 Extracted_Features[i,81]=sp.mean(abs(wp[’dddd’].data))/sp.mean(abs 
(wp[’ddddd’].data))
 Extracted_Features[i,82]=sp.mean(abs(wp[’ddddd’].data))/sp.mean(abs(wp 
[’dddddd’].data))

#%%
# ======================================================================
# Feature extraction from bowing sEMG signal
# ======================================================================
for i in range(Nofsignal):
 WPD_Feature_Extraction(BOWING[i,:, Ch], i, wname, level)
 Labels.append(“BOWING”)
# ======================================================================
# Feature extraction from clapping sEMG signal
# ======================================================================
for i in range(Nofsignal, 2*Nofsignal):
 WPD_Feature_Extraction(CLAPPING[i-Nofsignal,:, Ch], i, wname, level)
 Labels.append(“CLAPPING”)
# ======================================================================
# Feature extraction from handshaking sEMG signal
# ======================================================================



276 4. Classification examples for healthcare

 

for i in range(2*Nofsignal, 3*Nofsignal):
WPD_Feature_Extraction(HANDSHAKING[i-2*Nofsignal,:,Ch], i, wname, level)
Labels.append(“HANDSHAKING”)

# ======================================================================
# Feature extraction from hugging sEMG signal
# ======================================================================
for i in range(3*Nofsignal, 4*Nofsignal):

WPD_Feature_Extraction(HUGGING[i-3*Nofsignal,:, Ch], i, wname, level)
Labels.append(“HUGGING”)

# ======================================================================
# Feature extraction from jumping sEMG signal
# ======================================================================
for i in range(4*Nofsignal, 5*Nofsignal):

WPD_Feature_Extraction(JUMPING[i-4*Nofsignal,:,Ch], i, wname, level)
Labels.append(“JUMPING”)

# ======================================================================
# Feature extraction from running sEMG signal
# ======================================================================
for i in range(5*Nofsignal, 6*Nofsignal):

WPD_Feature_Extraction(RUNNING[i-5*Nofsignal,:,Ch], i, wname, level)
Labels.append(“RUNNING”)

# ======================================================================
# Feature extraction from seating sEMG signal
# ======================================================================
for i in range(6*Nofsignal, 7*Nofsignal):

WPD_Feature_Extraction(SEATING[i-6*Nofsignal,:,Ch], i, wname, level)
Labels.append(“SEATING”)

# ======================================================================
# Feature extraction from standing sEMG signal
# ======================================================================
for i in range(7*Nofsignal, 8*Nofsignal):

WPD_Feature_Extraction(STANDING[i-7*Nofsignal,:,Ch], i, wname, level)
Labels.append(“STANDING”)

# ======================================================================
# Feature extraction from walking sEMG signal
# ======================================================================
for i in range(8*Nofsignal, 9*Nofsignal):

WPD_Feature_Extraction(WALKING[i-8*Nofsignal,:,Ch], i, wname, level)
Labels.append(“WALKING”)

# ======================================================================
# Feature extraction from waving sEMG signal
# ======================================================================
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for i in range(9*Nofsignal, 10*Nofsignal):
WPD_Feature_Extraction(WAVING[i-9*Nofsignal,:,Ch], i, wname, level)
Labels.append(“WAVING”)

#%%
# ======================================================================
# Classification
# ======================================================================
from sklearn.model_selection import cross_val_score
from sklearn.metrics import cohen_kappa_score, make_scorer
X = Extracted_Features
y = Labels

#To prevent warnings
import warnings
warnings.filterwarnings(“ignore”)
# Import train_test_split function
from sklearn.model_selection import train_test_split
# Split dataset into training set and test set
# 70% training and 30% test
Xtrain, Xtest, ytrain, ytest = train_test_split(X, y,test_size=0.3, 
random_state=1)
#%%
# ======================================================================
# Random forest example with training and test set
# ======================================================================
from sklearn.ensemble import RandomForestClassifier

#In order to change to accuracy increase n_estimators
"""RandomForestClassifier(n_estimators=’warn’, criterion=’gini’, max_
depth=None,
min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0,
max_features=’auto’, max_leaf_nodes=None, min_impurity_decrease=0.0,
min_impurity_split=None, bootstrap=True, oob_score=False, n_jobs=None,
random_state=None, verbose=0, warm_start=False, class_weight=None)"""
clf = RandomForestClassifier(n_estimators=200)
#Create the Model
#Train the model with Training Dataset
clf.fit(Xtrain,ytrain)
#Test the model with Testset
ypred = clf.predict(Xtest)

#Evaluate the Model and Print Performance Metrics
from sklearn import metrics
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4.4 ECG signal analysis

The electrocardiogram (ECG) is the recording of electrical activities on the body sur-
face that originated from the heart. With the aim of tracing an ECG waveform, a differen-
tial recording among two points on the body surface is performed. Conventionally, every 
differential recording is called a lead. Einthoven defined three leads named by the Roman 
numerals I, II, and III. The voltage difference from any two sites are recorded by an ECG. The 
ECG signals are usually in the range of ±2 mV and need a recording bandwidth of 0.05 to 
150 Hz. The 12-lead ECGs are used in limited-mode recording events such as tape-recorded 
ambulatory ECG (typically two leads), intensive care monitoring at the bedside (typically one 
or two leads), or unrestrained patients telemetered throughout regions of the hospital (one 
lead). The modern ECG equipment is completely integrated with an analog front end, a 12- 
to 16-bit analog-to-digital (A/D) converter, a computational microprocessor, and dedicated 
input–output (I/O) processors. These systems find a dimension matrix derived from the 12 
lead signals and examine this matrix using a set of rules to attain the final set of interpretive 
statements. The better hospital-based system will record these changes and keep a big data-
base of all ECGs accessible by any combination of parameters, for example, all females older 
than age 30 with an inferior congenital heart disease (Berbari, 2000; Subasi, 2019c).

print(’Accuracy:’, np.round(metrics.accuracy_score(ytest,ypred),4))
print(’Precision:’, np.round(metrics.precision_score(ytest,
 ypred,average=’weighted’),4))
print(’Recall:’, np.round(metrics.recall_score(ytest,ypred,
  average=’weighted’),4))
print(’F1 Score:’, np.round(metrics.f1_score(ytest,ypred,
  average=’weighted’),4))
print(’Cohen Kappa Score:’, np.round(metrics.cohen_kappa_score(ytest, 
ypred),4))
print(’Matthews Corrcoef:’, np.round(metrics.matthews_corrcoef(ytest, 
ypred),4))
print(’\t\tClassification Report:\n’, metrics.classification_report(ypred, 
ytest))

#Plot Confusion Matrix
from sklearn.metrics import confusion_matrix
print(“Confusion Matrix:\n”,confusion_matrix(ytest, ypred))



 4.4 ECG signal analysis 279

 

There are many demonstrative approaches in which a specific diagnosis is made for 
every ECG, but there are only about five or six major classification sets for which the ECG 
is employed. The initial step in ECG analysis requires computation of the rate and rhythm 
for the atria and ventricles. This includes any conduction instability either in the connection 
among the different chambers or within the chambers themselves. Then feature identifica-
tion, which would be connected to the presence or absence of scarring due to a myocardial 
infarction, would be performed. The ECG has been a principal method for evaluating cham-
ber size or growth, but one might argue that more precise data in this area could be obtained 
by noninvasive imaging technologies (Berbari, 2000; Subasi, 2019c). A general framework for 
the ECG signals classification is shown in Fig. 4.8.

4.4.1 Diagnosis of heart arrhythmia

Cardiovascular disorders (CVDs) are one of the main causes of death worldwide. The 
design of exact and rapid techniques for automated ECG heartbeat signal classification is vital 
for clinical diagnosis of various CVDs (Thaler, 2017), such as an arrhythmia. Arrhythmias 
characterize a group of situations in which irregular electrical activities are coming from heart 
and are recognized by ECG beats or patterns (De Chazal, O’Dwyer, & Reilly, 2004; Pan & 
Tompkins, 1985). ECG is an efficient, simple, noninvasive technique for heart disease detec-
tion. Medical doctors examine several waveforms based on their characteristics (amplitude, 
polarity, etc.) and diagnose and treat based on this investigation (Subasi, 2019c).

FIGURE 4.8 A general framework for ECG signal classification.
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Example 4.8
The following Python code is used to extract features from the normal atrial premature com-

plexes (APCs), premature ventricular contractions (PCVs), left bundle branch blocks (LBBBs), and 
right bundle branch blocks (RBBBs) ECG signals employ stationary wavelet transform (SWT) and 
statistical values of SWT sub-bands. Then it classifies these data using random forest (RF) with 
separate training and testing datasets. The classification accuracy, precision, recall, F1 score, Cohen 
kappa score, and Matthews correlation coefficient are calculated. The classification report and con-
fusion matrix are also given.

Dataset information: Boston’s Beth Israel Hospital and MIT have maintained a study on arrhyth-
mia analysis and related subjects. One of the first chief achievements of this effort was the MIT-BIH Ar-
rhythmia Database, which started distributing in 1980. The database was the first publicly accessible 
dataset of standard test material for the assessment of arrhythmia detectors and has been employed for 
this aim as well as for basic research into cardiac dynamics at more than 500 sites worldwide. The MIT-
BIH Arrhythmia Database includes 48 half-hour extracts of two-channel ambulatory ECG recordings, 
taken from 47 subjects studied by the BIH Arrhythmia Laboratory between 1975 and 1979. Twenty-
three signals were selected randomly from a set of 4000 24-hour ambulatory ECG signals recorded 
from a mixed population of inpatients (about 60%) and outpatients (about 40%) at Boston’s Beth Israel 
Hospital; the remaining 25 recordings were chosen from the same set to contain less common but 
clinically important arrhythmias that would not be well-represented in a small random sample. The 
ECG signals were sampled at 360 Hz per channel with 11-bit resolution over a 10 mV range. Two or 
more cardiologists individually interpreted each record; disagreements were resolved to obtain com-
puter-readable reference annotations for each beat (approximately 110,000 annotations in all) included 
with the database. This dataset contains many arrythmia types, including atrial premature complexes 
(APC), premature ventricular contractions (PVC), left bundle branch block (LBBB), and right bundle 
branch block (RBBB). The entire MIT-BIH Arrhythmia Database has been freely accessible since Physi-
oNet’s inception in September 1999. You can download the data from the following website:

https://www.physionet.org/physiobank/database/mitdb/

"""
Created on Thu May 9 12:18:30 2019
@author: asubasi
"""
# ======================================================================
# Feature extraction using the statistical values of wavelet packet 
transform
# ======================================================================
# descriptive statistics
import scipy as sp
import scipy.io as sio
import pywt
import numpy as np
import scipy.stats as stats

wname = pywt.Wavelet(’db1’)
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level=6 #Number of decomposition level
#Load mat file
mat_contents = sio.loadmat(’MITBIH_ECG.mat’)
sorted(mat_contents.keys())
ECGN=mat_contents[’ECGN’]
ECGAPC=mat_contents[’ECGAPC’]
ECGPVC=mat_contents[’ECGPVC’]
ECGLBBB=mat_contents[’ECGLBBB’]
ECGRBBB=mat_contents[’ECGRBBB’]

Labels = [] #Empty List For Labels
NofClasses=5 #Number of Classes
Length = 320; # Length of signal
Nofsignal=300; #Number of Signal for each Class
numrows =83 #Number of features extracted from Wavelet Packet Decomposi-
tion
#Create Empty Array For Features
Extracted_Features=np.ndarray(shape=(NofClasses*Nofsignal,numrows), 
dtype=float, order=’F’)
# ======================================================================
# Utility function for feature extraction using the statistical values 
of WPD
# ======================================================================
def WPD_Feature_Extraction(signal, i, wname, level):

#Mean Values of each subbands
wp= pywt.WaveletPacket(signal, wname, mode=’symmetric’, maxlevel=level)
Extracted_Features[i,0]=sp.mean(abs(wp[’a’].data))
Extracted_Features[i,1]=sp.mean(abs(wp[’aa’].data))
Extracted_Features[i,2]=sp.mean(abs(wp[’aaa’].data))
Extracted_Features[i,3]=sp.mean(abs(wp[’aaaa’].data))
Extracted_Features[i,4]=sp.mean(abs(wp[’aaaaa’].data))
Extracted_Features[i,5]=sp.mean(abs(wp[’aaaaaa’].data))
Extracted_Features[i,6]=sp.mean(abs(wp[’d’].data))
Extracted_Features[i,7]=sp.mean(abs(wp[’dd’].data))
Extracted_Features[i,8]=sp.mean(abs(wp[’ddd’].data))
Extracted_Features[i,9]=sp.mean(abs(wp[’dddd’].data))
Extracted_Features[i,10]=sp.mean(abs(wp[’ddddd’].data))
Extracted_Features[i,11]=sp.mean(abs(wp[’dddddd’].data))
#Standart Deviation of each subbands
Extracted_Features[i,12]=sp.std(wp[’a’].data)
Extracted_Features[i,13]=sp.std(wp[’aa’].data)
Extracted_Features[i,14]=sp.std(wp[’aaa’].data)
Extracted_Features[i,15]=sp.std(wp[’aaaa’].data)
Extracted_Features[i,16]=sp.std(wp[’aaaaa’].data)
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Extracted_Features[i,17]=sp.std(wp[’aaaaaa’].data)
Extracted_Features[i,18]=sp.std(wp[’d’].data)
Extracted_Features[i,19]=sp.std(wp[’dd’].data)
Extracted_Features[i,20]=sp.std(wp[’ddd’].data)
Extracted_Features[i,21]=sp.std(wp[’dddd’].data)
Extracted_Features[i,22]=sp.std(wp[’ddddd’].data)
Extracted_Features[i,23]=sp.std(wp[’dddddd’].data)
#Median Values of each subbands
Extracted_Features[i,24]=sp.median(wp[’a’].data)
Extracted_Features[i,25]=sp.median(wp[’aa’].data)
Extracted_Features[i,26]=sp.median(wp[’aaa’].data)
Extracted_Features[i,27]=sp.median(wp[’aaaa’].data)
Extracted_Features[i,28]=sp.median(wp[’aaaaa’].data)
Extracted_Features[i,29]=sp.median(wp[’aaaaaa’].data)
Extracted_Features[i,30]=sp.median(wp[’d’].data)
Extracted_Features[i,31]=sp.median(wp[’dd’].data)
Extracted_Features[i,32]=sp.median(wp[’ddd’].data)
Extracted_Features[i,33]=sp.median(wp[’dddd’].data)
Extracted_Features[i,34]=sp.median(wp[’ddddd’].data)
Extracted_Features[i,35]=sp.median(wp[’dddddd’].data)
#Skewness of each subbands
Extracted_Features[i,36]=stats.skew(wp[’a’].data)
Extracted_Features[i,37]=stats.skew(wp[’aa’].data)
Extracted_Features[i,38]=stats.skew(wp[’aaa’].data)
Extracted_Features[i,39]=stats.skew(wp[’aaaa’].data)
Extracted_Features[i,40]=stats.skew(wp[’aaaaa’].data)
Extracted_Features[i,41]=stats.skew(wp[’aaaaaa’].data)
Extracted_Features[i,42]=stats.skew(wp[’d’].data)
Extracted_Features[i,43]=stats.skew(wp[’dd’].data)
Extracted_Features[i,44]=stats.skew(wp[’ddd’].data)
Extracted_Features[i,45]=stats.skew(wp[’dddd’].data)
Extracted_Features[i,46]=stats.skew(wp[’ddddd’].data)
Extracted_Features[i,47]=stats.skew(wp[’dddddd’].data)
#Kurtosis of each subbands
Extracted_Features[i,48]=stats.kurtosis(wp[’a’].data)
Extracted_Features[i,49]=stats.kurtosis(wp[’aa’].data)
Extracted_Features[i,50]=stats.kurtosis(wp[’aaa’].data)
Extracted_Features[i,51]=stats.kurtosis(wp[’aaaa’].data)
Extracted_Features[i,52]=stats.kurtosis(wp[’aaaaa’].data)
Extracted_Features[i,53]=stats.kurtosis(wp[’aaaaaa’].data)
Extracted_Features[i,54]=stats.kurtosis(wp[’d’].data)
Extracted_Features[i,55]=stats.kurtosis(wp[’dd’].data)
Extracted_Features[i,56]=stats.kurtosis(wp[’ddd’].data)
Extracted_Features[i,57]=stats.kurtosis(wp[’dddd’].data)
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Extracted_Features[i,58]=stats.kurtosis(wp[’ddddd’].data)
Extracted_Features[i,59]=stats.kurtosis(wp[’dddddd’].data)
#RMS Values of each subbands
Extracted_Features[i,60]=np.sqrt(np.mean(wp[’a’].data**2))
Extracted_Features[i,61]=np.sqrt(np.mean(wp[’aa’].data**2))
Extracted_Features[i,62]=np.sqrt(np.mean(wp[’aaa’].data**2))
Extracted_Features[i,63]=np.sqrt(np.mean(wp[’aaaa’].data**2))
Extracted_Features[i,64]=np.sqrt(np.mean(wp[’aaaaa’].data**2))
Extracted_Features[i,65]=np.sqrt(np.mean(wp[’aaaaaa’].data**2))
Extracted_Features[i,66]=np.sqrt(np.mean(wp[’d’].data**2))
Extracted_Features[i,67]=np.sqrt(np.mean(wp[’dd’].data**2))
Extracted_Features[i,68]=np.sqrt(np.mean(wp[’ddd’].data**2))
Extracted_Features[i,69]=np.sqrt(np.mean(wp[’dddd’].data**2))
Extracted_Features[i,70]=np.sqrt(np.mean(wp[’ddddd’].data**2))
Extracted_Features[i,71]=np.sqrt(np.mean(wp[’dddddd’].data**2))
#Ratio of subbands
 Extracted_Features[i,72]=sp.mean(abs(wp[’a’].data))/sp.mean(abs(wp[’aa’].
data))
 E x t r a c t e d _ F e a t u r e s [ i , 7 3 ] =s p . m e a n ( a b s ( w p [ ’ a a ’ ] . d a t a ) ) /
sp.mean(abs(wp[’aaa’].data))
 Extracted_Features[i,74]=sp.mean(abs(wp[’aaa’].data))/sp.mean(abs 
(wp[’aaaa’].data))
 Extracted_Features[i,75]=sp.mean(abs(wp[’aaaa’].data))/sp.mean(abs(wp 
[’aaaaa’].data))
 Extracted_Features[i,76]=sp.mean(abs(wp[’aaaaa’].data))/sp.mean(abs 
(wp[’aaaaaa’].data))
 Extracted_Features[i,77]=sp.mean(abs(wp[’aaaaaa’].data))/sp.mean(abs 
(wp[’d’].data))
 Extracted_Features[i,78]=sp.mean(abs(wp[’d’].data))/sp.mean(abs(wp 
[’dd’].data))
 Extracted_Features[i,79]=sp.mean(abs(wp[’dd’].data))/sp.mean(abs 
(wp[’ddd’].data))
 Extracted_Features[i,80]=sp.mean(abs(wp[’ddd’].data))/sp.mean(abs(wp 
[’dddd’].data))
 Extracted_Features[i,81]=sp.mean(abs(wp[’dddd’].data))/sp.mean(abs 
(wp[’ddddd’].data))
 Extracted_Features[i,82]=sp.mean(abs(wp[’ddddd’].data))/sp.mean(abs 
(wp[’dddddd’].data))

#%%
# ======================================================================
# Feature extraction from normal ECG signal
# ======================================================================
for i in range(Nofsignal):

WPD_Feature_Extraction(ECGN[:,i], i, wname, level)
Labels.append(“NORMAL”)
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# ======================================================================
# Feature extraction from APC ECG signal
# ======================================================================
for i in range(Nofsignal, 2*Nofsignal):

WPD_Feature_Extraction(ECGAPC[:,i-Nofsignal], i, wname, level)
Labels.append(“APC”)

# ======================================================================
# Feature extraction from PVC ECG signal
# ======================================================================
for i in range(2*Nofsignal, 3*Nofsignal):

WPD_Feature_Extraction(ECGPVC[:,i-2*Nofsignal], i, wname, level)
Labels.append(“PVC”)

# ======================================================================
# Feature extraction from LBBB ECG signal
# ======================================================================
for i in range(3*Nofsignal, 4*Nofsignal):

WPD_Feature_Extraction(ECGLBBB[:,i-3*Nofsignal], i, wname, level)
Labels.append(“LBBB”)

# ======================================================================
# Feature extraction from RBBB ECG signal
# ======================================================================
for i in range(4*Nofsignal, 5*Nofsignal):

WPD_Feature_Extraction(ECGRBBB[:,i-4*Nofsignal], i, wname, level)
Labels.append(“RBBB”)

#%%
# ======================================================================
# Classification using random forest
# ======================================================================
from sklearn.model_selection import cross_val_score
from sklearn.metrics import cohen_kappa_score, make_scorer
from matplotlib import pyplot as plt
#To prevent warnings
import warnings

warnings.filterwarnings(“ignore”)
X = Extracted_Features
y = Labels

from sklearn.model_selection import train_test_split
# Split dataset into training set and test set
# 70% training and 30% test
Xtrain, Xtest, ytrain, ytest = train_test_split(X, y,test_size=0.3, ran-
dom_state=0)

from sklearn.ensemble import RandomForestClassifier
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#In order to change to accuracy increase n_estimators
"""RandomForestClassifier(n_estimators=’warn’, criterion=’gini’, max_
depth=None,
min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0,
max_features=’auto’, max_leaf_nodes=None, min_impurity_decrease=0.0,
min_impurity_split=None, bootstrap=True, oob_score=False, n_jobs=None,
random_state=None, verbose=0, warm_start=False, class_weight=None)"""
clf = RandomForestClassifier(n_estimators=200)
clf.fit(Xtrain,ytrain)
ypred = clf.predict(Xtest)

from sklearn import metrics
print(’Accuracy:’, np.round(metrics.accuracy_score(ytest,ypred),4))
print(’Precision:’, np.round(metrics.precision_score(ytest,
 ypred,average=’weighted’),4))
print(’Recall:’, np.round(metrics.recall_score(ytest,ypred,
 average=’weighted’),4))
print(’F1 Score:’, np.round(metrics.f1_score(ytest,ypred,
 average=’weighted’),4))
print(’Cohen Kappa Score:’, np.round(metrics.cohen_kappa_score(ytest, 
ypred)))
print(’Matthews Corrcoef:’, np.round(metrics.matthews_corrcoef(ytest, 
ypred)))
print(’\t\tClassification Report:\n’, metrics.classification_report(ypred, 
ytest))

from sklearn.metrics import confusion_matrix
from io import BytesIO #neded for plot
import seaborn as sns; sns.set()

mat = confusion_matrix(ytest, ypred)
sns.heatmap(mat.T, square=True, annot=True, fmt=’d’, cbar=False)
plt.xlabel(’true label’)
plt.ylabel(’predicted label’);

plt.savefig(“Confusion.jpg”)
# Save SVG in a fake file object.
f = BytesIO()
plt.savefig(f, format=“svg”)

#%%
"""The following PYTHON code is adapted from Scikit Learn to find the ROC 
Area"""
# ======================================================================
# ROC curves for the multiclass problem
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# ======================================================================
import numpy as np
import matplotlib.pyplot as plt
from itertools import cycle
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn import svm
from sklearn.metrics import roc_curve, auc
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import label_binarize
from sklearn.multiclass import OneVsRestClassifier
from scipy import interp
X = Extracted_Features
y = Labels
# Binarize the output
y = label_binarize(y, classes=[’NORMAL’,’APC’,’PVC’, ’LBBB’,’RBBB’ ])
n_classes = y.shape[1]

#%%
# Import train_test_split function
from sklearn.model_selection import train_test_split
# Split dataset into training set and test set
# 70% training and 30% test
random_state = np.random.RandomState(1)
X_train, X_test, y_train, y_test = train_test_split(X, y,test_size=0.3, 
random_state=0)
# Learn to predict each class against the other
"""classifier = OneVsRestClassifier(svm.SVC(kernel=’linear’, 
probability=True,
 random_state=random_state))"""
classifier = OneVsRestClassifier(LinearDiscriminantAnalysis(solver=’lsqr’, 
shrinkage=None))
y_score = classifier.fit(X_train, y_train).decision_function(X_test)

# Compute ROC curve and ROC area for each class
fpr = dict()
tpr = dict()
roc_auc = dict()
for i in range(n_classes):

fpr[i], tpr[i], _ = roc_curve(y_test[:, i], y_score[:, i])
roc_auc[i] = auc(fpr[i], tpr[i])

# Compute micro-average ROC curve and ROC area
fpr[“micro”], tpr[“micro”], _ = roc_curve(y_test.ravel(), y_score. 
ravel())
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roc_auc[“micro”] = auc(fpr[“micro”], tpr[“micro”])

########################################################################
# Plot of a ROC curve for a specific class
plt.figure()
lw = 2
plt.plot(fpr[2], tpr[2], color=’darkorange’,
 lw=lw, label=’ROC curve (area = %0.2f)’ % roc_auc[2])
plt.plot([0, 1], [0, 1], color=’navy’, lw=lw, linestyle=’--’)
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel(’False Positive Rate’)
plt.ylabel(’True Positive Rate’)
plt.title(’Receiver operating characteristic’)
plt.legend(loc=“lower right”)
plt.show()

########################################################################
# Plot ROC curves for the multiclass problem
# Compute macro-average ROC curve and ROC area
# First aggregate all false positive rates
all_fpr = np.unique(np.concatenate([fpr[i] for i in range(n_classes)]))

# Then interpolate all ROC curves at this points
mean_tpr = np.zeros_like(all_fpr)
for i in range(n_classes):

mean_tpr += interp(all_fpr, fpr[i], tpr[i])
# Finally average it and compute AUC
mean_tpr /= n_classes

fpr[“macro”] = all_fpr
tpr[“macro”] = mean_tpr
roc_auc[“macro”] = auc(fpr[“macro”], tpr[“macro”])

# Plot all ROC curves
plt.figure()
plt.plot(fpr[“micro”], tpr[“micro”],
  label=’micro-average ROC curve (area = {0:0.2f})’
  ”.format(roc_auc[“micro”]),
  color=’deeppink’, linestyle=’:’, linewidth=4)

plt.plot(fpr[“macro”], tpr[“macro”],
  label=’macro-average ROC curve (area = {0:0.2f})’
  ”.format(roc_auc[“macro”]),
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 color=’navy’, linestyle=’:’, linewidth=4)

colors = cycle([’aqua’, ’darkorange’, ’cornflowerblue’])
for i, color in zip(range(n_classes), colors):

plt.plot(fpr[i], tpr[i], color=color, lw=lw,
 label=’ROC curve of class {0} (area = {1:0.2f})’
 ”.format(i, roc_auc[i]))

plt.plot([0, 1], [0, 1], ’k--’, lw=lw)
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel(’False Positive Rate’)
plt.ylabel(’True Positive Rate’)
plt.title(’Receiver Operating Characteristic to multi-class’)
plt.legend(loc=“lower right”)
plt.show()

4.5 Human activity recognition

A significant amount of the elderly population endure age-related health problems. These 
complications, together with the apparently occurring gradual weakening in physical and 
cognitive capabilities of elderly people, prevent them from living alone. Recent information 
and communications technology (ICT) advances, along with advancements in smart sensors 
and smartphones, have brought about a rapid development of smart environments. Smart 
healthcare seems to be a promising solution to the growing aging population’s challenges. 
To meet the needs of this growing population, smart health services are being offered. In 
particular, smart healthcare systems monitor and evaluate any critical health condition of the 
elderly in their daily activities. The smart healthcare structures not only allow the elderly to 
live independently, but they can also provide more sustainable healthcare services by reduc-
ing the burden of the elderly and dependent individuals on the healthcare system. Smart 
healthcare monitoring systems (SHMSs) have been developed as a brilliant approach for 
providing smart health services that suit the subjects’ real needs. To resolve the different 
features of these structures, various solutions and approaches have been implemented. The 
main objective of these solutions is to provide an intelligent environment where the system 
monitors and analyzes subjects’ health conditions and provides them with timely, intelligent 
health services (Mshali, Lemlouma, Moloney, & Magoni, 2018) (Subasi, Khateeb, Brahimi, & 
Sarirete, 2020). Fig. 4.9 shows the general framework of an SHMS.

The use of wearable devices brings medical professionals and patients together in mod-
ern healthcare systems with intelligent and automatic routine monitoring of elderly people’s 
activity. Smart wearable sensor integration has led to the development of intelligent monitor-
ing systems for healthcare. There is a lot of enthusiasm in this sense about the development of 
machine learning algorithms that play a significant role in human activity recognition (HAR). 
An intelligent smart healthcare monitoring system provides an automated human activity 
recognition by using machine learning methods to model and recognize activities of daily 
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living (ADL) accurately and effectively. Mobile phone sensors or wearable body sensors can 
be utilized for reliable and precise human activity recognition (Subasi et al., 2020b).

4.5.1 Sensor-based human activity recognition

With the advent of wireless network technologies, wearable body sensors are being increas-
ingly introduced for intelligent daily activity monitoring in various fields, such as emer-
gency assistance, cognitive assistance, and safety (Majumder et al., 2017; Neves, Stachyra, & 
Rodrigues, 2008). HAR is utilized to identify different human movements and gestures from 
a collection of observations on the activities of people using wearable sensors. HAR can be 
employed to obtain the benefits of the wearable sensors. In terms of defining complex activity, 
often data-driven strategies suffer from portability, extension, and perception issues, whereas 
knowledge-based solutions for dealing with complex temporal data are often poor (Liu, Peng, 
Liu, & Huang, 2015). One of the objectives of machine learning is to minimize the large quanti-
ties of data so that they simply reflect the entire data without circulation (Xu et al., 2017). With 
increased availability of wearable devices, the improvement of HAR tools in pervasive comput-
ing has attracted attention (Liu et al., 2015). Machine learning algorithms can process informa-
tion obtained from wearable sensors. Since HAR is a very quickly growing scientific field, it 
has wide healthcare applications—assisted living, personal fitness assistants, home monitor-
ing, and terrorist detection. In a smart home-healthcare system, HAR technologies could be 
modified to enhance and establish clinical rehabilitation processes (Hassan, Uddin, Mohamed, 
& Almogren, 2018). Therefore to provide preventive assistance to elderly people, caregivers 
could use these devices to monitor and interpret their daily living activity (Liu, Nie, Liu, & 

FIGURE 4.9 The general experimental setup for smart healthcare monitoring systems (SHMS). Source: Adapted 
from Subasi et al. (2020b).
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Rosenblum, 2016). This could enable elderly people to stay in their own homes. Yet, some-
times one of the difficulties becomes to more reliably detect everyday life activities (Subasi 
et al., 2018).

Example 4.9
The following Python code is used to classify sensor-based human activity recognition (HAR) 

data using SVM classifiers and employing separate training and testing datasets. The classification 
accuracy, precision, recall, F1 score, Cohen kappa score, and Matthews correlation coefficient are 
calculated. The classification report and confusion matrix are also given.

Dataset information: The dataset is downloaded from UCI machine learning repository 
(UCI, 2018a). The REALDISP (REAListic sensor DISPlacement) dataset was initially collected to in-
vestigate the effects of sensor displacement in the activity recognition process in real-world settings. 
The dataset includes an extensive range of physical activities and sensor modalities. These settings 
were examined in the dataset recorded employing 9 inertial sensor units from 17 participants con-
sidering 33 fitness activities. The dataset contains simple activities that indicate movement of the 
entire body (e.g., walking or jumping), whereas the others focused on training individual parts. The 
sampling rate is 50 Hz, which is sufficient for the exercise needs. Eight of the sensors are typically 
located on the middle of the limb. Another one is located on the back, slightly below the scapulae 
(Baños et al., 2012; Banos, Toth, Damas, Pomares, & Rojas, 2014). Different sensor displacement 
settings are employed to evaluate the impact of the activity recognition problem complexity on the 
robustness of the systems.

The reduced version of the original dataset with seven activities is used in this example. To 
ensure a fair distribution of the various types of activities recorded for this dataset, exercises that 
include movement of several parts of the users’ body are chosen for the seven activities.

"""
REALDISP Activity Recognition IDEAL Dataset
Created on Tue Jun 18 18:14:15 2019
@author: asubasi
"""
from sklearn.model_selection import train_test_split
import numpy as np
import pandas as pd

# load data
dataset = pd.read_csv(“REALDISPActivityRecognitionDataset.csv”)
# split data into X and Y
X = dataset.iloc[:,0:117]
y = dataset.iloc[:, 117]
class_names = dataset.iloc[:, 117]
# split data into train and test sets
Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, test_size=0.3, 
random_state=7)
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from sklearn import svm
""" The parameters and kernels of SVM classifierr can be changed as follows
C = 10.0 # SVM regularization parameter
svm.SVC(kernel=’linear’, C=C)
svm.LinearSVC(C=C, max_iter=10000)
svm.SVC(kernel=’rbf’, gamma=0.7, C=C)
svm.SVC(kernel=’poly’, degree=3, gamma=’auto’, C=C))
"""
C = 10.0 # SVM regularization parameter
clf =svm.SVC(kernel=’linear’, C=C)
clf.fit(Xtrain,ytrain)
ypred = clf.predict(Xtest)

from sklearn import metrics
print(’Accuracy:’, np.round(metrics.accuracy_score(ytest,ypred),4))
print(’Precision:’, np.round(metrics.precision_score(ytest,
             ypred,average=’weighted’),4))
print(’Recall:’, np.round(metrics.recall_score(ytest,ypred,
                  average=’weighted’),4))
print(’F1 Score:’, np.round(metrics.f1_score(ytest,ypred,
                  average=’weighted’),4))
print(’Cohen Kappa Score:’, np.round(metrics.cohen_kappa_score(ytest, 
ypred)))
print(’Matthews Corrcoef:’, np.round(metrics.matthews_corrcoef(ytest, 
ypred)))
print(’\t\tClassification Report:\n’, metrics.classification_report(ypred, 
ytest))

from sklearn.metrics import confusion_matrix
from io import BytesIO #neded for plot
import seaborn as sns; sns.set()
import matplotlib.pyplot as plt

mat = confusion_matrix(ytest, ypred)
sns.heatmap(mat.T, square=True, annot=True, fmt=’d’, cbar=False)
plt.xlabel(’true label’)
plt.ylabel(’predicted label’);

plt.savefig(“SVM_Confusion.jpg”)
# Save SVG in a fake file object.
f = BytesIO()
plt.savefig(f, format=“svg”)
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4.5.2 Smartphone-based recognition of human activities

Advances in information and communication technology have contributed to broader use 
of smartphone applications. The use of smartphone technology connects doctors and patients 
for real-time monitoring and healthcare management in modern healthcare applications. In 
addition, smartphones participating in the field healthcare have introduced smart applica-
tions such as mobile healthcare and smart healthcare monitoring systems. Mobile healthcare 
(m-healthcare) is a crucial feature of improvement in the forefront of this revolution. For 
monitoring personal health treatment and well-being, mobile devices are widely being used. 
Over the years, the amazing development of mobile phones has dramatically changed the 
behavior of people. The growth of mobile devices and smartphones with an increasing space 
for innovation and prospects still provides additional opportunities. Smartphones offer many 
advantages, such as being portable devices that do not necessarily influence the lifestyle of 
the user in the experiments (Boulos, Wheeler, Tavares, & Jones, 2011). A very high percentage 
of the world’s population has access to smartphones, and the use of smartphones with inter-
net access is increasing dramatically. HAR is another area with a wide range of possible inno-
vations and further studies using smartphones. HAR has been shown to help detect instances 
of various health issues and maintain a healthy lifestyle. Recognition of human activity has 
become a crucial computing field due to its major effects on people in general and specifically 
on healthcare services. The number of elderly people who need constant care and supervision 
is obviously increasing. Hence, more researchers are interested in elderly cases as a field of 
study and development (Reyes-Ortiz, Oneto, Sama, Parra, & Anguita, 2016). Over the last few 
years, healthcare services have undergone considerable changes. Mobile health is the main 
driving force behind this revolution’s front end. Mobile health (mHealth) is a mobile and IoT-
supported health infrastructure that includes the use of general packet radio service (GPRS), 
4G systems, global positioning system (GPS), and Bluetooth technology for mobile phones 
(Kay, Santos, & Takane, 2011; Subasi, Fllatah, Alzobidi, Brahimi, & Sarirete, 2019). A general 
framework for smartphone-based HAR is shown in Fig. 4.10.

Example 4.10
The following Python code is used to classify smartphone-based HAR data using the LSTM 

classifier employing separate training and testing datasets. The classification accuracy, precision, 
recall, F1 score, Cohen kappa score, and Matthews correlation coefficient are calculated. The clas-
sification report and confusion matrix are also given. This example is adapted from the https://
machinelearningmastery.com/how-to-develop-rnn-models-for-human-activity-recognition-time-
series-classification/.

Dataset information: The dataset is downloaded from UCI repository (UCI, 2018b). The experi-
ments were conducted with a group of 30 volunteers ages 19–48. They completed a protocol of 
activities consisting of six basic activities: three static postures (standing, sitting, and lying) and 
three dynamic activities (walking, walking downstairs, and walking upstairs). The experiment also 
involved postural transitions, which occurred between the static postures. These are: stand-to-sit, 
sit-to-stand, sit-to-lie, lie-to-sit, stand-to-lie, and lie-to-stand. All participants were carrying a smart-
phone (Samsung Galaxy S II) on their waist during the experiment implementation. We captured 
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3-axial linear acceleration and 3-axial angular velocity at a constant rate of 50 Hz utilizing the em-
bedded accelerometer and gyroscope of the device. The experiments were recorded with video to 
label the data manually. The acquired dataset was randomly divided into two sets, where 70% of the 
volunteers were selected for generating the training data and 30% the test data.

The sensor signals (accelerometer and gyroscope) were preprocessed by utilizing noise filters 
and then sampled in fixed-width sliding windows of 2.56 sec and 50% overlap (128 readings/win-
dow). The sensor acceleration signal, which has gravitational and body motion components, was 
separated using a Butterworth low-pass filter into body acceleration and gravity. The gravitational 
force is assumed to have only low-frequency components, therefore a filter with 0.3 Hz cutoff fre-
quency was applied. From each window, a vector of 561 features was taken by calculating variables 
from the time and frequency domain (Reyes-Ortiz et al., 2016; Subasi, et al., 2019e).

"""
Created on Sun Nov 24 15:50:51 2019
@author: asubasi
"""
# lstm model
from numpy import mean
from numpy import std
from numpy import dstack
from pandas import read_csv

FIGURE 4.10 A general framework for smartphone-based human activity recognition. Source: Adapted from 
Subasi et al. (2020b).
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from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Flatten
from keras.layers import Dropout
from keras.layers import LSTM
from keras.utils import to_categorical
from keras import callbacks
from matplotlib import pyplot

# load a single file as a numpy array
def load_file(filepath):

dataframe = read_csv(filepath, header=None, delim_
whitespace=True)
return dataframe.values

# load a list of files and return as a 3d numpy array
def load_group(filenames, prefix=”):

loaded = list()
for name in filenames:

data = load_file(prefix + name)
loaded.append(data)

# stack group so that features are the 3rd dimension
loaded = dstack(loaded)
return loaded

# load a dataset group, such as train or test
def load_dataset_group(group, prefix=”):

filepath = prefix + group + ’/Inertial Signals/’
# load all 9 files as a single array
filenames = list()
# total acceleration
filenames += [’total_acc_x_’+group+’.txt’, 
’total_acc_y_’+group+’.txt’, ’total_acc_z_’+group+’.txt’]
# body acceleration
filenames += [’body_acc_x_’+group+’.txt’, 
’body_acc_y_’+group+’.txt’, ’body_acc_z_’+group+’.txt’]
# body gyroscope
filenames += [’body_gyro_x_’+group+’.txt’, 
’body_gyro_y_’+group+’.txt’, ’body_gyro_z_’+group+’.txt’]
# load input data
X = load_group(filenames, filepath)
# load class output
y = load_file(prefix + group + ’/y_’+group+’.txt’)
return X, y
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# load the dataset, returns train and test X and y elements
def load_dataset(prefix=”):

# load all train
Xtrain, ytrain = load_dataset_group(’train’, prefix + ’UCI HAR
Dataset/’)
print(Xtrain.shape, ytrain.shape)
# load all test
Xtest, ytest = load_dataset_group(’test’, prefix + ’UCI HAR 
Dataset/’)
print(Xtest.shape, ytest.shape)
# zero-offset class values
ytrain = ytrain - 1
ytest = ytest - 1
# one hot encode y
ytrain = to_categorical(ytrain)
ytest = to_categorical(ytest)
print(Xtrain.shape, ytrain.shape, Xtest.shape, ytest.shape)
return Xtrain, ytrain, Xtest, ytest

# load data
Xtrain, ytrain, Xtest, ytest = load_dataset()
target_names = [’Walking’,

’Upstairs’,
’Downstairs’,
’Sitting’,
’Standing’,
’Laying’ ]

#%%
# ======================================================================
# Create an LSTM model
# ======================================================================
verbose, epochs, batch_size = 1, 5, 64
n_timesteps, n_features, n_outputs = Xtrain.shape[1], Xtrain.shape[2], 
ytrain.shape[1]
model = Sequential()
model.add(LSTM(100, input_shape=(n_timesteps,n_features)))
model.add(Dropout(0.5))
model.add(Dense(100, activation=’relu’))
model.add(Dense(n_outputs, activation=’softmax’))
# ======================================================================
# Compile the model
# ======================================================================
model.compile(loss=’categorical_crossentropy’, optimizer=’adam’,
metrics=[’accuracy’])
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#%%
# ======================================================================
# Enable validation to use ModelCheckpoint and EarlyStopping callbacks
# ======================================================================
callbacks_list = [
  callbacks.ModelCheckpoint(

 filepath=’best_model.{epoch:02d}-{val_loss:.2f}.h5’,
 monitor=’val_loss’, save_best_only=True),]

# ======================================================================
# Train the model
# ======================================================================
history = model.fit(Xtrain,

ytrain,epochs=epochs, batch_size=batch_size,
callbacks=callbacks_list,
validation_split=0.3,
verbose=1)

#%%
# ======================================================================
# Evaluate the model
# ======================================================================
test_loss, test_acc = model.evaluate(Xtest, ytest, batch_size=batch_size, 
verbose=verbose)
print(’\nTest accuracy:’, test_acc)
#%%
from matplotlib import pyplot as plt
plt.figure(figsize=(6, 4))
plt.plot(history.history[’accuracy’], ’r’, label=’Accuracy of training 
data’)
plt.plot(history.history[’val_accuracy’], ’b’, label=’Accuracy of 
validation data’)
plt.plot(history.history[’loss’], ’r--’, label=’Loss of training data’)
plt.plot(history.history[’val_loss’], ’b--’, label=’Loss of validation 
data’)
#plt.plot(history.history[’val_accuracy’], label = ’val_accuracy’)
plt.title(’Model Accuracy and Loss’)
plt.ylabel(’Accuracy and Loss’)
plt.xlabel(’Training Epoch’)
plt.ylim(0)
plt.legend()
plt.show()
#%%
from sklearn.metrics import classification_report
import numpy as np
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# Print confusion matrix for training data
y_pred_test = model.predict(Xtest,)
# Take the class with the highest probability from the train predictions
max_y_pred_test = np.round(y_pred_test)
#max_y_train = np.argmax(testy, axis=1)
#max_y_pred_train = np.argmax(y_pred_train, axis=1)
print(classification_report(ytest, max_y_pred_test))
#%%
from sklearn.metrics import confusion_matrix
import seaborn as sns
matrix = confusion_matrix(ytest.argmax(axis=1), max_y_pred_test.
argmax(axis=1))
plt.figure(figsize=(6, 4))
sns.heatmap(matrix,cmap=’coolwarm’,linecolor=’white’,linewidths=1,

 xticklabels=target_names,
 yticklabels=target_names,
 annot=True,
 fmt=’d’)

plt.title(’Confusion Matrix’)
plt.ylabel(’True Label’)
plt.xlabel(’Predicted Label’)
plt.show()
#%%
from sklearn import metrics
print(’Accuracy:’, np.round(metrics.accuracy_score(ytest,
max_y_pred_test),4))
print(’Precision:’, np.round(metrics.precision_score(ytest,
             max_y_pred_test,average=’weighted’),4))
print(’Recall:’, np.round(metrics.recall_score(ytest, max_y_pred_test,
               average=’weighted’),4))
print(’F1 Score:’, np.round(metrics.f1_score(ytest, max_y_pred_test,
               average=’weighted’),4))
print(’Cohen Kappa Score:’, np.round(metrics.cohen_kappa_score(ytest.
argmax(axis=1), max_y_pred_test.argmax(axis=1)),4))
print(’Matthews Corrcoef:’, np.round(metrics.matthews_corrcoef(ytest.
argmax(axis=1), max_y_pred_test.argmax(axis=1)),4))

print(’\t\tClassification Report:\n’, metrics.classification_report(ytest, 
max_y_pred_test))

#%%
from sklearn.metrics import confusion_matrix
from io import BytesIO #neded for plot
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4.6 Microarray gene expression data classification for cancer detection

Cancer is one of the main causes of death all over the world. Many different cancer types 
have been diagnosed in a variety of tissues and organs. Because it is associated with genetic 
abnormalities in the cell, DNA microarrays that permit the simultaneous measurement of 
expression levels of genes have been utilized to describe gene-expression profiles of tumor 
cells. Therefore, these measurements permit the detection of anomalies in the cell (Chen, Li, 
& Wei, 2007). Microarray technology also permits a standardized, clinical evaluation of onco-
logical diagnosis and prognosis. Discovering genes that typically trigger cancer will have 
crucial implications in understanding the biological mechanism of cancer (Rojas-Galeano, 
Hsieh, Agranoff, Krishna, & Fernandez-Reyes, 2008) It is crucial to find informative genes to 
obtain accurate results from the microarray data analysis (Xu & Zhang, 2006). Nevertheless, 
those studies are specific to limited cancer types, and their results have limited use because 
of inadequate validation in large patient age groups. Although the data retrieval process is 
challenging, microarray techniques have been utilized as an encouraging tool to enhance can-
cer diagnosis and treatment in recent decades. On the other hand, data generated from gene 
expression include a high level of noise and a huge number of genes relative to the number 
of available samples. For this reason, classification and statistical techniques with microarray 
data present a great challenge. Discovering genes generally regulated in cancer may have 
a crucial implication in understanding the common biological mechanism of cancer. Many 
scientists analyzed the global gene-expression profiles of different cancer types over the past 
years. Machine learning–based decision-making support systems help doctors and clinicians 
in their diagnosis and prognosis process (Vural & Subasi, 2015).

import seaborn as sns; sns.set()
import matplotlib.pyplot as plt

#Convert the binary labels back
#confusion_matrix(y_test.values.argmax(axis=1), predictions.
argmax(axis=1))
mat = confusion_matrix(ytest.argmax(axis=1), max_y_pred_test.
argmax(axis=1))
sns.heatmap(mat.T, square=True, annot=True, fmt=’d’, cbar=False)
plt.title(’Confusion Matrix’)
plt.ylabel(’True Label’)
plt.xlabel(’Predicted Label’)
plt.show()

plt.savefig(“Confusion.jpg”)
# Save SVG in a fake file object.
f = BytesIO()
plt.savefig(f, format=“svg”)
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Example 4.11
The following Python code is used to classify microarray gene expression data (Leukemia) us-

ing extra tree classifier and 10-fold cross-validation. The classification accuracy, precision, recall, F1 
score, Cohen kappa score, and Matthews correlation coefficient are calculated.

Dataset information: We applied the method to broadly used public microarray datasets that 
are acute myeloid leukemia (AML)-acute lymphoblast leukemia (ALL) and mixed-lineage leuke-
mia (MLL) genes (http://portals.broadinstitute.org/cgi-bin/cancer/publications/pub_paper.
cgi?mode=view&paper_id=63). This dataset includes measurements from leukemia patient sam-
ples taken from peripheral blood and bone marrow. ALL carrying a chromosomal translocation 
involving the mixed-lineage leukemia gene (MLL, ALL1, HRX) has a particularly poor prognosis. 
Armstrong et al. (Armstrong et al., 2002) proposed that they constitute a distinct disease, denoted 
as MLL, and show that the differences in gene expression are robust enough to classify leukemias 
correctly as MLL, ALL, or AML. Establishing that MLL is a unique entity is essential, as it mandates 
the examination of selectively expressed genes for urgently needed molecular targets. The mea-
surements correspond to acute lymphoblast leukemia (ALL), acute myeloid leukemia (AML), and 
mixed-lineage leukemia gene (MLL), including 24, 28, and 20 samples, respectively. The samples 
were analyzed using Affymetrix microarrays consisting of 11,224 genes.

"""
Created on Tue Jun 18 18:14:15 2019
@author: asubasi
"""
import scipy.io as sio
from sklearn.model_selection import cross_val_score
from sklearn.metrics import cohen_kappa_score, make_scorer
import numpy as np
# import file into a dictionary
mat_contents = sio.loadmat(’Leukemia2.mat’)
sorted(mat_contents.keys())
# read in the structure
data = mat_contents[’data’]
# get the fields
# split data into X and y
X = data[:,1:11225]
y = data[:,0]
#%%
# ======================================================================
# Extra trees example with cross-validation
# ======================================================================
#Import Extra Trees model
from sklearn.ensemble import ExtraTreesClassifier
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4.7 Breast cancer detection

Breast cancer is an incidence of malignant neoplasm within women’s breast tissue. It is one 
of the common scourges among women. Breast cancer is one of the most dramatic causes of 
women’s mortality around the world. With the increasing development of biomedical and 
computer technologies, various clinical factors related to breast cancer have been recorded. To 
tackle the dramatic increase of breast cancer, many researchers have considered using patient 
clinic records to predict breast cancer for patients. Efficient breast cancer diagnosis remains 
a major challenge, and early diagnosis is extremely imperative to preventing growth of the 
disease (Hassan, Hossain, Begg, Ramamohanarao, & Morsi, 2010).

Breast cancer is the most common cancer in females around the world, encompassing 15% 
of all female cancers. Despite some risk, shortening can be achieved with prevention; these 
approaches cannot reduce most breast cancers diagnosed in very late phases. As a result, 
early detection is the cornerstone of breast cancer control to improve breast cancer survival. 
Mammography and fine needle aspiration cytology (FNAC) are the main diagnostic meth-
ods, but these methods do not have sufficient enough diagnostic performances. There is no 
doubt that evaluation of data taken from patients and doctors’ decisions are the most crucial 
elements in diagnosis. Together with mammography and FNAC, different machine learn-
ing methods can be utilized as a decision support tool in doctors’ diagnosis; as a result, a 

# fit model no training data
model = ExtraTreesClassifier(n_estimators=100, max_features=11200)

CV=10 #10-Fold Cross Validation
#Evaluate Model Using 10-Fold Cross Validation and Print Performance 
Metrics
Acc_scores = cross_val_score(model, X, y, cv=CV)
print(“Accuracy: %0.3f (+/- %0.3f)” % (Acc_scores.mean(), Acc_scores.
std() * 2))
f1_scores = cross_val_score(model, X, y, cv=CV,scoring=’f1_macro’)
print(“F1 score: %0.3f (+/- %0.3f)” % (f1_scores.mean(), f1_scores.std() 
* 2))
Precision_scores = cross_val_score(model, X, y, cv=CV,scoring=’precision_
macro’)
print(“Precision score: %0.3f (+/- %0.3f)” % (Precision_scores.mean(), 
Precision_scores.std() * 2))
Recall_scores = cross_val_score(model, X, y, cv=CV,scoring=’recall_macro’)
print(“Recall score: %0.3f (+/- %0.3f)” % (Recall_scores.mean(), Recall_
scores.std() * 2))
from sklearn.metrics import cohen_kappa_score, make_scorer
kappa_scorer = make_scorer(cohen_kappa_score)
Kappa_scores = cross_val_score(model, X, y, cv=CV,scoring=kappa_scorer)
print(“Kappa score: %0.3f (+/- %0.3f)” % (Kappa_scores.mean(), Kappa_
scores.std() * 2))
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better system of diagnosis can be obtained. In regard to the above-mentioned requirements, 
machine learning methods can be utilized to facilitate improvement of the diagnostic systems. 
By using machine learning–based automatic diagnostic systems, potential diagnosis mistakes 
from doctors can be eliminated, and medical data can be examined in detail (Aličković & 
Subasi, 2017).

Example 4.12
The following Python code is used to classify the breast cancer dataset (WDBC) downloaded 

from UCI using Keras deep learning model with 10-fold cross-validation. The classification accu-
racy is calculated.

Dataset information: Breast cancer is a malignant tumor arising from breast cells. Even though 
some risk factors (i.e., genetic risk factors, ageing, obesity, family history, not having children, and 
menstrual periods) increase a woman’s chance of having breast cancer, it is not known yet what 
causes most breast cancers and how different factors initiate cells to turn cancerous. Many stud-
ies have been done to learn further, and researchers are making great progress in identifying how 
specific changes in DNA can cause healthy breast cells to turn cancerous (Aličković & Subasi, 2017; 
Jerez-Aragonés, Gómez-Ruiz, Ramos-Jiménez, Muñoz-Pérez, & Alba-Conejo, 2003; Marcano-Cede-
ño, Quintanilla-Domínguez, Andina, 2011).

There are two different Wisconsin breast cancer data sets in the UCI Machine Learning Repos-
itory (UCI, 2019a). The first dataset is Wisconsin breast cancer diagnostic (WBCD) dataset. This 
dataset includes 569 distinct instances and 32 attributes; 357 cases are benign, and 212 cases are 
malignant. All attributes are computed from a digitized image of a fine needle aspirate (FNA) of 
patients’ breast tissues. All cell nuclei in breast tissues are defined by 10 real-valued features and for 
all these features the mean, the standard error, and the “worst” (mean of the three largest values) 
are computed. Hence a total of 30 attributes for all images were obtained (Aličković & Subasi, 2017).

•	 radius	(mean	of	distances	from	center	to	points	on	the	perimeter)
•	 texture	(standard	deviation	of	gray-scale	values)
•	 perimeter
•	 area
•	 smoothness	(local	variation	in	radius	lengths)
•	 compactness	(perimeter2/area − 1.0)
•	 concavity	(severity	of	concave	portions	of	the	contour)
•	 concave	points	(number	of	concave	portions	of	the	contour)
•	 symmetry
•	 fractal	dimension	(“coastline	approximation”	− 1)

The second dataset is Wisconsin breast cancer original dataset and includes 699 samples taken 
from a breast tissue. Then, data with missing values are eliminated from the dataset; as a result, 683 
cases are left. Every record in this database has nine attributes, with all values characterized by in-
teger numbers between 1 and 10 and realized to change remarkably between benign and malignant 
instances. The measured nine attributes are (Aličković & Subasi, 2017; UCI, 2019a):

•	 clump	thickness
•	 uniformity	of	cell	size
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•	 uniformity	of	cell	shape
•	 marginal	adhesion
•	 single	epithelial	cell	size
•	 bare	nucleoi
•	 bland	chromatin
•	 normal	nuclei
•	 mitoses

"""
Created on Tue Jun 18 18:14:15 2019
@author: asubasi
"""
from sklearn.model_selection import cross_val_score
from sklearn.metrics import cohen_kappa_score, make_scorer
import numpy as np
import pandas as pd
# load data
dataset = pd.read_csv(“wdbc.csv”)
# split data into X and Y
X = dataset.iloc[:,1:31]
y = dataset.iloc[:, 0]
class_names = dataset.iloc[:, 0]
#%%
# ======================================================================
# Classification with Keras deep learning model with cross-validation
# ======================================================================
from keras.models import Sequential
from keras.layers import Dense
from keras.wrappers.scikit_learn import KerasClassifier
from keras.utils import np_utils
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import KFold
from sklearn.preprocessing import LabelEncoder
# encode class values as integers
encoder = LabelEncoder()
encoder.fit(y)
encoded_Y = encoder.transform(y)
# convert integers to dummy variables (i.e. one hot encoded)
dummy_y = np_utils.to_categorical(encoded_Y)
lenOfCoded=dummy_y.shape[1] # Dimension of binary coded output data
InputDataDimension=30
# define baseline model
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4.8 Classification of the cardiotocogram data for anticipation of fetal risks

In a pregnancy cycle, the fetal heart rate (FHR) is one of the most significant indications 
regarding the fetus. Obstetricians utilize cardiotocography (CTG) to get information, which 
includes FHR and uterine contractions (UC), associated with the fetus. The CTG not only 
obtains FHR but also assists in observing the mother’s contractions and other types of fetal 
monitoring. Generally, a proper period for antenatal CTG is after 28 weeks of pregnancy in 
the third trimester. This test can be used by either internal or external techniques. With inter-
nal testing, a catheter is placed in the uterus after a specific amount of expansion has taken 
place. In external tests, a pair of sensor nodes is attached to the mother’s stomach. The CTG 
data generally denotes two lines. The upper line records the FHR in beats per minute. The 
lower line records uterine contractions. In order to find fetal risks based on CTG, machine 
learning techniques are an increasing trend that create decision support systems in medicine. 
Various studies have carried out classification of the CTG data (Sahin & Subasi, 2015). The 
information taken from CTG is used for early detection of a pathological state and can help 
the obstetrician to predict future problems and hinder a permanent impairment to the fetus. 
Throughout The delivery of a baby who is showing hypoxia throughout delivery can cause a 
temporary impairment or death. The wrong diagnosis of the FHR recordings and unsuitable 
treatments applied to the fetus can accomplish more than half of these deaths (Ayres-de-
Campos et al., 2005; Cesarelli, Romano, & Bifulco, 2009; Gribbin & Thornton, 2006; Grivell, 
Alfirevic, Gyte, & Devane, 2015). While its practical, there might be some inconsistency in the 
success of CTG monitoring, mainly in low-risk pregnancies. If there is an incorrectly assessed 
fetal distress, then it may result in useless treatment, or if there is an inaccurate examination 
of fetal well-being, then it might not receive essential treatment (Subasi, Kadasa, & Kremic, 
2019; Van Geijn, Jongsma, de Haan, & Eskes, 1980).

def baseline_model():
# create model
model = Sequential()
model.add(Dense(20, input_dim=InputDataDimension,
activation=’relu’))
model.add(Dense(lenOfCoded, activation=’softmax’))
# Compile model
model.compile(loss=’categorical_crossentropy’,
optimizer=’adam’, metrics=[’accuracy’])
return model

estimator = KerasClassifier(build_fn=baseline_model, epochs=50, batch_
size=5, verbose=1)
kfold = KFold(n_splits=10, shuffle=True)
results = cross_val_score(estimator, X, dummy_y, cv=kfold)
print(“Accuracy: %.2f%% (%.2f%%)” % (results.mean()*100, results.
std()*100))
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Example 4.13
The following Python code is used to classify a cardiotocography dataset employing linear dis-

criminant analysis (LDA) classifier and 10-fold cross-validation. The classification accuracy, preci-
sion, recall, F1 score, Cohen kappa score, and Matthews correlation coefficient are calculated.

Dataset information: The performance of the learners utilizing the cardiotocogram (CTG) da-
taset downloaded from UCI (https://archive.ics.uci.edu/ml/datasets/cardiotocography) (Bache 
& Lichman, 2013) is evaluated. A total of 2126 fetal cardiotocograms (CTGs) were automatically 
processed, and the respective diagnostic features measured. The CTG data was examined by three 
expert obstetricians and determined normal or pathological by inspecting the status of the embryo. 
The CTG data has 3 classes (N = normal; S = suspect; P = pathologic) and 21 features; 13 of them 
are discrete and 8 are continuous. The data has the following attributes: LB, FHR baseline (beats per 
minute); AC, number of accelerations per second; FM, number of fetal movements per second; UC, 
number of uterine contractions per second; DL, number of light decelerations per second; DS, num-
ber of severe decelerations per second; DP, number of prolonged decelerations per second; ASTV, 
percentage of time with abnormal short-term variability; MSTV, mean value of short-term variabil-
ity; ALTV, percentage of time with abnormal long-term variability; MLTV, mean value of long-term 
variability; width, width of FHR histogram; min, minimum of FHR histogram; max, maximum of 
FHR histogram; Nmax, number of histogram peaks; Nzeros, number of histogram zeros; mode, 
histogram mode; mean, histogram mean; median, histogram median; variance, histogram variance; 
tendency, histogram tendency; CLASS, FHR pattern class code (1 to 10); NSP, fetal state class code 
(N = normal; S = suspect; P = pathologic).

"""
Created on Thu May 9 12:18:30 2019
@author: absubasi
"""
from sklearn.metrics import cohen_kappa_score, make_scorer
import scipy as sp
import numpy as np
import pandas as pd
#To prevent warnings
import warnings
warnings.filterwarnings(“ignore”)

# load data
dataset = pd.read_csv(“CTG3CLASS.csv”)
# split data into X and y
X = dataset.iloc[:,0:21]
y = dataset.iloc[:, 21]
class_names = dataset.iloc[:, 21]
X=X.to_numpy() #Convert Pandas Dataframe into Numpy

#%%
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# ======================================================================
# LDA classification with training and test set
# ======================================================================
# Import train_test_split function
from sklearn.model_selection import train_test_split
# Split dataset into training set and test set
# 70% training and 30% test
Xtrain, Xtest, ytrain, ytest = train_test_split(X, y,test_size=0.3, ran-
dom_state=1)
#Import LDA model
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
#Create a LDA Classifier
clf = LinearDiscriminantAnalysis(solver=’lsqr’, shrinkage=None)
#Train the model using the training sets
clf.fit(Xtrain,ytrain)
#Predict the response for test dataset
ypred = clf.predict(Xtest)
#Evaluate the Model and Print Performance Metrics
from sklearn import metrics
print(’Accuracy:’, np.round(metrics.accuracy_score(ytest,ypred),4))
print(’Precision:’, np.round(metrics.precision_score(ytest,
            ypred,average=’weighted’),4))
print(’Recall:’, np.round(metrics.recall_score(ytest,ypred,
                    average=’weighted’),4))
print(’F1 Score:’, np.round(metrics.f1_score(ytest,ypred,
                    average=’weighted’),4))
print(’Cohen Kappa Score:’, np.round(metrics.cohen_kappa_score(ytest,
ypred),4))
print(’Matthews Corrcoef:’, np.round(metrics.matthews_corrcoef(ytest, 
ypred),4))
print(’\n\t\tClassification Report:\n’, metrics.classification_
report(ypred, ytest))

#Plot Confusion Matrix
from sklearn.metrics import confusion_matrix
print(“Confusion Matrix:\n”,confusion_matrix(ytest, ypred))

#%%
# ======================================================================
# LDA example with cross-validation
# ======================================================================
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.model_selection import cross_val_score
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4.9 Diabetes detection

Diabetes is a widespread physiological disease among humans. The term diabetic is used 
once a person is incapable of breaking down glucose due to lack of insulin. The human organ 
known as the pancreas is responsible for producing the hormone insulin, which is an essen-
tial enzyme regulates the sugar level in human blood. It generates energy to the human body 
using sugar; sans enough insulin, body cells cannot obtain the energy they need, thus the 
sugar level in the blood becomes too high and several problems can arise. Diabetes is not a cur-
able disease; fortunately, it is treatable. In contemporary healthcare, predicting and accurately 
treating diseases has become of primary importance in medical prognostics disciplines. The 
treatment of diabetes is completely manual, normally recommended by the physician. Smith 
et al. (Smith, Everhart, Dickson, Knowler, Johannes, 1988) utilized the perceptron-based algo-
rithm called ADAPtive learning routine (ADAP), which is an early neural network model, to 
forecast the onset of diabetes mellitus. They used the Pima Indians diabetes (PID) dataset in 
the experiment. This dataset is taken from the UCI machine learning repository. The dataset 
contains women of Pima Indian inheritance who were older than 20 years and were residents 
of the United States at the time of the study. The binary output variable takes either zero or 
one, where one indicates testing positive and zero is a testing negative for diabetes. In total 

# fit model no training data
#model = LinearDiscriminantAnalysis(solver=’lsqr’, shrinkage=’auto’)
model = LinearDiscriminantAnalysis(solver=’lsqr’, shrinkage=None)

CV=10 #10-Fold Cross Validation
#Evaluate Model Using 10-Fold Cross Validation
Acc_scores = cross_val_score(model, X, y, cv=CV)
print(“Accuracy: %0.3f (+/- %0.3f)” % (Acc_scores.mean(), Acc_scores.
std() * 2))
f1_scores = cross_val_score(model, X, y, cv=CV,scoring=’f1_macro’)
print(“F1 score: %0.3f (+/- %0.3f)” % (f1_scores.mean(), f1_scores.std() 
* 2))
Precision_scores = cross_val_score(model, X, y, cv=CV,scoring=’precision_
macro’)
print(“Precision score: %0.3f (+/- %0.3f)” % (Precision_scores.mean(), 
Precision_scores.std() * 2))
Recall_scores = cross_val_score(model, X, y, cv=CV,scoring=’recall_macro’)
print(“Recall score: %0.3f (+/- %0.3f)” % (Recall_scores.mean(), Recall_
scores.std() * 2))
kappa_scorer = make_scorer(cohen_kappa_score)
Kappa_scores = cross_val_score(model, X, y, cv=CV,scoring=kappa_scorer)
print(“Kappa score: %0.3f (+/- %0.3f)” % (Kappa_scores.mean(), Kappa_
scores.std() * 2))
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268 (34.9%) cases exist in class 1 for positive test and 500 (65.1%) cases in class 0 for negative 
test. There are eight clinical attributes (Ashiquzzaman et al., 2018).

Example 4.14
The following Python code is used to classify diabetes mellitus dataset using random forest 

classifier. The classification accuracy, precision, recall, F1 score, Cohen kappa score, and Matthews 
correlation coefficient are calculated. The confusion matrix and ROC area are computed as well.

Dataset information: The dataset includes 768 different instances, and all patients in the dataset 
are females at least 21 years old. The binary target variable takes zero or one values, while zero im-
plies a negative test for diabetes and one indicates a positive test. There are 500 cases in class 0 and 
268 cases in class 1. The population was the Pima Indian population near Phoenix, Arizona. Since 
1965, Pima Indians living in the Gila River Indian community in southern Arizona have contrib-
uted in a longitudinal study of diabetes and its obstacles. This community has the world’s highest 
reported occurrence of diabetes (50% at 35 years of age). Pima Indians have diabetes that is not re-
lated to insulin dependency, ketoacidosis, or islet-cell antibodies and is, thus, type 2 diabetes, even 
when it occurs in the young. Diabetic nephropathy is the prevalent form of kidney disease in this 
population and is similar in its clinical characteristics and conventional pathologic features to that 
described in other populations. It frequently results in end-stage renal disease, which develops in 
nearly 15 percent of diabetic Pima Indians by 20 years’ duration of diabetes (Mercaldo, Nardone, & 
Santone, 2017). The attributes of the dataset are:

1. Number of times pregnant
2. Plasma glucose concentration at 2 hours in an oral glucose tolerance test (GTIT)
3. Diastolic blood pressure (mm Hg)
4. Triceps skin fold thickness (mm)
5. 2-hour serum insulin (µU/ml)
6. Body mass index
7. Diabetes pedigree function
8. Age (years)

"""
Created on Thu May 9 12:18:30 2019
@author: absubasi
"""

import scipy as sp
import numpy as np
import pandas as pd
#To prevent warnings
import warnings
warnings.filterwarnings(“ignore”)

# load data
from numpy import loadtxt
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dataset = loadtxt(’pima-indians-diabetes.csv’, delimiter=“,”)

# split data into X and y
X = dataset[:,0:8]
y = dataset[:,8]

# Import train_test_split function
from sklearn.model_selection import train_test_split
# Split dataset into training set and test set
# 70% training and 30% test
Xtrain, Xtest, ytrain, ytest = train_test_split(X, y,test_size=0.3, ran-
dom_state=1)
#%%
# ======================================================================
# Random forest example with training and test set
# ======================================================================
from sklearn.ensemble import RandomForestClassifier

#In order to change to accuracy increase n_estimators
"""RandomForestClassifier(n_estimators=’warn’, criterion=’gini’, max_
depth=None,
min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0,
max_features=’auto’, max_leaf_nodes=None, min_impurity_decrease=0.0,
min_impurity_split=None, bootstrap=True, oob_score=False, n_jobs=None,
random_state=None, verbose=0, warm_start=False, class_weight=None)"""
clf = RandomForestClassifier(n_estimators=200)
#Create the Model
#Train the model with Training Dataset
clf.fit(Xtrain,ytrain)
#Test the model with Testset
ypred = clf.predict(Xtest)

#Evaluate the Model and Print Performance Metrics
from sklearn import metrics
print(’Accuracy:’, np.round(metrics.accuracy_score(ytest,ypred),4))
print(’Precision:’, np.round(metrics.precision_score(ytest,
            ypred,average=’weighted’),4))
print(’Recall:’, np.round(metrics.recall_score(ytest,ypred,
            average=’weighted’),4))
print(’F1 Score:’, np.round(metrics.f1_score(ytest,ypred,
            average=’weighted’),4))
print(’Cohen Kappa Score:’, np.round(metrics.cohen_kappa_score(ytest, 
ypred),4))
print(’Matthews Corrcoef:’, np.round(metrics.matthews_corrcoef(ytest,
ypred),4))
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print(’\t\tClassification Report:\n’, metrics.classification_report(ypred, 
ytest))

#Plot Confusion Matrix
from sklearn.metrics import confusion_matrix
print(“Confusion Matrix:\n”,confusion_matrix(ytest, ypred))

#%%
# ======================================================================
# Random forest example with cross-validation
# ======================================================================
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import cross_val_score
#In order to change to accuracy increase n_estimators
# fit model no training data
model = RandomForestClassifier(n_estimators=200)

CV=10 #10-Fold Cross Validation
#Evaluate Model Using 10-Fold Cross Validation and Print Performance 
Metrics
Acc_scores = cross_val_score(model, X, y, cv=CV)
print(“Accuracy: %0.3f (+/- %0.3f)” % (Acc_scores.mean(), Acc_scores.
std() * 2))
f1_scores = cross_val_score(model, X, y, cv=CV,scoring=’f1_macro’)
print(“F1 score: %0.3f (+/- %0.3f)” % (f1_scores.mean(), f1_scores.std() 
* 2))
Precision_scores = cross_val_score(model, X, y, cv=CV,scoring=’precision_
macro’)
print(“Precision score: %0.3f (+/- %0.3f)” % (Precision_scores.mean(), 
Precision_scores.std() * 2))
Recall_scores = cross_val_score(model, X, y, cv=CV,scoring=’recall_macro’)
print(“Recall score: %0.3f (+/- %0.3f)” % (Recall_scores.mean(), Recall_
scores.std() * 2))
from sklearn.metrics import cohen_kappa_score, make_scorer
kappa_scorer = make_scorer(cohen_kappa_score)
Kappa_scores = cross_val_score(model, X, y, cv=10,scoring=kappa_scorer)
print(“Kappa score: %0.3f (+/- %0.3f)” % (Kappa_scores.mean(), Kappa_
scores.std() * 2))

#%%
# ======================================================================
# # Classification and ROC analysis for binary classification
# ======================================================================
from sklearn.ensemble import RandomForestClassifier
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from sklearn.metrics import roc_curve, auc
from sklearn.model_selection import StratifiedKFold
from scipy import interp
import matplotlib.pyplot as plt
random_state = np.random.RandomState(0)
########################################################################
# Run classifier with cross-validation and plot ROC curves
cv = StratifiedKFold(n_splits=5)
classifier = RandomForestClassifier(n_estimators=200)

tprs = []
aucs = []
mean_fpr = np.linspace(0, 1, 100)

i = 0
for train, test in cv.split(X, y):
probas_ = classifier.fit(X[train], y[train]).predict_proba(X[test])
# Compute ROC curve and area the curve
fpr, tpr, thresholds = roc_curve(y[test], probas_[:, 1])
tprs.append(interp(mean_fpr, fpr, tpr))
tprs[-1][0] = 0.0
roc_auc = auc(fpr, tpr)
aucs.append(roc_auc)
plt.plot(fpr, tpr, lw=1, alpha=0.3,
     label=’ROC fold %d (AUC = %0.2f)’ % (i, roc_auc))
i += 1

plt.plot([0, 1], [0, 1], linestyle=’--’, lw=2, color=’r’,
      label=’Chance’, alpha=.8)

mean_tpr = np.mean(tprs, axis=0)
mean_tpr[-1] = 1.0
mean_auc = auc(mean_fpr, mean_tpr)
std_auc = np.std(aucs)
plt.plot(mean_fpr, mean_tpr, color=’b’,
     label=r’Mean ROC (AUC = %0.2f $\pm$ %0.2f)’ % (mean_auc, std_auc),
     lw=2, alpha=.8)

std_tpr = np.std(tprs, axis=0)
tprs_upper = np.minimum(mean_tpr + std_tpr, 1)
tprs_lower = np.maximum(mean_tpr - std_tpr, 0)
plt.fill_between(mean_fpr, tprs_lower, tprs_upper, color=’grey’, 
alpha=.2,
      label=r’$\pm$ 1 std. dev.’)
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4.10 Heart disease detection

The heart is one of the most important organs in the human body. It is the center of the 
circulatory system. Without proper functioning of the heart, multiple other organs would 
stop working. According to the American Heart Association’s 2015 Heart Disease and Stroke 
Statistics Update, cardiovascular disease is the leading worldwide cause of death, account-
ing for 17.3 million deaths per year, and by 2030 it is estimated to increase to more than 23.6 
million. The total number of people dying every year from cardiovascular disease is rising 
drastically. If heart disease is identified and diagnosed precisely at an early stage and proper 
subsequent treatment is provided, then considerable numbers lives can be saved, and the 
death rate can be reduced. Diagnosis is a complicated process in which doctors come to a 
conclusion based on their knowledge and the experiences they encounter with the treatment 
of patients suffering from similar problems and symptoms. This can lead to incorrect assump-
tions, as some factors are associated with various organs. The work presented in this book 
is intended to automate the medical diagnosis process and develop a prediction system to 
detect heart disease with higher accuracy by using machine learning. A number of tests are 
conducted on the patient for the diagnosis of a disease. With the help of machine learning 
techniques for predicting the disease, the number of tests can be reduced, which saves time 
and provides quality services at a reasonable cost (Dembla & Bhatia, 2016).

plt.xlim([-0.05, 1.05])
plt.ylim([-0.05, 1.05])
plt.xlabel(’False Positive Rate’)
plt.ylabel(’True Positive Rate’)
plt.title(’Receiver operating characteristic example’)
plt.legend(loc=“lower right”)
plt.show()

Example 4.15
The following Python code is used to classify the Cleveland heart dataset utilizing the random 

forest classifier with training and testing datasets. The classification accuracy, precision, recall, F1 
score, Cohen kappa score, and Matthews correlation coefficient are calculated. The classification 
report and confusion matrix are also given. Since the accuracy of the classifier is low, we employed 
two different cases with data normalization and without data normalization. By using data normal-
ization, the performance of the classifier is improved.

Dataset information: The performance of the random forest classifier is evaluated by utilizing 
the Cleveland heart dataset. The Cleveland heart dataset is downloaded from the UCI machine 
learning dataset repository (https://archive.ics.uci.edu/ml/datasets/Heart+Disease), which was 
provided by Detrano. The dataset comprises 303 instances and 14 attributes and is being divided 
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into two classes of disease. The data has the following attributes: age, age in years; sex, sex (1 = 
male; 0 = female); cp: chest pain type (1: typical angina, 2: atypical angina, 3: nonanginal pain, 4: 
asymptomatic); trestbpsm resting blood pressure (in mm Hg on admission to the hospital); chol, 
serum cholesterol in mg/dl; fbs, fasting blood sugar > 120 mg/dl (1 = true; 0 = false); restecg, rest-
ing electrocardiographic results (0: normal, 1: having ST-T wave abnormality, 2: showing probable 
or definite left ventricular hypertrophy by Estes criteria); thalach: maximum heart rate achieved; 
exang, exercise induced angina (1 = yes, 0 = no); oldpeak, ST depression induced by exercise rela-
tive to rest; slope, the slope of the peak exercise ST segment (1: upsloping, 2: flat, 3: downsloping); 
ca: number of major vessels (0–3) colored by fluoroscopy; thal, 3 = normal, 6 = fixed defect, 7 = 
reversible defect; num, diagnosis of heart disease (angiographic disease status, 0: < 50% diameter 
narrowing, 1: > 50% diameter narrowing).

"""
Created on Tue Jun 18 18:14:15 2019
@author: asubasi
"""
import numpy as np
import pandas as pd
# load data
dataset = pd.read_csv(’cleveland_heart.csv’)
# split data into X and Y
X = dataset.iloc[:,0:13]
y = dataset.iloc[:, 13]
class_names = dataset.iloc[:, 13]
#%%
# ======================================================================
# Evaluation without data normalization
# ======================================================================
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
# split data into train and test sets
Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, test_size=0.33, ran-
dom_state=7)
#In order to change to accuracy increase n_estimators
"""RandomForestClassifier(n_estimators=’warn’, criterion=’gini’, max_
depth=None,
min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0,
max_features=’auto’, max_leaf_nodes=None, min_impurity_decrease=0.0,
min_impurity_split=None, bootstrap=True, oob_score=False, n_jobs=None,
random_state=None, verbose=0, warm_start=False, class_weight=None)"""
clf = RandomForestClassifier(n_estimators=200)
#Create the Model
#Train the model with Training Dataset
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clf.fit(Xtrain,ytrain)
#Test the model with Testset
ypred = clf.predict(Xtest)
#Evaluate the Model and Print Performance Metrics
from sklearn import metrics
print(’Accuracy:’, np.round(metrics.accuracy_score(ytest,ypred),4))
print(’Precision:’, np.round(metrics.precision_score(ytest,
            ypred,average=’weighted’),4))
print(’Recall:’, np.round(metrics.recall_score(ytest,ypred,
                 average=’weighted’),4))
print(’F1 Score:’, np.round(metrics.f1_score(ytest,ypred,
                 average=’weighted’),4))
print(’Cohen Kappa Score:’, np.round(metrics.cohen_kappa_score(ytest,
ypred),4))
print(’Matthews Corrcoef:’, np.round(metrics.matthews_corrcoef(ytest, 
ypred),4))
print(’\t\tClassification Report:\n’, metrics.classification_report(ypred, 
ytest))
#Plot Confusion Matrix
from sklearn.metrics import confusion_matrix
print(“Confusion Matrix:\n”,confusion_matrix(ytest, ypred))
#%%
# ======================================================================
# Evaluation with data normalization
# ======================================================================
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn import preprocessing

X_normalized = preprocessing.normalize(X, norm=’l2’)
# split data into train and test sets
Xtrain, Xtest, ytrain, ytest = train_test_split(X_normalized, y, test_
size=0.33, random_state=7)
#In order to change to accuracy increase n_estimators
"""RandomForestClassifier(n_estimators=’warn’, criterion=’gini’, max_
depth=None,
min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0,
max_features=’auto’, max_leaf_nodes=None, min_impurity_decrease=0.0,
min_impurity_split=None, bootstrap=True, oob_score=False, n_jobs=None,
random_state=None, verbose=0, warm_start=False, class_weight=None)"""
clf = RandomForestClassifier(n_estimators=200)
#Create the Model
#Train the model with Training Dataset
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4.11 Diagnosis of chronic kidney disease (CKD)

Chronic kidney disease (CKD) is a chronic healthcare problem affecting almost 10% of the 
population worldwide (Cueto-Manzano et al., 2014; Pérez-Sáez et al., 2015). In real life, CKD 
can be found in cases related to the increased risk of hospital admission, morbidity, and death 
due to cardiovascular disease and the progressive loss of kidney function. Subjects diagnosed 
with CKD have a high risk of being affected by atherosclerosis and other types of diseases. 
These diseases have significant effects on their quality of life. The key consequence of the CKD 
finding is the kidney damage (Levin & Stevens, 2014). Numerous indications or risk factors 
are also related to CKD progress, so that these factors could extremely impact CKD identifica-
tion. By monitoring the progressive nature of CKD, new understandings from the diagnostic 
computational models built on the ML concepts offer great potential to improve the diagnosis 
of CKD (Chen, Zhang, Zhu, Xiang, & Harrington, 2016). Numerous studies have proposed 
models built for diagnosis of CKD (Chen et al., 2016; Muthukumar & Krishnan, 2016; Subasi 
et al., 2017).

clf.fit(Xtrain,ytrain)
#Test the model with Testset
ypred = clf.predict(Xtest)
#Evaluate the Model and Print Performance Metrics
from sklearn import metrics
print(’Accuracy:’, np.round(metrics.accuracy_score(ytest,ypred),4))
print(’Precision:’, np.round(metrics.precision_score(ytest,
            ypred,average=’weighted’),4))
print(’Recall:’, np.round(metrics.recall_score(ytest,ypred,
                  average=’weighted’),4))
print(’F1 Score:’, np.round(metrics.f1_score(ytest,ypred,
                  average=’weighted’),4))
print(’Cohen Kappa Score:’, np.round(metrics.cohen_kappa_score(ytest, 
ypred),4))
print(’Matthews Corrcoef:’, np.round(metrics.matthews_corrcoef(ytest, 
ypred),4))
print(’\t\tClassification Report:\n’, metrics.classification_report(ypred, 
ytest))
#Plot Confusion Matrix
from sklearn.metrics import confusion_matrix
print(“Confusion Matrix:\n”,confusion_matrix(ytest, ypred))
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Example 4.16
The following Python code is used to classify the chronic kidney disease (CKD) dataset (https://

archive.ics.uci.edu/ml/datasets/Chronic_Kidney_Disease#) employing LDA classifier. The classi-
fication accuracy, precision, recall, F1 score, Cohen kappa score, and Matthews correlation coeffi-
cient are calculated. The confusion matrix and ROC area are computed as well.

Dataset information: The CKD dataset used in this example is downloaded from the UCI ma-
chine learning repository (UCI, 2019b). The data, collected during a nearly 2-month period and 
donated by Soundarapandian et al., includes a total of 400 samples represented by 14 numeric and 
10 nominal attributes and a class descriptor. Out of 400 samples, 250 samples belong to the CKD 
group, and the other 150 samples belong to the non-CKD group. Details are more discussed in Chen 
et al. (2016).

The attributes of the dataset are: age, age; bp, blood pressure; sg, specific gravity; al, albumin; su, 
sugar; rbc, red blood cells; pc, pus cell; pcc, pus cell clumps; ba, bacteria; bgr, blood glucose random; 
bu, blood urea; sc, serum creatinine; sod, sodium; pot, potassium; hemo, haemoglobin; pcv, packed 
cell volume; wc, white blood cell count; rc, red blood cell count; htn, hypertension; dm, diabetes 
mellitus; cad, coronary artery disease; appet, appetite; pe, pedal edema; ane, anemia; class, CKD/
NOCKD.

"""
Created on Thu May 9 12:18:30 2019
@author: absubasi
"""
import numpy as np
import pandas as pd
from sklearn.preprocessing import LabelEncoder
#To prevent warnings
import warnings
warnings.filterwarnings(“ignore”)

# load data
dataset = pd.read_csv(“chronic_kidney_disease.csv”)
#Encode string data
for col in dataset.columns:

if dataset[col].dtype == “object”:
encoded = LabelEncoder()
encoded.fit(dataset[col])
dataset[col] = encoded.transform(dataset[col])

#%%
# split data into X and y
X = dataset.iloc[:,0:24]
y = dataset.iloc[:, 24]
#%%
# Import train_test_split function
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from sklearn.model_selection import train_test_split
# Split dataset into training set and test set
# 70% training and 30% test
Xtrain, Xtest, ytrain, ytest = train_test_split(X, y,test_size=0.3, ran-
dom_state=1)
#%%
# ======================================================================
# LDA example with training and test set
# ======================================================================
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
clf = LinearDiscriminantAnalysis(solver=’lsqr’, shrinkage=None)
#Create the Model
#Train the model with Training Dataset
clf.fit(Xtrain,ytrain)
#Test the model with Testset
ypred = clf.predict(Xtest)
#Evaluate the Model and Print Performance Metrics
from sklearn import metrics
print(’Accuracy:’, np.round(metrics.accuracy_score(ytest,ypred),4))
print(’Precision:’, np.round(metrics.precision_score(ytest,
            ypred,average=’weighted’),4))
print(’Recall:’, np.round(metrics.recall_score(ytest,ypred,
                  average=’weighted’),4))
print(’F1 Score:’, np.round(metrics.f1_score(ytest,ypred,
                  average=’weighted’),4))
print(’Cohen Kappa Score:’, np.round(metrics.cohen_kappa_score(ytest,
ypred),4))
print(’Matthews Corrcoef:’, np.round(metrics.matthews_corrcoef(ytest, 
ypred),4))
print(’\t\tClassification Report:\n’, metrics.classification_report(ypred, 
ytest))
#Plot Confusion Matrix
from sklearn.metrics import confusion_matrix
print(“Confusion Matrix:\n”,confusion_matrix(ytest, ypred))

from io import BytesIO #neded for plot
import seaborn as sns; sns.set()
import matplotlib.pyplot as plt

mat = confusion_matrix(ytest, ypred)
sns.heatmap(mat.T, square=True, annot=True, fmt=’d’, cbar=False)
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plt.xlabel(’true label’)
plt.ylabel(’predicted label’);
plt.savefig(“Confusion.jpg”)
# Save SVG in a fake file object.
f = BytesIO()
plt.savefig(f, format=“svg”)

#%%
# ======================================================================
# LDA example with cross-validation
# ======================================================================
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.model_selection import cross_val_score
#In order to change to accuracy increase n_estimators
# fit model no training data
model = LinearDiscriminantAnalysis(solver=’lsqr’, shrinkage=None)

CV=10 #10-Fold Cross Validation
#Evaluate Model Using 10-Fold Cross Validation and Print Performance 
Metrics
Acc_scores = cross_val_score(model, X, y, cv=CV)
print(“Accuracy: %0.3f (+/- %0.3f)” % (Acc_scores.mean(), Acc_scores.
std() * 2))
f1_scores = cross_val_score(model, X, y, cv=CV,scoring=’f1_macro’)
print(“F1 score: %0.3f (+/- %0.3f)” % (f1_scores.mean(), f1_scores.std() 
* 2))
Precision_scores = cross_val_score(model, X, y, cv=CV,scoring=’precision_
macro’)
print(“Precision score: %0.3f (+/- %0.3f)” % (Precision_scores.mean(), 
Precision_scores.std() * 2))
Recall_scores = cross_val_score(model, X, y, cv=CV,scoring=’recall_macro’)
print(“Recall score: %0.3f (+/- %0.3f)” % (Recall_scores.mean(), Recall_
scores.std() * 2))
from sklearn.metrics import cohen_kappa_score, make_scorer
kappa_scorer = make_scorer(cohen_kappa_score)
Kappa_scores = cross_val_score(model, X, y, cv=10,scoring=kappa_scorer)
print(“Kappa score: %0.3f (+/- %0.3f)” % (Kappa_scores.mean(), Kappa_
scores.std() * 2))
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4.12 Summary

Machine learning is a relatively new field and yet possibly one of computer science’s most 
active area. Given the wide availability of digitized data and its many applications, we can 
assume that over the next few decades it will continue to grow at a very fast pace. Different 
learning issues, some resulting from the substantial increase in data size, which already 
involves the processing of billions of records in some applications, others related to the imple-
mentation of entirely new learning systems, are likely to present new research challenges and 
require new algorithmic solutions. In all cases, learning theory, algorithms, and implementa-
tions are a fascinating field of computer science and mathematics that we hope this book will 
explain at least to some degree (Mohri, Rostamizadeh, & Talwalkar, 2018). We defined a wide 
range of machine learning algorithms and techniques in the classification of the healthcare 
data as well as their varying implementations. The examples included at the end of each sec-
tion will help the reader become more experienced with the mentioned strategies and prin-
ciples, as well as the complete solutions offered separately. Some of them could also act as a 
point of entry for academic work and research into new questions. In the implementations, 
several machine learning algorithms are discussed as well as their variants, which can be 
used directly to extract effective solutions to real-world learning problems. Detailed descrip-
tions and analyses of the presented algorithms will help with their implementation and adap-
tation to other learning scenarios.
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5
Other classification examples

5.1 Intrusion detection

One of the biggest threats to the corporate network involves attacks on its information 
technology (IT) infrastructure. Particularly for the companies established in a distributed 
manner, IT managers should extend the security outside the corporate backbone. The pro-
spective vulnerabilities—including but not limited to Internet connections, remote and local 
corporate office interconnections, and links between trusted partners—should all be taken 
into consideration. Unfortunately the focus on security for corporate resources and internal 
traffic only do not help us recognize the endeavored attacks or discover the potential vulner-
abilities across the company. Usually the need for intrusion detection systems (IDSs) is ques-
tioned. Why are firewalls not sufficient for security? One way to point out the difference is to 
classify the security threats. Do attacks arise from outside of the company network or from 
within? Usually firewalls act as a protecting wall between company internal networks and 
the outside network (Internet). Any traffic passing through is filtered according to the pre-
defined security policies. Unfortunately all access to the Internet is not through the firewall. 
Some users might connect to the Internet with an unauthorized connection from their internal 
network. In the meantime not all threats occur outside the firewall. Actually, a great deal of 
security incidents and losses are traced back to insiders. Moreover, firewalls are the focus of 
the attackers themselves. It would be sufficient protection if you do not consider these facts. 
Companies with connections to public Internet domains do not have the luxury of relying on 
a single form of security. Therefore firewalls must be complemented with intrusion detection 
systems (IDSs) (Bace, 1999).

IDSs detect computer attacks and/or system misuse, and once an attack is detected they 
alert the appropriate people. Each IDS tool or system serves three crucial security functions—
monitoring, detection, and response to any type of unauthorized activities within or outside 
of the company network. Any IDS program utilizes policies to identify intrusion events. Once 
an event is triggered, an appropriate response is delivered according to the policy. Some IDS 
programs can issue a warning to the systems administrator. Certain IDS programs do behave 
as a preventive measure and act upon a security threat. They can respond to certain attack 
types, like disabling an account, logging off a user, and running certain scripts. Hence the IDS 
program is the only practical approach designed to investigate attacks both from the inside 
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and outside of the corporate network. Intrusions can be initiated for financial, political, or 
military gains or some sort of personal reason (Innella & McMillan, 2017).

An IDS is software that tracks a system’s networks or operations and checks for suspi-
cious activity and warns when unauthorized acts are observed (Tiwari, Kumar, Bharti, & 
Kishan, 2017). IDSs use machine learning algorithms to differentiate between normal and 
abnormal behaviors in a network. Machine learning has become an effective approach for 
minimizing the abundance of information and improving decision-making through optimiz-
ing useful knowledge by determining relationships in the data collected (Govindarajan & 
Chandrasekaran, 2011). Intrusion detection is a mechanism to detect events of attack that 
actively seek to damage the network. In order to achieve better protection and reduce damage 
and/or other future attempts, recording these events is crucial. Security professionals utilize 
sensors positioned in front of and behind firewalls and compare the results obtained by both 
sensors (Sahu, Mishra, Das, & Mishra, 2014). Due to the rapid growth of urbanization and the 
trend of Internet of Things (IoT), many security concerns and challenges have risen as well. 
Cyberattacks are vulnerable to sensor-based IoT devices and computers for data collection 
and analysis. Machine learning algorithms efficiently detect intrusions and malicious activi-
ties (Goel & Hong, 2015).

Example 5.1
The following Python code is used to classify intrusion detection data using the decision tree 

classifier employing 10-fold cross-validation and separate training and test sets. The classification 
accuracy, precision, recall, F1 score, and entropy are calculated. The confusion matrix is also given.

Dataset information: Dataset is downloaded from KDD Cup 1999 Data website (http://kdd.
ics.uci.edu/databases/kddcup99/kddcup99.html). This is the dataset employed for The Third 
International Knowledge Discovery and Data Mining Tools competition that was conducted in 
conjunction with KDD-99 Fifth International Conference on Knowledge Discovery and Data 
Mining. The competition task was to develop a network intrusion detection system, a predictive 
model capable of distinguishing between “anomaly” connections, called intrusions or attacks, and 
normal connections. This database involves a standard set of data to be audited that contains a 
wide variety of intrusions simulated in a military network environment.

#======================================================================
# Anomaly detection with KDD dataset using decision tree
#======================================================================
#import the libraries
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
#Load the dataset
dataset = pd.read_csv('kddcup.data_10_percent_corrected')
dataset['normal.'] = dataset['normal.'].replace(['back.', 'buffer_
overflow.', 'ftp_write.', 'guess_passwd.', 'imap.', 'ipsweep.',
'land.', 'loadmodule.', 'multihop.', 'neptune.', 'nmap.', 'perl.', 

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
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'phf.', 'pod.', 'portsweep.', 'rootkit.', 'satan.', 'smurf.', 'spy.', 
'teardrop.', 'warezclient.', 'warezmaster.'], 'attack')
x = dataset.iloc[:, :-1].values
y = dataset.iloc[:, 41].values
#%%
#encoding categorical data
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
labelencoder_x_1 = LabelEncoder()
labelencoder_x_2 = LabelEncoder()
labelencoder_x_3 = LabelEncoder()
x[:, 1] = labelencoder_x_1.fit_transform(x[:, 1])
x[:, 2] = labelencoder_x_2.fit_transform(x[:, 2])
x[:, 3] = labelencoder_x_3.fit_transform(x[:, 3])
onehotencoder_1 = OneHotEncoder(categorical_features = [1])
x = onehotencoder_1.fit_transform(x).toarray()
onehotencoder_2 = OneHotEncoder(categorical_features = [4])
x = onehotencoder_2.fit_transform(x).toarray()
onehotencoder_3 = OneHotEncoder(categorical_features = [70])
x = onehotencoder_3.fit_transform(x).toarray()
labelencoder_y = LabelEncoder()
y = labelencoder_y.fit_transform(y)

#splitting the dataset into the training set and test set
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.3, 
random_state = 0)

#feature scaling
from sklearn.preprocessing import StandardScaler
sc_x = StandardScaler()
x_train = sc_x.fit_transform(x_train)
x_test = sc_x.transform(x_test)

# Fitting Decision Tree to the Training set
from sklearn import tree
# fit model no training data
classifier = tree.DecisionTreeClassifier()
classifier.fit(x_train, y_train)

# Predicting the Test set results
y_pred = classifier.predict(x_test)

# Making the Confusion Matrix
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)
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5.2 Phishing website detection

Global communication plays an important role in fast network technology development, 
especially in e-commerce, electronic banking, social networks, etc. These activities are now be-
ing shifted to cyberspace. Cyberspace threats focus on insecure Internet infrastructure. Con-
sumer security is not an easy task as it contains the scam of phishing. It goes from the fall to the 
scam of phishing. Internet features must be taken into consideration and focus must be placed 
on those who are relatively experienced users (Curtis, Rajivan, Jones, & Gonzalez, 2018). Large 
amounts of personal information, money, and other critical data and information have been 
destroyed by cyberattacks. The subject of phishing attacks has been researched in recent years. 
This has become a popular tool for hackers generating fraudulent websites. If these websites 
are reviewed for further analysis, you can see they contain malicious elements, particularly 
when analyzing the uniform resource locators (URLs). The attacker’s purpose is to use the 
URL to obtain as much as possible of the victim’s personal information, sensitive information, 
financial data, passwords, usernames, and more (Gupta, Arachchilage, & Psannis, 2018). De-
tection of phishing attacks plays a crucial role in online banking and trading, and many users 
believe they are secure from such assaults. Such attacks start by sending an initial e-mail, with 
all applicable credentials, seeking to obtain the victim’s data and information via a connection 
shared in the e-mail. There are few ways phishers can be detected. Two known methods are 
utilized to detect phishing websites. One includes verifying the URL, which involves check-
ing if the URL is on a blacklist (Gastellier-Prevost, Granadillo, & Laurent, 2011). The other 

# Applying k-Fold Cross Validation
from sklearn.model_selection import cross_val_score
accuracies = cross_val_score(estimator = classifier, X = x_train, y = y_train, 
cv = 10)

#%%
print("CV Accuracy: %0.4f (+/- %0.4f)" % (accuracies.mean(), accuracies.
std() * 2))
#the performance of the classification model
print("Test Accuracy is : %0.4f" % ((cm[0,0] + cm[1,1])/
(cm[0,0] + cm[0,1] + cm[1,0] + cm[1,1])))
recall = cm[1,1]/(cm[0,1] + cm[1,1])
print("Recall is : %0.4f" % (recall))
print("False Positive rate: %0.4f" %(cm[1,0]/(cm[0,0] + cm[1,0])))
precision = cm[1,1]/(cm[1,0] + cm[1,1])
print("Precision is: %0.4f" %(precision))
print("F-measure is: %0.4f" % (2*((precision*recall)/
(precision + recall))))
from math import log
print("Entropy is: %0.4f" % (-precision*log(precision)))
print("\nConfusion Matrix:\n", cm)
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method is called the meta-heuristic approach. Using this method, several features are col-
lected. By gathering this information by using an identification process, the URL is identified 
as a legitimate website or phishing website (Xiang, Hong, Rose, & Cranor, 2011). Machine 
learning methods are employed to search and recognize patterns and to discover connections 
among them (Han, Pei, & Kamber, 2011). Machine learning is important for decision-making, 
as decisions are based on the rules followed by the learner (Mohammad, Thabtah, & McClus-
key, 2014; Subasi & Kremic, 2019; Subasi, Molah, Almkallawi, & Chaudhery, 2017).

Example 5.2
The following Python code is used to classify phishing websites data employing random forest 

classifier by using separate training and test sets and 10-fold cross-validation. The classification 
accuracy, precision, recall, F1 score, Cohen kappa score, and Matthews correlation coefficient are 
calculated. The classification report and confusion matrix are also given.

Dataset information: In this example, the publicly available phishing websites dataset is 
downloaded from the UCI machine learning repository (UCI, 2017) is used. The data is collected 
and donated by Mohammad et al. (Mohammad, Thabtah, & McCluskey, 2012; Mohammad 
et al., 2014; Mohammad, Thabtah, & McCluskey, 2015). The features that are employed in the dataset 
are defined in Mohammad et al. (2015). The features are: IP address, URLs with an “@” symbol, 
redirecting using “//” symbol, URL shortening services such as “TinyURL,” long URLs to hide 
the suspicious elements, subdomains and multi-subdomains, adding a prefix or suffix separated 
by (-) to the domain, domain registration length, favicon, HTTPS (hyper text transfer protocol with 
secure sockets layer), usage of a nonstandard port, request URLs, the existence of “HTTPS” token 
in the domain part of the URL, URL of anchor, website traffic, server form handler (SFH), abnormal 
URLs, status bar customization, submitting information to e-mail, website forwarding, pagerank, 
number of links pointing to the page, disabling right-click, age of domain, IFrame redirection, usage 
of pop-up windows, DNS record, Google index, and statistical reports–based features (Subasi & 
Kremic, 2019).
#======================================================================
# Phishing website example
#======================================================================
"""
Created on Tue Jun 18 18:14:15 2019
@author: asubasi
"""
import pandas as pd
import warnings
#To prevent warnings
warnings.filterwarnings("ignore")
# load data
dataset = pd.read_csv("PhishingWebsiteDataset.csv")
#To prevent the "ValueError Input contains NaN, infinity or a value too large 
for dtype('float32')"
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dataset[:] = np.nan_to_num(dataset)
# split data into X and y
X = dataset.iloc[:,0:30]
y = dataset.iloc[:, 30]
class_names = dataset.iloc[:, 30]
#%%
#======================================================================
# Random forest example with training and test set
#======================================================================
#splitting the dataset into the training set and test set
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3, 
random_state = 0)
#%%
#feature scaling
from sklearn.preprocessing import StandardScaler
sc_X = StandardScaler()
X_train = sc_X.fit_transform(X_train)
X_test = sc_X.transform(X_test)

#%%
# Fitting Random Forest to the Training set
from sklearn.ensemble import RandomForestClassifier
#In order to change to accuracy increase n_estimators
"""RandomForestClassifier(n_estimators = 'warn', criterion = 'gini', max_
depth = None,
min_samples_split = 2, min_samples_leaf = 1, min_weight_fraction_leaf = 0.0,
max_features = 'auto', max_leaf_nodes = None, min_impurity_decrease = 0.0,
min_impurity_split = None, bootstrap = True, oob_score = False, n_
jobs = None,
random_state = None, verbose = 0, warm_start = False, class_weight = None)"""
# fit model no training data
model = RandomForestClassifier(n_estimators = 100)
model.fit(X_train, y_train)

# Predicting the Test set results
y_pred = model.predict(X_test)
#%%
from sklearn import metrics
print('Test Accuracy:', np.round(metrics.accuracy_score(y_test,y_
pred),4))
print('Precision:', np.round(metrics.precision_score(y_test,
                            y_pred,average = 'weighted'),4))
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print('Recall:', np.round(metrics.recall_score(y_test,y_pred,
                                               average = 'weighted'),4))
print('F1 Score:', np.round(metrics.f1_score(y_test,y_pred,
                                               average = 'weighted'),4))
print('Cohen Kappa Score:', np.round(metrics.cohen_kappa_score(y_test,y_
pred),4))
print('Matthews Corrcoef:', np.round(metrics.matthews_corrcoef(y_test,y_
pred),4))
print('\t\tClassification Report:\n', metrics.classification_report(y_
test,y_pred))

from sklearn.metrics import confusion_matrix
print("Confusion Matrix:\n",confusion_matrix(y_test,y_pred))
#%%
from sklearn.metrics import confusion_matrix
import seaborn as sns
# Making the Confusion Matrix
cm = confusion_matrix(y_test, y_pred)
#Print the Confusion Matrix
target_names = ['Legitimite','Phishing']
plt.figure(figsize = (6, 4))
sns.heatmap(cm,cmap = 'coolwarm',linecolor = 'white',linewidths = 1,
                xticklabels = target_names,
                yticklabels = target_names,
                annot = True,
                fmt = 'd')
plt.title('Confusion Matrix')
plt.ylabel('True Label')
plt.xlabel('Predicted Label')
plt.show()
#%%
#======================================================================
# Random forest example with cross-validation
#======================================================================
from sklearn.ensemble import RandomForestClassifier
#In order to change to accuracy increase n_estimators
"""RandomForestClassifier(n_estimators = 'warn', criterion = 'gini', max_
depth = None,
min_samples_split = 2, min_samples_leaf = 1, min_weight_fraction_
leaf = 0.0,
max_features = 'auto', max_leaf_nodes = None, min_impurity_
decrease = 0.0,
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5.3 Spam e-mail detection

E-mail is one of the cheapest, fastest, most accurate, and most popular elements of com-
munication. It is part of our daily lives, evolving the paths we take and changing the way 
we work together. E-mails are used as task managers, conversation organizers, archivers, 
and delivery systems for documents. The disadvantage of this achievement is that e-mails 
are often growing in size. Most clients organize and archive e-mails into files in order  
to avoid this problem and automate retrieval when appropriate. It is impossible to identify 
who came up with the idea that at least one person would react to an e-mail irrespective of 
the deal enclosed by sending advertising to many people at once. E-mail provides an effec-
tive way of delivering millions of ads without charge, and several companies are already 
using this tool extensively. As a consequence, millions of users’ inboxes are filled with these 

min_impurity_split = None, bootstrap = True, oob_score = False, n_
jobs = None,
random_state = None, verbose = 0, warm_start = False, class_weight = None)"""
# fit model no training data
model = RandomForestClassifier(n_estimators = 100)

CV = 10 #10-Fold Cross Validation
#Evaluate Model Using 10-Fold Cross Validation and Print Performance 
Metrics
Acc_scores = cross_val_score(model, X, y, cv = CV)
print("Accuracy: %0.3f (+/- %0.3f)" % (Acc_scores.mean(), Acc_scores.
std() * 2))
f1_scores = cross_val_score(model, X, y, cv = CV,scoring = 'f1_macro')
print("F1 score: %0.3f (+/- %0.3f)" % (f1_scores.mean(), f1_scores.std() 
* 2))
Precision_scores = cross_val_score(model, X, y, 
cv = CV,scoring = 'precision_macro')
print("Precision score: %0.3f (+/- %0.3f)" % (Precision_scores.mean(), 
Precision_scores.std() * 2))
Recall_scores = cross_val_score(model, X, y, cv = CV,scoring = 'recall_
macro')
print("Recall score: %0.3f (+/- %0.3f)" % (Recall_scores.mean(), Recall_
scores.std() * 2))
from sklearn.metrics import cohen_kappa_score, make_scorer
kappa_scorer = make_scorer(cohen_kappa_score)
Kappa_scores = cross_val_score(model, X, y, cv = CV,scoring = kappa_scorer)
print("Kappa score: %0.3f (+/- %0.3f)" % (Kappa_scores.mean(), Kappa_
scores.std() * 2))
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so-called unwanted messages, often classified as “junk mail” or “spam.” The ability to send 
spam freely creates a lot of concern in the Internet community; huge amounts of spam traf-
fic cause delays in delivering important e-mails, and people with dial-up Internet access 
have to devote bandwidth to receiving junk mail. When categorizing unwanted messages, 
there is always the risk of removing important mail by mistake. Finally, there are a large 
number of spam e-mails that should not be seen by children (Subasi, Alzahrani, Aljuhani, & 
Aljedani, 2018).Several approaches have been provided to counter spam. There are “private” 
solutions, such as simple personal involvement and legal action. Some technical tools in-
clude restricting IP addresses of spammers and filtering e-mails. Yet there is still no complete 
and optimal way to remove spam e-mails, so the amount of junk mail continues to grow. The 
growing use of e-mail in previous years has resulted in the emergence and further increase 
of problems caused by unsolicited bulk e-mail messages. Spam e-mail filtering focuses on 
e-mail letter interpretation and additional information, attempting to classify spam mes-
sages. The action that is taken once spam is recognized is generally dependent on the set-
ting in which the filter is applied. When used as a client-side filter by a single user, they are 
often sent to a folder containing only spam-labeled e-mails, making it easier to identify these 
messages (Guzella & Caminhas, 2009; Subasi et al., 2018). Spam filtering approaches are cur-
rently based on categorizing e-mails from word-automatic rules or keywords that evaluate 
e-mail features (Androutsopoulos, Koutsias, Chandrinos, Paliouras, & Spyropoulos, 2000).

Example 5.3
The following Python code is used to classify the spam e-mail dataset using random forest clas-

sifier by employing separate training and test sets and 10-fold cross-validation. The classification 
accuracy, precision, recall, F1 score, Cohen kappa score, and Matthews correlation coefficient are 
calculated. The classification report and confusion matrix are also given.

Dataset information: E-mail dataset is downloaded from UCI machine learning data repository 
(Bache & Lichman, 2013). Spam e-mails came from the postmaster and individuals who had filed 
spam. Nonspam e-mails came from filed work and personal e-mails. These are helpful when 
forming a personalized spam filter. One would either have to blind such nonspam indicators or get 
an extensive collection of nonspam to create a general-purpose spam filter. In this database, there 
are 4601 messages out of which 1813 are categorized as spam. Each e-mail message is composed of 
57 feature vectors.

#======================================================================
# Spam e-mail filtering example
#======================================================================
"""
Created on Tue Jun 18 18:14:15 2019
@author: asubasi
"""
from sklearn.model_selection import train_test_split
import numpy as np
import pandas as pd
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# load data
dataset = pd.read_csv("SpamEmail.csv")

# split data into X and Y
X = dataset.iloc[:,0:57]
y = dataset.iloc[:, 57]
class_names = dataset.iloc[:, 57]
#%%

#=====================================================================
# Random forest example with training and test set
#=====================================================================
#splitting the dataset into the training set and test set
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_
size = 0.3, random_state = 0)

#%%
#feature scaling
from sklearn.preprocessing import StandardScaler
sc_X = StandardScaler()
X_train = sc_X.fit_transform(X_train)
X_test = sc_X.transform(X_test)

#%%
# Fitting Random Forest to the Training set
from sklearn.ensemble import RandomForestClassifier
#In order to change to accuracy increase n_estimators
"""RandomForestClassifier(n_estimators = 'warn', criterion = 'gini', max_
depth = None,
min_samples_split = 2, min_samples_leaf = 1, min_weight_fraction_
leaf = 0.0,
max_features = 'auto', max_leaf_nodes = None, min_impurity_decrease = 0.0,
min_impurity_split = None, bootstrap = True, oob_score = False, n_
jobs = None,
random_state = None, verbose = 0, warm_start = False, class_
weight = None)"""
# fit model no training data
model = RandomForestClassifier(n_estimators = 100)
model.fit(X_train, y_train)

# Predicting the Test set results
y_pred = model.predict(X_test)
#%%
from sklearn import metrics
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print('Test Accuracy:', np.round(metrics.accuracy_score(y_test,y_pred),4))
print('Precision:', np.round(metrics.precision_score(y_test,
                            y_pred,average = 'weighted'),4))
print('Recall:', np.round(metrics.recall_score(y_test,y_pred,
                                               average = 'weighted'),4))
print('F1 Score:', np.round(metrics.f1_score(y_test,y_pred,
                                               average = 'weighted'),4))
print('Cohen Kappa Score:', np.round(metrics.cohen_kappa_score(y_test,y_
pred),4))
print('Matthews Corrcoef:', np.round(metrics.matthews_corrcoef(y_test,y_
pred),4))
print('\t\tClassification Report:\n', metrics.classification_report(y_
test,y_pred))

from sklearn.metrics import confusion_matrix
print("Confusion Matrix:\n",confusion_matrix(y_test,y_pred))
#%%
from sklearn.metrics import confusion_matrix
import seaborn as sns
import matplotlib.pyplot as plt
# Making the Confusion Matrix
cm = confusion_matrix(y_test, y_pred)
#Print the Confusion Matrix
target_names = ['NotSPAM','SPAM' ]
plt.figure(figsize = (6, 4))
sns.heatmap(cm,cmap = 'coolwarm',linecolor = 'white',linewidths = 1,
                xticklabels = target_names,
                yticklabels = target_names,
                annot = True,
                fmt = 'd')
plt.title('Confusion Matrix')
plt.ylabel('True Label')
plt.xlabel('Predicted Label')
plt.show()
#%%
#======================================================================
# Random forest example with cross-validation
#======================================================================
from sklearn.ensemble import RandomForestClassifier
#In order to change to accuracy increase n_estimators
"""RandomForestClassifier(n_estimators = 'warn', criterion = 'gini', max_
depth = None,
min_samples_split = 2, min_samples_leaf = 1, min_weight_fraction_
leaf = 0.0,



334 5. Other classification examples

 

5.4 Credit scoring

Credit scoring is a crucial part of banks’ and other financial institutions’ credit risk man-
agement systems since it eliminates risks, increases predictability, and speeds up lending 
decisions (Chuang & Huang, 2011; Serrano-Cinca & Gutiérrez-Nieto, 2016). Because cus-
tomer credit management is critical task for financial organizations and commercial banks, 
they must be careful when dealing with customer loans to avoid any faulty decisions that 
may result in loss of opportunity or finances. In addition, incorrect customer credibility as-
sessments can have a significant impact on the financial organization’s stability. The labor-
intensive customer creditworthiness evaluation is time and resource consuming. In contrast, 
a labor-intensive analysis is mostly reliant on the bank employee, and computer-based digital 

max_features = 'auto', max_leaf_nodes = None, min_impurity_decrease = 0.0,
min_impurity_split = None, bootstrap = True, oob_score = False, n_
jobs = None,
random_state = None, verbose = 0, warm_start = False, class_
weight = None)"""
# fit model no training data
model = RandomForestClassifier(n_estimators = 100)

# Applying k-Fold Cross Validation
from sklearn.model_selection import cross_val_score
CV = 10 #10-Fold Cross Validation
#Evaluate Model Using 10-Fold Cross Validation and Print Performance Metrics
Acc_scores = cross_val_score(model, X, y, cv = CV)
print("Accuracy: %0.3f (+/- %0.3f)" % (Acc_scores.mean(), Acc_scores.
std() * 2))
f1_scores = cross_val_score(model, X, y, cv = CV,scoring = 'f1_macro')
print("F1 score: %0.3f (+/- %0.3f)" % (f1_scores.mean(), f1_scores.std() 
* 2))
Precision_scores = cross_val_score(model, X, y, cv = CV,scoring = 'precision_
macro')
print("Precision score: %0.3f (+/- %0.3f)" % (Precision_scores.mean(), 
Precision_scores.std() * 2))
Recall_scores = cross_val_score(model, X, y, cv = CV,scoring = 'recall_
macro')
print("Recall score: %0.3f (+/- %0.3f)" % (Recall_scores.mean(), Recall_
scores.std() * 2))
from sklearn.metrics import cohen_kappa_score, make_scorer
kappa_scorer = make_scorer(cohen_kappa_score)
Kappa_scores = cross_val_score(model, X, y, cv = CV,scoring = kappa_scorer)
print("Kappa score: %0.3f (+/- %0.3f)" % (Kappa_scores.mean(), Kappa_
scores.std() * 2))
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credit appraisal systems were designed and implemented to remove the “human factor” in 
this phase. Such a computer-based automated credit evaluation model can provide banks 
and financial organizations with recommendations as to whether or not a loan should be 
given and whether or not the loan will be returned. A number of credit models have been 
implemented at the moment, but there is no perfect classification among them, as some of 
them yield reliable outputs and some of them do not (Ala’raj & Abbod, 2016 Ala’raj & Ab-
bod, 2016). Credit scoring by financial industries and researchers became a frequently studied 
field (Kumar & Ravi, 2007; Lin, Hu, & Tsai, 2012), and many models are investigated and 
implemented using various algorithms, such as the artificial neural network, the decision 
tree (Hung & Chen, 2009; Makowski, 1985), the support vector machine (Baesens et al., 2003; 
Huang, Chen, & Wang, 2007; Schebesch & Stecking, 2005), and case-based reasoning (Shin 
& Han, 2001; Wheeler & Aitken, 2000). As a result of the financial crises, the Basel Commit-
tee on Banking Supervision asked all banking and financial institutions to introduce robust 
credit risk analysis frameworks before giving a loan to a company or individual (Ala’raj & 
Abbod, 2016; Gicic´ & Subasi, 2019)

Example 5.4
The following Python code is used to classify the credit scoring dataset employing XGBoost clas-

sifier by using separate training and test set and 10-fold cross-validation. The classification accuracy, 
precision, recall, F1 score, Cohen kappa score, and Matthews correlation coefficient are calculated. 
The classification report and confusion matrix are also given.

Dataset information: This dataset is downloaded from UCI machine learning repository (UCI, 
2019). The original dataset, provided by Prof. Hofmann, contains categorical/symbolic attributes. 
There are two classes (Good and Bad) and 1000 instances with 20 attributes, which are:

•	 status	of	existing	checking	account
•	 duration	in	month
•	 credit	history
•	 purpose
•	 credit	amount
•	 savings	account/bonds
•	 present	employment
•	 installment	rate	in	percentage	of	disposable	income
•	 personal	status	and	sex
•	 other	debtors/guarantors
•	 present	residence	since
•	 property
•	 age	in	years
•	 other	installment	plans
•	 housing
•	 number	of	existing	credits	at	this	bank
•	 job
•	 number	of	people	responsible	for
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•	 telephone
•	 foreign	worker

#======================================================================
# Credit scoring example
#======================================================================
"""
Created on Tue Jun 18 18:14:15 2019
@author: asubasi
"""

import numpy as np
import pandas as pd

# load data
dataset = pd.read_csv("german_credit.csv")
# split data into X and Y
X = dataset.iloc[:,1:20]
y = dataset.iloc[:, 0]
class_names = dataset.iloc[:,0]
#======================================================================
# XGBoost example with training and test set
#======================================================================
from sklearn.model_selection import train_test_split
# split data into train and test sets
Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, test_size = 0.33, 
random_state = 7)

from xgboost import XGBClassifier
# fit model no training data
model = XGBClassifier()
model.fit(Xtrain, ytrain)
# make predictions for test data
ypred = model.predict(Xtest)
from sklearn import metrics
print('Accuracy:', np.round(metrics.accuracy_score(ytest,ypred),4))
print('Precision:', np.round(metrics.precision_score(ytest,
                            ypred,average = 'weighted'),4))
print('Recall:', np.round(metrics.recall_score(ytest,ypred,
                                               average = 'weighted'),4))
print('F1 Score:', np.round(metrics.f1_score(ytest,ypred,
                                               average = 'weighted'),4))
print('Cohen Kappa Score:', np.round(metrics.cohen_kappa_score(ytest, 
ypred),4))
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print('Matthews Corrcoef:', np.round(metrics.matthews_corrcoef(ytest, 
ypred),4))
print('\t\tClassification Report:\n', metrics.classification_report(ypred, 
ytest))

from sklearn.metrics import confusion_matrix
from io import BytesIO #neded for plot
import seaborn as sns; sns.set()
import matplotlib.pyplot as plt

mat = confusion_matrix(ytest, ypred)
sns.heatmap(mat.T, square = True, annot = True, fmt = 'd', cbar = False)
plt.xlabel('true label')
plt.ylabel('predicted label');

plt.savefig("SVM_Confusion.jpg")
# Save SVG in a fake file object.
f = BytesIO()
plt.savefig(f, format = "svg")

#%%
#======================================================================
# XGBoost example with cross-validation
#======================================================================
from xgboost import XGBClassifier
# fit model no training data
model = XGBClassifier()

# Applying k-Fold Cross Validation
from sklearn.model_selection import cross_val_score
CV = 10 #10-Fold Cross Validation
#Evaluate Model Using 10-Fold Cross Validation and Print Performance Metrics
Acc_scores = cross_val_score(model, X, y, cv = CV)
print("Accuracy: %0.3f (+/- %0.3f)" % (Acc_scores.mean(), Acc_scores.
std() * 2))
f1_scores = cross_val_score(model, X, y, cv = CV,scoring = 'f1_macro')
print("F1 score: %0.3f (+/- %0.3f)" % (f1_scores.mean(), f1_scores.std() 
* 2))
Precision_scores = cross_val_score(model, X, y, cv = CV,scoring = 'precision_
macro')
print("Precision score: %0.3f (+/- %0.3f)" % (Precision_scores.mean(), 
Precision_scores.std() * 2))
Recall_scores = cross_val_score(model, X, y, cv = CV,scoring = 'recall_
macro')
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5.5 credit card fraud detection

Global card fraud losses are calculated as $22.8 billion US in 2017 and are expected to con-
tinue growing (Jurgovsky et al., 2018). Recently, machine learning approaches began as a vital 
element of any detection method dealing with huge amounts of transactions (Dal Pozzolo, 
Caelen, Le Borgne, Waterschoot, & Bontempi, 2014). However, the current studies showed 
that a detection approach requires taking into account some peculiarities of the fraud phe-
nomenon (Dal Pozzolo, Boracchi, Caelen, Alippi, & Bontempi, 2018). The development of an 
effective fraud detection system (FDS) thus goes beyond the implementation of some tradi-
tional off-the-shelf software libraries and needs a deep understanding of the fraud concept. 
It implies that it is neither instantaneous nor easy to reuse current FDSs for new settings, 
such as a new market or a new payment process (Lebichot, Le Borgne, He-Guelton, Oblé, & 
Bontempi, 2019). Perhaps one of the best test platforms for artificial intelligence algorithms 
is the analysis of credit card fraud. Nevertheless, this issue involves a number of relevant 
challenges—customer preferences expand and fraudsters adjust their tactics over time, actual 
transactions are far out of the range of frauds, and researchers test only a small set of trans-
actions in a timely manner. But the vast majority of learning algorithms proposed for fraud 
detection are based on assumptions that hardly apply in a fraud detection system in the real 
world. There are two main aspects to this lack of realism: (1) the method and timing of the 
delivery of supervised information and (2) the metrics utilized to determine the quality of 
fraud detection. Credit card fraud detection is a relevant problem that draws the attention of 
machine learning and computational intelligence communities, where a large number of au-
tomatic solutions have been proposed (Bhattacharyya, Jha, Tharakunnel, & Westland, 2011; 
Dal Pozzolo et al., 2014, 2018; Jha, Guillen, & Westland, 2012; Mahmoudi & Duman, 2015; 
Whitrow, Hand, Juszczak, Weston, & Adams, 2009).

In a real-world FDS, the massive stream of payment requests is quickly scanned by auto-
matic tools that determine which transactions to authorize. Classifiers are typically employed 
to analyze all the authorized transactions and alert the most suspicious ones. Alerts are then 
reviewed by qualified inspectors who notify cardholders to determine the true nature of each 
notified payment (either legitimate or fraudulent). In doing so, investigators receive system 
feedback in the form of marked transactions that can be used to train the classifier to main-
tain (or potentially improve) the efficiency of fraud detection over time. The vast majority of 
transactions cannot be verified by investigators for obvious time and cost constraints. These 
transactions remain unlabeled until customers discover and report frauds, or until a suffi-
cient amount of time has elapsed such that nondisputed transactions are considered genuine 

print("Recall score: %0.3f (+/- %0.3f)" % (Recall_scores.mean(), Recall_
scores.std() * 2))
from sklearn.metrics import cohen_kappa_score, make_scorer
kappa_scorer = make_scorer(cohen_kappa_score)
Kappa_scores = cross_val_score(model, X, y, cv = CV,scoring = kappa_scorer)
print("Kappa score: %0.3f (+/- %0.3f)" % (Kappa_scores.mean(), Kappa_
scores.std() * 2))
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(Dal Pozzolo et al., 2018). Nowadays, enterprises and public institutions have to face a grow-
ing presence of fraud initiatives and need automatic systems to implement fraud detection 
(Delamaire, Abdou, & Pointon, 2009). Automatic systems are crucial as it is not often feasible 
or convenient for a human analyst to identify fraudulent behaviors in transaction data sets, 
which are frequently represented by a huge number of samples, multiple measurements, and 
online alerts. Detection problems are usually tackled in two distinct approaches. In the static 
learning approaches, a detection model is continually relearned from scratch. In the online 
learning approaches, the detection model is updated as soon as new data is generated. Anoth-
er challenging issue in credit card fraud detection is the shortage of accessible data because 
of confidentiality issues, which provide little chance to the community to share real datasets 
and evaluate current methods (Dal Pozzolo et al., 2014).

Credit card fraud detection aims to determine if a transaction is fraudulent or not based on 
historical data. The assessment is extremely difficult due to changes in patterns of consumer 
purchases, for example, over holiday periods, and in the tactics of fraudsters themselves, 
particularly those they use to respond to techniques of fraud detection. Machine learning 
methods provide an active way of tackling issues like these (Dal Pozzolo, Caelen, & Bontem-
pi, 2015). A traditional fraud detection system contains multiple control levels, each of which 
can be automatic or controlled by humans (Carcillo et al., 2018; Dal Pozzolo et al., 2018). Part 
of the automatic layer involves machine learning techniques, which create predictive models 
based on annotated transactions. In the last decade, extensive machine learning approach 
has led to the development of supervised, unsupervised, and semisupervised algorithms for 
credit card fraud detection (Carcillo et al., 2019; Sethi & Gera, 2014).

Example 5.5
The following Python code is used to classify a credit-scoring dataset using Keras deep neural 

network classifier employed by using separate training and test set and 10-fold cross-validation. 
The classification accuracy, precision, recall, F1 score, Cohen kappa score, and Matthews correla-
tion coefficient are calculated. The classification report and confusion matrix are also given. This 
example is adapted from the book Beginning Anomaly Detection Using Python-Based Deep Learning 
(Alla & Adari, 2019).

Dataset information: Dataset is downloaded from Kaggle website (https://www.kaggle.com/
mlg-ulb/creditcardfraud/version/3). The credit card fraud dataset was supplied by a payment 
service provider in Belgium. It includes the logs of a subset of transactions from the first of February 
2012 to the twentieth of May 2013. The dataset was split in daily chunks and contained e-commerce 
fraudulent transactions. The original variables consist of the transaction amount, point of sale, 
currency, country of transaction, merchant type, and many others. But the original variables do 
not describe cardholder behavior. Combined variables are added to the original ones to describe 
the user behavior; for instance, the transaction amount and the card ID is utilized to calculate the 
average spending per week and per month of one card, the difference between the current and 
previous transaction, and many others. For each transaction and card, 3 months (H = 90 days) 
of previous transaction data to compute the aggregated variable are recorded. Hence the weekly 
average spending for one card is the weekly average of the last 3 months. This dataset includes 
both categorical and continuous variables. Chunks contain sets of daily transactions, where the 

https://www.kaggle.com/mlg-ulb/creditcardfraud/version/3
https://www.kaggle.com/mlg-ulb/creditcardfraud/version/3
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average transactions per chunk (5218) are considered (Dal Pozzolo et al., 2014). This dataset contains 
transactions that occurred in 2 days with 492 frauds out of 284,807 transactions. It includes only 
numerical input variables that are the result of a PCA transformation. Due to confidentiality issues, 
the original features and more background information about the data is not provided. Features 
V1, V2, . . . V28 are the principal components achieved with PCA; the only features that have not 
been transformed with PCA are “Time” and “Amount.” The feature “Time” contains the seconds 
elapsed between each transaction and the first transaction in the dataset. The feature “Amount”  
is the transaction amount; this feature can be used for example-dependent, cost-sensitive learning. 
The feature “Class” is the response variable, and it takes value 1 in case of fraud and 0 otherwise. 
The dataset has been collected and analyzed during a research collaboration of Worldline and the 
Machine Learning Group (http://mlg.ulb.ac.be) of ULB (Université Libre de Bruxelles) on big data 
mining and fraud detection. More details on current and past projects on related topics are available 
at https://www.researchgate.net/project/Fraud-detection-5 and the page of the DefeatFraud 
project.

"""
Created on Thu Dec 12 07:56:20 2019
@author: absubasi
Adapted from "Beginning Anomaly Detection Using Python-Based Deep 
Learning"
"""
#======================================================================
# Credit card fraud detection using Keras
#======================================================================
from keras.models import Sequential
from keras.layers import Dense
from keras.wrappers.scikit_learn import KerasClassifier
from keras.utils import np_utils
from sklearn.preprocessing import LabelEncoder
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
import seaborn as sns
from sklearn import metrics
from io import BytesIO #needed for plot
import seaborn as sns; sns.set()
#======================================================================
# Define utility functions
#======================================================================
def plot_model_accuracy_loss():
    plt.figure(figsize = (6, 4))
    plt.plot(history.history['accuracy'], 'r', label = 'Accuracy of 
training data')

http://mlg.ulb.ac.be
https://www.researchgate.net/project/Fraud-detection-5
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    plt.plot(history.history['val_accuracy'], 'b', label = 'Accuracy of 
validation data')
    plt.plot(history.history['loss'], 'r--', label = 'Loss of training 
data')
    plt.plot(history.history['val_loss'], 'b--', label = 'Loss of 
validation data')
    plt.title('Model Accuracy and Loss')
    plt.ylabel('Accuracy and Loss')
    plt.xlabel('Training Epoch')
    plt.ylim(0)
    plt.legend()
    plt.show()

def print_confusion_matrix():
    matrix = confusion_matrix(y_test.argmax(axis = 1), max_y_pred_test.
argmax(axis = 1))
    plt.figure(figsize = (10, 8))
    sns.heatmap(matrix,cmap = 'coolwarm',linecolor = 'white',linewidths = 1,

    annot = True,
    fmt = 'd')

    plt.title('Confusion Matrix')
    plt.ylabel('True Label')
    plt.xlabel('Predicted Label')
    plt.show()

def print_performance_metrics():
    print('Accuracy:', np.round(metrics.accuracy_score(y_test, max_y_
pred_test),4))
    print('Precision:', np.round(metrics.precision_score(y_test,
                max_y_pred_test,average = 'weighted'),4))
    print('Recall:', np.round(metrics.recall_score(y_test, max_y_pred_
test,
                      average = 'weighted'),4))
    print('F1 Score:', np.round(metrics.f1_score(y_test, max_y_pred_
test,
                      average = 'weighted'),4))
    print('Cohen Kappa Score:', np.round(metrics.cohen_kappa_score(y_
test.argmax(axis = 1), max_y_pred_test.argmax(axis = 1)),4))
    print('Matthews Corrcoef:', np.round(metrics.matthews_corrcoef(y_
test.argmax(axis = 1), max_y_pred_test.argmax(axis = 1)),4))
    print('\t\tClassification Report:\n', metrics.classification_report(y_
test, max_y_pred_test))
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def print_confusion_matrix_and_save():
    mat = confusion_matrix(y_test.argmax(axis = 1), max_y_pred_test.
argmax(axis = 1))
    sns.heatmap(mat.T, square = True, annot = True, fmt = 'd', cbar = False)
    plt.title('Confusion Matrix')
    plt.ylabel('True Label')
    plt.xlabel('Predicted Label')
plt.show()

    plt.savefig("Confusion.jpg")
    # Save SVG in a fake file object.
    f = BytesIO()
    plt.savefig(f, format = "svg")
#%%
df = pd.read_csv("creditcard.csv", sep = ",", index_col = None)
df['Amount'] = StandardScaler().fit_transform(df['Amount'].values.
reshape(-1, 1))
df['Time'] = StandardScaler().fit_transform(df['Time'].values.reshape(-1, 1))

#%%
anomalies = df[df["Class"] == 1]
normal = df[df["Class"] == 0]
anomalies.shape, normal.shape
#%%
for f in range(0, 20):
    normal = normal.iloc[np.random.permutation(len(normal))]
data_set = pd.concat([normal[:5000], anomalies])
X = data_set.iloc[:,0:30]
y = data_set.iloc[:,30]

#%%
# encode class values as integers
encoder = LabelEncoder()
encoder.fit(y)
encoded_Y = encoder.transform(y)
# convert integers to dummy variables (i.e. one hot encoded)
dummy_y = np_utils.to_categorical(encoded_Y)
lenOfCoded = dummy_y.shape[1] # Dimension of binary coded output data
InputDataDimension = 30
#%%
#======================================================================
# Keras DNN example with cross-validation
#======================================================================
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# define a Keras model
def my_model():
        # create model
        model = Sequential()
        model.add(Dense(128, input_dim = InputDataDimension, 
activation = 'relu'))
# model.add(Dense(32, activation = 'relu'))
# model.add(Dense(16, activation = 'relu'))

model.add(Dense(lenOfCoded, activation = 'softmax'))
# Compile model
model.compile(loss = 'categorical_crossentropy', optimizer = 'adam', 
metrics = ['accuracy'])
return model

estimator = KerasClassifier(build_fn = my_model, epochs = 25, batch_size = 5, 
verbose = 1)
kfold = KFold(n_splits = 5, shuffle = True)
results = cross_val_score(estimator, X, dummy_y, cv = kfold)
print("Accuracy: %.2f%% (%.2f%%)" % (results.mean()*100, results.
std()*100))

#%%
#======================================================================
# Keras DNN example with training and test set
#======================================================================
# load data
from sklearn.model_selection import train_test_split
# split data into train and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.33, 
random_state = 7)

# One hot encode targets
y_train = np_utils.to_categorical(y_train)
y_test = np_utils.to_categorical(y_test)
num_classes = y_test.shape[1]
InputDataDimension = 30

#%%
#======================================================================
# Create a model
#======================================================================
model = Sequential()
model.add(Dense(128, input_dim = InputDataDimension, init = 'uniform', 
activation = 'relu'))
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model.add(Dense(32, activation = 'relu'))
model.add(Dense(num_classes, activation = 'softmax'))
#%%
#======================================================================
# Compile the model
#======================================================================
model.compile(loss = 'categorical_crossentropy', optimizer = 'adam', 
metrics = ['accuracy'])
#======================================================================
# Train and validate the model
#======================================================================
history = model.fit(X_train, y_train, validation_split = 0.33, epochs = 50, 
batch_size = 25,verbose = 0)
#%%
#======================================================================
# Evaluate the model
#======================================================================
test_loss, test_acc = model.evaluate(X_test, y_test, verbose = 0)
print('\nTest accuracy:', test_acc)

#%%
#======================================================================
# Plot the history
#======================================================================
#Plot the Model Accuracy and Loss for Training and Validation dataset
plot_model_accuracy_loss()

#%%
#Test the Model with testing data
y_pred_test = model.predict(X_test,)
# Round the test predictions
max_y_pred_test = np.round(y_pred_test)
#%%
#Print the Confusion Matrix
print_confusion_matrix()
#%%
#Evaluate the Model and Print Performance Metrics
print_performance_metrics()
#%%
#Print and Save the Confusion Matrix
print_confusion_matrix_and_save()
#%%
# ======================================================================
# Keras deep learning model
# ======================================================================
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# load data
from sklearn.model_selection import train_test_split
# split data into train and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.33, 
random_state = 7)

# One hot encode targets
y_train = np_utils.to_categorical(y_train)
y_test = np_utils.to_categorical(y_test)
num_classes = y_test.shape[1]
InputDataDimension = 30
#%%
#======================================================================
# Build a deep model
#======================================================================
model = Sequential()
model.add(Dense(128, input_dim = InputDataDimension, init = 'uniform', 
activation = 'relu'))
model.add(Dense(64, activation = 'relu'))
model.add(Dense(32, activation = 'relu'))
model.add(Dense(num_classes, activation = 'softmax'))
#%%
#======================================================================
# Compile the model
#======================================================================
model.compile(loss = 'categorical_crossentropy', optimizer = 'adam', 
metrics = ['accuracy'])
#======================================================================
# Train and validate the model
#======================================================================
history = model.fit(X_train, y_train, validation_split = 0.33, nb_epoch = 50, 
batch_size = 25,verbose = 0)
#%%
#======================================================================
# Evaluate the model
#======================================================================
test_loss, test_acc = model.evaluate(X_test, y_test, verbose = 0)
print('\nTest accuracy:', test_acc)
#%%
#======================================================================
# Plot the history
#======================================================================
#Plot the Model Accuracy and Loss for Training and Validation dataset
plot_model_accuracy_loss()
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5.6 Handwritten digit recognition using CNN

Handwritten digit recognition is a prevalent multiclass classification problem usually built 
into the software of mobile banking applications, as well as more traditional automated teller 
machines, to give users the ability to automatically deposit paper checks. Here each class 
of data consists of (images of) several handwritten versions of a single digit in the range 
0 − 9, giving a total of ten classes. Handwriting character recognition has become a common 
area of research because of developments in technology such as handwriting recording tools 
and powerful mobile computers (Elleuch, Maalej, & Kherallah, 2016). Because handwriting 
is highly dependent on the writer, however, it is challenging to develop a highly reliable 
recognition system that recognizes every handwritten character input to an application. Op-
tical character recognition (OCR) is one of the research areas in character recognition and 
artificial intelligence (Pramanik & Bag, 2018). For more than 10 years, in many applications 
and identification algorithms, digit recognition has been efficiently investigated in the area of 
OCR handwriting. These include, for example, algorithms such as support vector machines 
(SVM), convolutional neural networks (CNN), and random forest (RF). The accuracy of the 
experiments however is about 95%. Since many classifiers cannot manage the original images 
or details properly, the extraction of features is one of the pretreatment measures aimed at re-
ducing the data dimension and integrating the valid information (Lauer, Suen, & Bloch, 2007). 
Traditional feature selection is a complex and time-consuming job that cannot process the 
original image, whereas CNN’s automated extraction method can identify features directly 
from the original image (Bernard, Adam, & Heutte, 2007). A CNN is a feed-forward network 
that extracts topological features from images. This collects features from the first layer’s 
original image and utilizes its last layer to identify the object. Nonetheless, most classifiers 
such as SVM and RF cannot process raw images or data effectively, because it is a tremendous 
challenge to remove correct characteristics from complex patterns (Pramanik & Bag, 2018). 
On the other hand, CNN’s automated feature extraction method will retrieve elements from 
the raw image directly (Bernard et al., 2007; Zhao, 2018).

#%%
#Test the Model with testing data
y_pred_test = model.predict(X_test,)
# Round the test predictions
max_y_pred_test = np.round(y_pred_test)
#%%
#Print the Confusion Matrix
print_confusion_matrix()
#%%
#Evaluate the Model and Print Performance Metrics
print_performance_metrics()
#%%
#Print and Save the Confusion Matrix
print_confusion_matrix_and_save()
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A CNN is an improvement of the artificial neural network that focuses on mimicking be-
havior of our visual cortex. The aim of the hidden units is to learn nonlinear changes of the 
original inputs; this is called features extraction. Then these hidden features are transferred 
to the final GLM (generalized linear model) as input. This method is especially practical for 
the problems where the original input features are not informative independently. The CNN 
is a type of MLP (multilayer perceptron) that is especially well-suited for 1D signals, such as 
speech, biomedical signals, or text, or 2D signals such as images (Murphy, 2012).

Example 5.6
The following Python code is used to classify MNIST handwritten digits dataset using DCNN 

classifier and employing separate training, validation, and testing datasets. The classification accu-
racy, precision, recall, F1 score, Cohen kappa score, and Matthews correlation coefficient are calcu-
lated. The classification report and confusion matrix are also given. This example is adapted from 
the machine learning mastery website (https://machinelearningmastery.com/handwritten-digit-
recognition-using-convolutional-neural-networks-python-keras/).

Dataset information: The MNIST database of handwritten digits is available from the Yann 
LeCun web page (http://yann.lecun.com/exdb/mnist/). It has a training set of 60,000 examples 
and a test set of 10,000 examples. It is a subcategory of a bigger set accessible from NIST. The digits 
are size-normalized and centered in a fixed-size image. It is a decent database for researchers who 
want to try machine learning techniques on real-world data while spending minimal efforts on 
preprocessing and formatting. The original black and white (bilevel) images from NIST are size-
normalized to fit in a 20-by-20 pixel box while conserving the aspect ratio. The resultant images 
include gray levels as a result of the anti-aliasing method utilized by the normalization algorithm. 
The images were centered in a 28-by-28 image by calculating the center of mass of the pixels and 
translating the image to position this point at the center of the 28-by-28 field. The digit images in 
the MNIST set were initially chosen by Chris Burges and Corinna Cortes utilizing bounding-box 
normalization and centering. Yann LeCun improved the dataset by positioning according to center 
of mass within in a larger window.

"""
Created on Wed Oct 9 15:54:40 2019
@author: absubasi
https://machinelearningmastery.com/handwritten-digit-recognition-using-
convolutional-neural-networks-python-keras/
"""
# ======================================================================
# MNIST handwritten digit recognition
# ======================================================================
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Dropout
from keras.layers import Flatten

https://machinelearningmastery.com/handwritten-digit-recognition-using-convolutional-neural-networks-python-keras/
https://machinelearningmastery.com/handwritten-digit-recognition-using-convolutional-neural-networks-python-keras/
http://yann.lecun.com/exdb/mnist/
https://machinelearningmastery.com/handwritten-digit-recognition-using-convolutional-neural-networks-python-keras/
https://machinelearningmastery.com/handwritten-digit-recognition-using-convolutional-neural-networks-python-keras/
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from keras.layers.convolutional import Conv2D
from keras.layers.convolutional import MaxPooling2D
from keras.layers import BatchNormalization
from keras.utils import np_utils
import matplotlib.pyplot as plt
import matplotlib.pyplot as plt
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
import seaborn as sns
import numpy as np
from sklearn import metrics
from io import BytesIO #needed for plot
import seaborn as sns; sns.set()

#======================================================================
# Define utility functions
#======================================================================
def plot_model_accuracy_loss():
    plt.figure(figsize = (6, 4))
    plt.plot(history.history['accuracy'], 'r', label = 'Accuracy of 
training data')
    plt.plot(history.history['val_accuracy'], 'b', label = 'Accuracy of 
validation data')
    plt.plot(history.history['loss'], 'r--', label = 'Loss of training 
data')
    plt.plot(history.history['val_loss'], 'b--', label = 'Loss of 
validation data')
    plt.title('Model Accuracy and Loss')
    plt.ylabel('Accuracy and Loss')
    plt.xlabel('Training Epoch')
    plt.ylim(0)
    plt.legend()
    plt.show()

def print_confusion_matrix():
    matrix = confusion_matrix(y_test.argmax(axis = 1), max_y_pred_test.
argmax(axis = 1))
    plt.figure(figsize = (10, 8))
    sns.heatmap(matrix,cmap = 'coolwarm',linecolor = 'white',linewidths = 1,
                annot = True,
                fmt = 'd')
    plt.title('Confusion Matrix')
    plt.ylabel('True Label')
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    plt.xlabel('Predicted Label')
    plt.show()

def print_performance_metrics():
    print('Accuracy:', np.round(metrics.accuracy_score(y_test, max_y_
pred_test),4))
    print('Precision:', np.round(metrics.precision_score(y_test,
                                 max_y_pred_test,average = 'weighted'),4))
    print('Recall:', np.round(metrics.recall_score(y_test, max_y_pred_
test,
                                      average = 'weighted'),4))
    print('F1 Score:', np.round(metrics.f1_score(y_test, max_y_pred_test,
                                      average = 'weighted'),4))
print('Cohen Kappa Score:', np.round(metrics.cohen_kappa_score(y_test.
argmax(axis = 1), max_y_pred_test.argmax(axis = 1)),4))
print('Matthews Corrcoef:', np.round(metrics.matthews_corrcoef(y_test.
argmax(axis = 1), max_y_pred_test.argmax(axis = 1)),4))
print('\t\tClassification Report:\n', metrics.classification_report(y_test, 
max_y_pred_test))

def print_confusion_matrix_and_save():
    mat = confusion_matrix(y_test.argmax(axis = 1), max_y_pred_test.
argmax(axis = 1))
    sns.heatmap(mat.T, square = True, annot = True, fmt = 'd', 
cbar = False)
    plt.title('Confusion Matrix')
    plt.ylabel('True Label')
    plt.xlabel('Predicted Label')
   plt.show()

    plt.savefig("Confusion.jpg")
    # Save SVG in a fake file object.
    f = BytesIO()
    plt.savefig(f, format = "svg")

#%%
#=====================================================================
# Multilayer perceptrons model
#=====================================================================
# load data
(X_train, y_train), (X_test, y_test) = mnist.load_data()
# Flatten 28*28 images to a 784 vector for each image
num_pixels = X_train.shape[1] * X_train.shape[2]
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X_train = X_train.reshape((X_train.shape[0], num_pixels)).
astype('float32')
X_test = X_test.reshape((X_test.shape[0], num_pixels)).astype('float32')
# Normalize inputs from 0-255 to 0-1
X_train = X_train / 255
X_test = X_test / 255
# One hot encode targets
y_train = np_utils.to_categorical(y_train)
y_test = np_utils.to_categorical(y_test)
num_classes = y_test.shape[1]
#======================================================================
# Build a Keras model
#======================================================================
model = Sequential()
model.add(Dense(num_pixels, input_dim = num_pixels,
    kernel_initializer = 'normal', activation = 'relu'))
model.add(Dense(num_classes, kernel_initializer = 'normal', 
activation = 'softmax'))
#======================================================================
# Compile the model
#======================================================================
model.compile(loss = 'categorical_crossentropy', optimizer = 'adam', 
metrics = ['accuracy'])
#======================================================================
# Train and validate the model
#======================================================================
history = model.fit(X_train, y_train, validation_split = 0.3, epochs = 10, 
batch_size = 200, verbose = 2)
#%%
#======================================================================
# Evaluate the model
#======================================================================
test_loss, test_acc = model.evaluate(X_test, y_test, verbose = 0)
print('\nTest accuracy:', test_acc)
#%%
#======================================================================
# Plot the history
#======================================================================
#Plot the Model Accuracy and Loss for Training and Validation dataset
plot_model_accuracy_loss()

#%%
#Test the Model with testing data
y_pred_test = model.predict(X_test,)
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# Round the test predictions
max_y_pred_test = np.round(y_pred_test)
#Print the Confusion Matrix
print_confusion_matrix()
#%%
#Evaluate the Model and Print Performance Metrics
print_performance_metrics()
#%%
#Print and Save the Confusion Matrix
print_confusion_matrix_and_save()
#%%
#======================================================================
# 1 Convolutional neural network for MNIST digit recognition
#======================================================================
# load data
(X_train, y_train), (X_test, y_test) = mnist.load_data()
# reshape to be [samples][width][height][channels]
X_train = X_train.reshape((X_train.shape[0], 28, 28, 1)).
astype('float32')
X_test = X_test.reshape((X_test.shape[0], 28, 28, 1)).astype('float32')
# normalize inputs from 0-255 to 0-1
X_train = X_train/255
X_test = X_test/255
# one hot encode outputs
y_train = np_utils.to_categorical(y_train)
y_test = np_utils.to_categorical(y_test)
num_classes = y_test.shape[1]
#%%
#======================================================================
# Build a model
#======================================================================
model = Sequential()
model.add(Conv2D(32, (5, 5), input_shape = (28, 28, 1), 
activation = 'relu'))
model.add(MaxPooling2D())
model.add(Dropout(0.2))
model.add(Flatten())
model.add(Dense(128, activation = 'relu'))
model.add(Dense(num_classes, activation = 'softmax'))
#======================================================================
# Compile model
#======================================================================
model.compile(loss = 'categorical_crossentropy', optimizer = 'adam', 
metrics = ['accuracy'])
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#======================================================================
# Train the model
#======================================================================
history = model.fit(X_train, y_train, validation_split = 0.3, epochs = 10, 
batch_size = 200, verbose = 2)
#%%
#======================================================================
# Evaluate the model
#======================================================================
test_loss, test_acc = model.evaluate(X_test, y_test, verbose = 0)
print('\nTest accuracy:', test_acc)

#%%
#Plot the Model Accuracy and Loss for Training and Validation dataset
plot_model_accuracy_loss()
#%%
#Test the Model with testing data
y_pred_test = model.predict(X_test,)
# Round the test predictions
max_y_pred_test = np.round(y_pred_test)
#Print the Confusion Matrix
print_confusion_matrix()

#%%
#Evaluate the Model and Print Performance Metrics
print_performance_metrics()
#%%
#Print and Save the Confusion Matrix
print_confusion_matrix_and_save()

#%%
#======================================================================
# 3 Convolutional neural network for MNIST digit recognition
#======================================================================
# load data
(X_train, y_train), (X_test, y_test) = mnist.load_data()
# reshape to be [samples][width][height][channels]
X_train = X_train.reshape((X_train.shape[0], 28, 28, 1)).
astype('float32')
X_test = X_test.reshape((X_test.shape[0], 28, 28, 1)).astype('float32')
# normalize inputs from 0-255 to 0-1
X_train = X_train / 255
X_test = X_test / 255
# one hot encode outputs
y_train = np_utils.to_categorical(y_train)
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y_test = np_utils.to_categorical(y_test)
num_classes = y_test.shape[1]
#%%
#======================================================================
# Build model
#======================================================================
model = Sequential()
model.add(Conv2D(32, (5, 5), input_shape = (28, 28, 1), 
activation = 'relu'))
model.add(MaxPooling2D())
model.add(Conv2D(64, (3, 3), activation = 'relu'))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(64, (3, 3), activation = 'relu'))
model.add(Flatten())
model.add(Dense(64, activation = 'relu'))
model.add(Dense(num_classes, activation = 'softmax'))
#======================================================================
# Compile model
#======================================================================
model.compile(loss = 'categorical_crossentropy', optimizer = 'adam', 
metrics = ['accuracy'])
#======================================================================
# Train the model
#======================================================================
history = model.fit(X_train, y_train, validation_split = 0.3, epochs = 10, 
batch_size = 200, verbose = 2)
#%%
#======================================================================
# Evaluate the model
#======================================================================
test_loss, test_acc = model.evaluate(X_test, y_test, verbose = 0)
print('\nTest accuracy:', test_acc)
#%%
#Plot the Model Accuracy and Loss for Training and Validation dataset
plot_model_accuracy_loss()
#%%
#Test the Model with testing data
y_pred_test = model.predict(X_test,)
# Round the test predictions
max_y_pred_test = np.round(y_pred_test)
#Print the Confusion Matrix
print_confusion_matrix()
#%%
#Evaluate the Model and Print Performance Metrics
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print_performance_metrics()
#%%
#Print and Save the Confusion Matrix
print_confusion_matrix_and_save()
#%%
#======================================================================
# 4 Convolutional neural network for MNIST digit recognition
#======================================================================
# load data
(X_train, y_train), (X_test, y_test) = mnist.load_data()
# reshape to be [samples][width][height][channels]
X_train = X_train.reshape((X_train.shape[0], 28, 28, 1)).
astype('float32')
X_test = X_test.reshape((X_test.shape[0], 28, 28, 1)).astype('float32')
# normalize inputs from 0-255 to 0-1
X_train = X_train / 255
X_test = X_test / 255
# one hot encode outputs
y_train = np_utils.to_categorical(y_train)
y_test = np_utils.to_categorical(y_test)
num_classes = y_test.shape[1]
#%%
#======================================================================
# Build model
#======================================================================
model = Sequential()
model.add(Conv2D(32, (5, 5), input_shape = (28, 28, 1), 
activation = 'relu'))
model.add(BatchNormalization())
model.add(Conv2D(32, kernel_size = (3, 3), activation = 'relu'))
model.add(BatchNormalization())
model.add(MaxPooling2D((2, 2)))
model.add(Dropout(0.25))
model.add(Conv2D(64, (3, 3), activation = 'relu'))
model.add(BatchNormalization())
model.add(Dropout(0.25))
model.add(Conv2D(128, kernel_size = (3, 3), activation = 'relu'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size = (2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(512, activation = 'relu'))
model.add(BatchNormalization())
model.add(Dropout(0.5))
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5.7 Fashion-MNIST image classification with CNN

A CNN is not only a deep neural network with many hidden layers but also a large net-
work that simulates and understands stimuli as the visual cortex of the brain processes. 
CNN’s output layer typically uses the neural network for multiclass classification. CNN uses 

model.add(Dense(128, activation = 'relu'))
model.add(BatchNormalization())
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation = 'softmax'))
#======================================================================
# Compile model
#======================================================================
model.compile(loss = 'categorical_crossentropy', optimizer = 'adam', 
metrics = ['accuracy'])
#======================================================================
# Train the model
#======================================================================
history = model.fit(X_train, y_train, validation_split = 0.3, epochs = 10, 
batch_size = 200, verbose = 2)
#======================================================================
#%%
#======================================================================
# Evaluate the model
#======================================================================
test_loss, test_acc = model.evaluate(X_test, y_test, verbose = 0)
print('\nTest accuracy:', test_acc)
#%%
#Plot the Model Accuracy and Loss for Training and Validation dataset
plot_model_accuracy_loss()
#%%
#Test the Model with testing data
y_pred_test = model.predict(X_test,)
# Round the test predictions
max_y_pred_test = np.round(y_pred_test)
#Print the Confusion Matrix
print_confusion_matrix()
#%%
#Evaluate the Model and Print Performance Metrics
print_performance_metrics()
#%%
#Print and Save the Confusion Matrix
print_confusion_matrix_and_save()
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the feature extractor in the training process instead of manually implementing it. CNN’s fea-
ture extractor consists of special types of neural networks that decide the weights through the 
training process. CNN provides better image recognition when its neural network feature ex-
traction becomes deeper (contains more layers), at the cost of the learning method complexi-
ties that had made CNN inefficient and neglected for some time. CNN is a neural network 
that extracts input image features and another neural network classifies the image features. 
The input image is used by the feature extraction network. The extracted feature signals are 
utilized by the neural network for classification. The neural network classification then works 
on the basis of the image features and produces the output. The neural network for feature 
extraction includes convolution layer piles and sets of pooling layers. As its name implies, 
the convolution layer transforms the image using the process of the convolution. It can be 
described as a series of digital filters. The layer of pooling transforms the neighboring pixels 
into a single pixel. The pooling layer then decreases the image dimension. As CNN’s primary 
concern is the image, the convolution and pooling layers’ procedures are intuitively in a two-
dimensional plane. This is one of CNN’s distinctions with other neural networks (Kim, 2017).

Recently, Zalando research issued a new image dataset that is similar to the well-known 
MNIST handwritten digits database. This dataset is designed for machine learning classi-
fication tasks and includes 60,000 training and 10,000 test gray scale images composed of 
28-by-28 pixels. Every training and test case is related to one of ten labels (0–9). Zalando’s 
new dataset is mainly the same as the original handwritten digits data. But instead of having 
images of the digits 0–9, Zalando’s data involves images with 10 different fashion products. 
Hence the dataset is named fashion-MNIST dataset and can be downloaded from GitHub 
(https://github.com/zalandoresearch/fashion-mnist) and Kaggle website (https://www.
kaggle.com/zalando-research/fashionmnist) or from Keras directly (Zhang, 2019).

Example 5.7
The following Python code is used to classify fashion-MNIST image dataset using deep CNN 

classifier and employing separate training, validation, and testing datasets. The classification accu-
racy, precision, recall, F1 score, Cohen kappa score, and Matthews correlation coefficient are calcu-
lated. The classification report and confusion matrix are also given. This example is adapted from 
the TensorFlow web page (https://www.tensorflow.org/tutorials/keras/classification).

Dataset information: Fashion-MNIST is a dataset of Zalando’s article images—composed of 
a training set of 60,000 examples and a test set of 10,000 examples. Every sample is a 28-by-28 
grayscale image, related to a label from 10 classes. Zalando intends fashion-MNIST to serve as 
a direct drop-in replacement for the original MNIST dataset for benchmarking machine learning 
algorithms. It has the same image size and structure of training and testing splits. Each training and 
test sample is assigned to one of the following labels:

•	 t-shirt/top
•	 trouser
•	 pullover
•	 dress

https://github.com/zalandoresearch/fashion-mnist
https://www.kaggle.com/zalando-research/fashionmnist
https://www.kaggle.com/zalando-research/fashionmnist
https://www.tensorflow.org/tutorials/keras/classification
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•	 coat
•	 sandal
•	 shirt
•	 sneaker
•	 bag
•	 ankle	boot

Actually, the fashion-MNIST data is envisioned to be a direct drop-in replacement for the old 
MNIST handwritten digits data, because there were many problems with the handwritten digits. 
For instance, many digits can be correctly distinguished by simply looking at a few pixels. Even with 
linear classifiers high classification accuracy can be achieved. The fashion-MNIST data promises to be 
more diverse so that machine learning algorithms can learn more advanced features to separate the 
individual classes reliably. In this example several CNN-based deep learning models will be created 
to assess performances on fashion-MNIST dataset. The models will be built employing the Keras 
framework. The original training data (60,000 images) divided into 80% training (48,000 images) and 
20% validation (12,000 images) to optimize the classifier while retaining the test data (10,000 images) 
to finally assess the accuracy of the model on the unseen data. This helps to prevent overfitting on the 
training data and determine whether the learning rate should be lowered and train for more epochs 
if validation accuracy is higher than training accuracy or stop overtraining if training accuracy shifts 
higher than the validation (Zhang, 2019).

#======================================================================
# Classify FASHION-MNIST images of clothing with CNN
#======================================================================
"""
Created on Tue Dec 3 15:34:19 2019
@author: absubasi
"""
# TensorFlow and tf.keras
import tensorflow as tf
from tensorflow import keras
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Dropout
from keras.layers import Flatten
from keras.layers.convolutional import Conv2D
from keras.layers.convolutional import MaxPooling2D
from keras.layers import BatchNormalization
# Helper libraries
import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix
import seaborn as sns
from sklearn import metrics
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from io import BytesIO #needed for plot
import seaborn as sns; sns.set()
#======================================================================
# Define utility functions
#======================================================================
def plot_model_accuracy_loss():
    plt.figure(figsize = (6, 4))
    plt.plot(history.history['accuracy'], 'r', label = 'Accuracy of 
training data')
    plt.plot(history.history['val_accuracy'], 'b', label = 'Accuracy of 
validation data')
    plt.plot(history.history['loss'], 'r--', label = 'Loss of training 
data')
    plt.plot(history.history['val_loss'], 'b--', label = 'Loss of 
validation data')
    plt.title('Model Accuracy and Loss')
    plt.ylabel('Accuracy and Loss')
    plt.xlabel('Training Epoch')
    plt.ylim(0)
    plt.legend()
    plt.show()

def print_confusion_matrix(y_test,y_pred):
# matrix = confusion_matrix(y_test.argmax(axis = 1), max_y_pred_test.
argmax(axis = 1))
    matrix = confusion_matrix(y_test, y_pred)
    plt.figure(figsize = (10, 8))
    sns.heatmap(matrix,cmap = 'coolwarm',linecolor = 'white', 
linewidths = 1,
                annot = True,
                fmt = 'd')
    plt.title('Confusion Matrix')
    plt.ylabel('True Label')
    plt.xlabel('Predicted Label')
    plt.show()

def print_performance_metrics(y_test,y_pred):
    print('Accuracy:', np.round(metrics.accuracy_score(y_test, y_
pred),4))
    print('Precision:', np.round(metrics.precision_score(y_test, y_
pred,
                                               average = 'weighted'),4))
    print('Recall:', np.round(metrics.recall_score(y_test, y_pred,
                                               average = 'weighted'),4))
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    print('F1 Score:', np.round(metrics.f1_score(y_test, y_pred,
                                               average = 'weighted'),4))
    print('Cohen Kappa Score:', np.round(metrics.cohen_kappa_score(y_test, 
y_pred),4))
    print('Matthews Corrcoef:', np.round(metrics.matthews_corrcoef(y_test, 
y_pred),4))
    print('\t\tClassification Report:\n', metrics.classification_report(y_
test, y_pred))

def print_confusion_matrix_and_save(y_test, y_pred):
    mat = confusion_matrix(y_test, y_pred)
    sns.heatmap(mat.T, square = True, annot = True, fmt = 'd', cbar = False)
    plt.title('Confusion Matrix')
    plt.ylabel('True Label')
    plt.xlabel('Predicted Label')
    plt.show()

    plt.savefig("Confusion.jpg")
    # Save SVG in a fake file object.
    f = BytesIO()
    plt.savefig(f, format = "svg")
#%%
#from keras.datasets import mnist
fashion_mnist = keras.datasets.fashion_mnist
(X_train, y_train), (X_test, y_test) = fashion_mnist.load_data()

class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',
               'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']
#%%
# Each image's dimension is 28 x 28
img_rows, img_cols = 28, 28
input_shape = (img_rows, img_cols, 1)

# Prepare the training images
X_train = X_train.reshape(X_train.shape[0], img_rows, img_cols, 1)
X_train = X_train.astype('float32')
# Prepare the test images
X_test = X_test.reshape(X_test.shape[0], img_rows, img_cols, 1)
X_test = X_test.astype('float32')
"""
Scale these values to a range of 0 to 1 before feeding them to the neural 
network model.
To do so, divide the values by 255.
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It's important that the training set and the testing set be preprocessed in 
the same way:"""
X_train = X_train / 255.0
X_test = X_test / 255.0
#%%
#======================================================================
# Build the model with 1 CNN
#======================================================================
num_classes = 10
model = Sequential()
model.add(Conv2D(32, (3, 3), activation = 'relu', input_shape = input_
shape))
model.add(MaxPooling2D(pool_size = (2, 2)))
model.add(Dropout(0.2))
model.add(Flatten())
model.add(Dense(128, activation = 'relu'))
model.add(Dense(num_classes, activation = 'softmax'))
#%%
#======================================================================
# Compile the model for numerical labels
#======================================================================
model.compile(optimizer = 'adam',
              loss = 'sparse_categorical_crossentropy',
              metrics = ['accuracy'])
#%%
#======================================================================
# Train and validate the model
#======================================================================
history = model.fit(X_train, y_train, validation_split = 0.3, epochs = 10, 
batch_size = 200, verbose = 2)
#%%
#======================================================================
# Evaluate the model
#======================================================================
test_loss, test_acc = model.evaluate(X_test, y_test, verbose = 0)
print(" Test Accuracy is : %0.4f" % test_acc)
#%%
#Plot the Model Accuracy and Loss for Training and Validation dataset
plot_model_accuracy_loss()
#%%
#Test the Model with testing data
y_pred_test = model.predict(X_test,)
# Round the test predictions
max_y_pred_test = np.round(y_pred_test)
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#Convert binary labels into categorical
y_pred =max_y_pred_test.argmax(axis = 1)
#Print the Confusion Matrix
print_confusion_matrix(y_test, y_pred)
#%%
#Evaluate the Model and Print Performance Metrics
print_performance_metrics(y_test, y_pred)
#%%
#Print and Save the Confusion Matrix
print_confusion_matrix_and_save(y_test, y_pred)
#%%
#======================================================================
# Build the model with 3 CNN
#======================================================================
num_classes = 10
model = Sequential()
model.add(Conv2D(32, (3, 3), activation = 'relu', input_shape = input_
shape))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(64, (3, 3), activation = 'relu'))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(64, (3, 3), activation = 'relu'))
model.add(Flatten())
model.add(Dense(64, activation = 'relu'))
model.add(Dense(num_classes, activation = 'softmax'))
#%%
#======================================================================
# Compile the model for numerical labels
#======================================================================
model.compile(optimizer = 'adam',
              loss = 'sparse_categorical_crossentropy',
              metrics = ['accuracy'])
#%%
#======================================================================
# Train and validate the model
#======================================================================
history = model.fit(X_train, y_train, validation_split = 0.3, epochs = 10, 
batch_size = 200, verbose = 2)
#%%
#======================================================================
# Evaluate the model
#======================================================================
test_loss, test_acc = model.evaluate(X_test, y_test, verbose = 0)
print("Test Accuracy is : %0.4f" % test_acc)
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#%%
#Plot the Model Accuracy and Loss for Training and Validation dataset
plot_model_accuracy_loss()
#%%
#Test the Model with testing data
y_pred_test = model.predict(X_test,)
# Round the test predictions
max_y_pred_test = np.round(y_pred_test)
#Convert binary labels into categorical
y_pred =max_y_pred_test.argmax(axis = 1)
#Print the Confusion Matrix
print_confusion_matrix(y_test, y_pred)
#%%
#Evaluate the Model and Print Performance Metrics
print_performance_metrics(y_test, y_pred)
#%%
#Print and Save the Confusion Matrix
print_confusion_matrix_and_save(y_test, y_pred)
#%%
#======================================================================
# Build the model with 4 CNN
#======================================================================
num_classes = 10
model = Sequential()
model.add(Conv2D(32, (3, 3), activation = 'relu', input_shape = input_
shape))
model.add(BatchNormalization())

model.add(Conv2D(32, kernel_size = (3, 3), activation = 'relu'))
model.add(BatchNormalization())
model.add(MaxPooling2D((2, 2)))
model.add(Dropout(0.25))

model.add(Conv2D(64, (3, 3), activation = 'relu'))
model.add(BatchNormalization())
model.add(Dropout(0.25))
model.add(Conv2D(128, kernel_size = (3, 3), activation = 'relu'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size = (2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
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model.add(Dense(512, activation = 'relu'))
model.add(BatchNormalization())
model.add(Dropout(0.5))

model.add(Dense(128, activation = 'relu'))
model.add(BatchNormalization())
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation = 'softmax'))
#%%
#======================================================================
# Compile the model for numerical labels
#======================================================================
model.compile(optimizer = 'adam',
              loss = 'sparse_categorical_crossentropy',
              metrics = ['accuracy'])
#%%
#======================================================================
# Train and validate the model
#======================================================================
history = model.fit(X_train, y_train, validation_split = 0.3, epochs = 10, 
batch_size = 200, verbose = 2)
#%%
#======================================================================
# Evaluate the model
#======================================================================
test_loss, test_acc = model.evaluate(X_test, y_test, verbose = 0)
print("Test Accuracy is : %0.4f" % test_acc)
#%%
#Plot the Model Accuracy and Loss for Training and Validation dataset
plot_model_accuracy_loss()
#%%
#Test the Model with testing data
y_pred_test = model.predict(X_test,)
# Round the test predictions
max_y_pred_test = np.round(y_pred_test)
#Convert binary labels into categorical
y_pred =max_y_pred_test.argmax(axis = 1)
#Print the Confusion Matrix
print_confusion_matrix(y_test, y_pred)
#%%
#Evaluate the Model and Print Performance Metrics
print_performance_metrics(y_test, y_pred)
#%%
#Print and Save the Confusion Matrix
print_confusion_matrix_and_save(y_test, y_pred)
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5.8 CIFAR image classification using CNN

At the moment, machine learning is driven by extensively experimental work based on 
progress in a few main tasks. But the impressive accuracy numbers of the best performing 
models are questionable, as these models have been selected for several years now using the 
same test sets. The reliability of CIFAR-10 classifiers can be assessed by creating a new test set 
of really unknown objects to understand the danger of overfitting. While it is found that the 
new test set is as close as possible to the original data distribution, for a wide range of deep 
learning models, a large fall in accuracy of 4% to 10% is realized. Newer models with higher 
performance, however, show a smaller drop and better overall performance, implying that 
this drop is not likely due to overfitting based on adaptivity. Machine learning has become a 
highly revolutionary field over the past decade (Recht, Roelofs, Schmidt, Shankar, 2018). Re-
cently, in many computer vision problems, the CNN has accomplished better success. CNN 
exhibits many properties with the brain’s visual system, partly inspired by neuroscience. A 
significant difference is that CNN is usually a feed-forward architecture, although recurrent 
connections are common in the visual system (Liang & Hu, 2015). The majority of published 
papers, motivated by a rise in research into deep learning, have adopted a model where the 
main justification for a new learning methodology is its improved performance on a few key 
benchmarks. Simultaneously, there is little clarification as to why a new method is a suc-
cessful improvement over previous research. Rather, our sense of progress depends largely 
on a small number of standard benchmarks like CIFAR-10, ImageNet, or MuJoCo (Recht 
et al., 2018).

Example 5.8
The following Python code is used to classify phishing websites dataset using DCNN classifier 

employing 10-fold cross-validation, as well as separate training and testing datasets. The classifica-
tion accuracy, precision, recall, F1 score, Cohen kappa score, and Matthews correlation coefficient 
are calculated. The classification report and confusion matrix are also given. This example is adapt-
ed from Tensorflow web page (https://www.tensorflow.org/tutorials/images/cnn).

Dataset information: The CIFAR-10 and CIFAR-100 are labeled subsets of the 80 million tiny 
images dataset. They were collected by Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. The 
CIFAR-10 dataset includes 60,000 32-by-32 color images in 10 classes, with 6,000 images per class. 
There are 50,000 training images and 10,000 test images. The dataset is split into five training batches 
and one test batch, each with 10,000 images. The test batch contains exactly 1,000 randomly selected 
images from each class. The training batches contain the remaining images in random order, but 
some training batches may include more images from one class than another. The CIFAR-10 dataset 
can be downloaded from the CIFAR website (https://www.cs.toronto.edu/∼kriz/cifar.html) or 
from Keras directly. The classes of the dataset are:

•	 airplane
•	 automobile
•	 bird
•	 cat

https://www.tensorflow.org/tutorials/images/cnn
https://www.cs.toronto.edu/~kriz/cifar.html
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•	 deer
•	 dog
•	 frog
•	 horse
•	 ship
•	 truck

"""
Created on Tue Dec 3 15:45:50 2019
@author: absubasi
Convolutional Neural Network (CNN)
https://www.tensorflow.org/tutorials/images/cnn
"""
#======================================================================
# Classification of CIFAR images using CNN
#======================================================================
import tensorflow as tf
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Dropout
from keras.layers import Flatten
from keras.layers.convolutional import Conv2D
from keras.layers.convolutional import MaxPooling2D
from keras.layers import BatchNormalization
from keras.utils import np_utils
from tensorflow.keras import datasets, layers, models
import matplotlib.pyplot as plt
import numpy as np
from sklearn.metrics import confusion_matrix
from sklearn import metrics
from io import BytesIO #needed for plot
import seaborn as sns; sns.set()
#======================================================================
# Define utility functions
#======================================================================
def plot_model_accuracy_loss():
    plt.figure(figsize = (6, 4))
    plt.plot(history.history['accuracy'], 'r', label = 'Accuracy of 
training data')
    plt.plot(history.history['val_accuracy'], 'b', label = 'Accuracy of 
validation data')
    plt.plot(history.history['loss'], 'r--', label = 'Loss of training 
data')

https://www.tensorflow.org/tutorials/images/cnn
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    plt.plot(history.history['val_loss'], 'b--', label = 'Loss of 
validation data')
    plt.title('Model Accuracy and Loss')
    plt.ylabel('Accuracy and Loss')
    plt.xlabel('Training Epoch')
    plt.ylim(0)
    plt.legend()
    plt.show()

def print_confusion_matrix():
    matrix = confusion_matrix(y_test, y_pred)
    plt.figure(figsize = (10, 8))
    sns.heatmap(matrix,cmap = 'coolwarm',linecolor = 'white',linewidths = 1,
                annot = True,
                fmt = 'd')
    plt.title('Confusion Matrix')
    plt.ylabel('True Label')
    plt.xlabel('Predicted Label')
    plt.show()

def print_performance_metrics():
    print('Accuracy:', np.round(metrics.accuracy_score(y_test, y_
pred),4))
    print('Precision:', np.round(metrics.precision_score(y_test,
                                y_pred,average = 'weighted'),4))
    print('Recall:', np.round(metrics.recall_score(y_test, y_pred,
                                average = 'weighted'),4))
    print('F1 Score:', np.round(metrics.f1_score(y_test, y_pred,
                                average = 'weighted'),4))
    print('Cohen Kappa Score:', np.round(metrics.cohen_kappa_score(y_test, 
y_pred),4))
    print('Matthews Corrcoef:', np.round(metrics.matthews_corrcoef(y_test, 
y_pred),4))
    print('\t\tClassification Report:\n', metrics.classification_report(y_
test, y_pred))

def print_confusion_matrix_and_save():
    mat = confusion_matrix(y_test, y_pred)
    sns.heatmap(mat.T, square = True, annot = True, fmt = 'd', cbar = False)
    plt.title('Confusion Matrix')
    plt.ylabel('True Label')
    plt.xlabel('Predicted Label')
    plt.show()

    plt.savefig("Confusion.jpg")



 5.8 CIFAR image classification using CNN 367

 

    # Save SVG in a fake file object.
    f = BytesIO()
    plt.savefig(f, format = "svg")
#%%
# load data
(X_train, y_train), (X_test, y_test) = datasets.cifar10.load_data()
# Normalize pixel values to be between 0 and 1
X_train, X_test = X_train / 255.0, X_test / 255.0
#%%
class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer',
               'dog', 'frog', 'horse', 'ship', 'truck']
plt.figure(figsize = (10,10))
for i in range(25):
    plt.subplot(5,5,i + 1)
    plt.xticks([])
    plt.yticks([])
    plt.grid(False)
    plt.imshow(X_train[i], cmap = plt.cm.binary)
    # The CIFAR labels happen to be arrays,
    # which is why you need the extra index
    plt.xlabel(class_names[y_train[i][0]])
plt.show()
#%%
#======================================================================
# 1 Convolutional neural network for CIFAR image classification
#======================================================================
# load data
(X_train, y_train), (X_test, y_test) = datasets.cifar10.load_data()
# Normalize pixel values to be between 0 and 1
X_train, X_test = X_train / 255.0, X_test / 255.0
# Each image's dimension is 32 x 32
img_rows, img_cols = 32, 32
input_shape = (img_rows, img_cols, 3)
#%%
#======================================================================
# Build model
#======================================================================
num_classes = 10
model = Sequential()
model.add(Conv2D(32, (3, 3), activation = 'relu', input_shape = input_
shape))
model.add(MaxPooling2D())
model.add(Dropout(0.2))
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model.add(Flatten())
model.add(Dense(128, activation = 'relu'))
model.add(Dense(num_classes, activation = 'softmax'))
#%%
#======================================================================
# Compile the model for numerical labels
#======================================================================
model.compile(optimizer = 'adam',
    loss = 'sparse_categorical_crossentropy',
    metrics = ['accuracy'])
#%%
#======================================================================
# Compile the model for binary labels
#======================================================================
#model.compile(loss = 'categorical_crossentropy', optimizer = 'adam', 
metrics = ['accuracy'])
#%%
#======================================================================
# Train and validate the model
#======================================================================
history = model.fit(X_train, y_train, validation_split = 0.3, epochs = 10, 
batch_size = 200, verbose = 2)
#%%
#======================================================================
# Evaluate the model
#======================================================================
test_loss, test_acc = model.evaluate(X_test, y_test, verbose = 0)
print("Test Accuracy is : %0.4f" % test_acc)
#%%
#Plot the Model Accuracy and Loss for Training and Validation dataset
plot_model_accuracy_loss()
#%%
#Test the Model with testing data
y_pred_test = model.predict(X_test,)
# Round the test predictions
max_y_pred_test = np.round(y_pred_test)
#Print the Confusion Matrix
print_confusion_matrix()
#%%
#Evaluate the Model and Print Performance Metrics
print_performance_metrics()
#%%
#Print and Save the Confusion Matrix
print_confusion_matrix_and_save()
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#%%
#======================================================================
# 3 Convolutional neural network for CIFAR image classification
#======================================================================
# load data
(X_train, y_train), (X_test, y_test) = datasets.cifar10.load_data()
# Normalize pixel values to be between 0 and 1
X_train, X_test = X_train / 255.0, X_test / 255.0
# Each image's dimension is 32 x 32
img_rows, img_cols = 32, 32
input_shape = (img_rows, img_cols, 3)
#%%
#======================================================================
# Build model
#======================================================================
num_classes = 10
model = Sequential()
model.add(Conv2D(32, (3, 3), activation = 'relu', input_shape = input_
shape))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(64, (3, 3), activation = 'relu'))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(64, (3, 3), activation = 'relu'))
model.add(Flatten())
model.add(Dense(64, activation = 'relu'))
model.add(Dense(num_classes, activation = 'softmax'))
#%%
#======================================================================
# Compile the model for numerical labels
#======================================================================
model.compile(optimizer = 'adam',
              loss = 'sparse_categorical_crossentropy',
              metrics = ['accuracy'])
#%%
#======================================================================
# Compile the model for binary labels
#======================================================================
#model.compile(loss = 'categorical_crossentropy', optimizer = 'adam', 
metrics = ['accuracy'])
#%%
#======================================================================
# Train and validate the model
#======================================================================
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history = model.fit(X_train, y_train, validation_split = 0.3, epochs = 10, 
batch_size = 200, verbose = 2)
#%%
#======================================================================
# Evaluate the model
#======================================================================
test_loss, test_acc = model.evaluate(X_test, y_test, verbose = 0)
print("Test Accuracy is : %0.4f" % test_acc)
#%%
#Plot the Model Accuracy and Loss for Training and Validation dataset
plot_model_accuracy_loss()
#%%
#Test the Model with testing data
y_pred_test = model.predict(X_test,)
# Round the test predictions
max_y_pred_test = np.round(y_pred_test)
#Print the Confusion Matrix
print_confusion_matrix()
#%%
#Evaluate the Model and Print Performance Metrics
print_performance_metrics()
#%%
#Print and Save the Confusion Matrix
print_confusion_matrix_and_save()
#%%
#======================================================================
# 4 Convolutional neural network for CIFAR image classification
#======================================================================
# load data
(X_train, y_train), (X_test, y_test) = datasets.cifar10.load_data()
# Normalize pixel values to be between 0 and 1
X_train, X_test = X_train / 255.0, X_test / 255.0
#======================================================================
# Build model
#======================================================================
num_classes = 10
model = Sequential()
model.add(Conv2D(32, (3, 3), activation = 'relu', input_shape = (32, 32, 3)))
model.add(BatchNormalization())
model.add(Conv2D(32, kernel_size = (3, 3), activation = 'relu'))
model.add(BatchNormalization())
model.add(MaxPooling2D((2, 2)))
model.add(Dropout(0.25))
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model.add(Conv2D(64, (3, 3), activation = 'relu'))
model.add(BatchNormalization())
model.add(Dropout(0.25))
model.add(Conv2D(128, kernel_size = (3, 3), activation = 'relu'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size = (2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(512, activation = 'relu'))
model.add(BatchNormalization())
model.add(Dropout(0.5))
model.add(Dense(128, activation = 'relu'))
model.add(BatchNormalization())
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation = 'softmax'))
#%%
#======================================================================
# Compile the model for numerical labels
#======================================================================
model.compile(optimizer = 'adam',
              loss = 'sparse_categorical_crossentropy',
              metrics = ['accuracy'])
#%%
#======================================================================
# Compile the model for binary labels
#======================================================================
#model.compile(loss = 'categorical_crossentropy', optimizer = 'adam', 
metrics = ['accuracy'])
#%%
#======================================================================
# Train and validate the model
#======================================================================
history = model.fit(X_train, y_train, validation_split = 0.3, epochs = 10, 
batch_size = 200, verbose = 2)
#%%
#======================================================================
# Evaluate the model
#======================================================================
test_loss, test_acc = model.evaluate(X_test, y_test, verbose = 0)
print("Test Accuracy is : %0.4f" % test_acc)
#%%
#Plot the Model Accuracy and Loss for Training and Validation dataset
plot_model_accuracy_loss()
#%%
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5.9 Text classification

The role of automated text classification is to classify documents into predetermined cat-
egories, typically applying machine learning algorithms. Generally speaking, organizing and 
using the huge amounts of information, which exist in unstructured text format, is one of 
the most important techniques. Classification of text is a widely studied field of language 
processing and text mining study. A document is represented in traditional text classification 
as a bag of words in which the words terms are cut from their finer context, that is, their loca-
tion in a sentence or in a document. Only the wider document context is utilized in the vector 
space with some type of term frequency information. Hence, semantics of words, which can 
be derived in a sentence from the finer sense of the word’s location and its relationships with 
neighboring words, are generally ignored. Nonetheless, meaning of words semantic relations 
between words and documents are essential as methods, which capture semantics, generally 
achieve better performance in classification (Altinel & Ganiz, 2018).

Due to the wide range of sources that generate enormous amounts of data, such as social 
networks, blogs/forums, websites, e-mails, and digital libraries that publish research papers, 
text mining studies have become increasingly important in recent years. With new techno-
logical advances, such as speech-to-text engines and digital assistants or smart personal as-
sistants, the growth of electronic textual information will no doubt keep increasing. A funda-
mental problem is the automatic processing, organization, and handling of this textual data. 
Text mining has several important applications such as classification, filtering of documents, 
summarization, and sentiment analysis/opinion classification. Machine learning and natural 
language processing (NLP) techniques work together to detect and automatically classify 
patterns from different types of documents (Altinel & Ganiz, 2018; Sebastiani, 2005).

Semantic word relationships are considered in semantic text classification methods to gen-
erally measure the similarities between documents. The semantic approach focuses on word 

#Test the Model with testing data
y_pred_test = model.predict(X_test,)
# Round the test predictions
max_y_pred_test = np.round(y_pred_test)
#Convert binary labels back to Numerical
y_pred = max_y_pred_test.argmax(axis = 1)
#Print the Confusion Matrix
print_confusion_matrix()
#%%
#Evaluate the Model and Print Performance Metrics
print_performance_metrics()
#%%
#Print and Save the Confusion Matrix
print_confusion_matrix_and_save()
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meaning and hidden linguistic relations between words and therefore between documents 
(Altinel & Ganiz, 2018). Advantages of classification of semantic text over conventional clas-
sification of text are described as:

•	 Finding	implicit	or	explicit	relationships	between	the	words.
•	 Extracting	and	using	latent	word–document	relationships.
•	 Ability	of	generating	representative	keywords	for	the	existing	classes.
•	 Semantic	text	understanding	that	increases	classification	performance.
•	 Ability	to	manage	synonymy	and	polysemy	compared	to	traditional	algorithms	for	text	

classification, as they use semantic relationships between words.

Different semantic-based techniques have been proposed to combine semantic relations 
between words in text classification. These techniques can be categorized into five types, 
namely, domain knowledge–based (ontology-based) methods, corpus-based methods, deep 
learning–based methods, word/character-enhanced methods, and linguistic-enriched meth-
ods (Altinel & Ganiz, 2018).

•	 Domain	knowledge–based	(language-dependent)	methods:	Domain	knowledge–based	
systems use ontology or thesaurus to classify concepts in documents. Examples of 
knowledge bases are dictionaries, thesauri, and encyclopedic resources. Common 
knowledge bases are WordNet, Wiktionary, and Wikipedia. Among them, WordNet is by 
far the most utilized knowledge base.

•	 Corpus-based	(language-independent)	methods:	In	these	schemes,	some	mathematical	
calculations are performed to identify latent similarities in the learning corpus between 
words (Zhang, Gentile, & Ciravegna, 2012). One of the well-known, corpus-based 
algorithms is latent semantics analysis (LSA) (Deerwester, Dumais, Furnas, Landauer, & 
Harshman, 1990).

•	 Deep	learning–based	methods:	Recently	deep	learning	has	gained	more	attention	in	
semantic text analysis.

•	 Word/character	sequence–enhanced	methods:	Word/character	sequence–boosted	
approaches treat words or characters as string sequences that are extracted from 
documents by conventional string-matching methods.

•	 Linguistic-enriched	methods:	These	methods	employ	lexical	and	syntactic	rules	for	
extracting the noun phrases, entities, and terminologies from a document to create a 
representation of the document (Altinel & Ganiz, 2018).

Example 5.9
The following Python code is used to classify a text dataset using different classifiers employing 

10-fold cross-validation and also separate training and testing datasets. The classification accuracy, 
precision, recall, F1 score, Cohen kappa score, and Matthews correlation coefficient are calculated. 
The classification report and confusion matrix are also given. This example is adapted from the 
Kaggle web page (https://www.kaggle.com/sanikamal/text-classification-with-python-and-keras).

Dataset information: In the experiments, three real world datasets are utilized. Amazon dataset 
includes scores and reviews for products sold on amazon.com in the cell phones and accessories 

https://www.kaggle.com/sanikamal/text-classification-with-python-and-keras
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category and is part of the dataset collected by McAuley and Leskovec (McAuley & Leskovec, 2013). 
Scores are on an integer scale from 1 to 5. Scores 4 and 5 are considered positive, and scores 1 and 
2 are considered negative. IMDb is a movie review sentiment dataset (https://www.kaggle.com/
lakshmi25npathi/imdb-dataset-of-50k-movie-reviews) initially created by Maas et al. (Maas et al., 
2011) as a benchmark for sentiment analysis. This dataset includes a total of 100,000 movie reviews 
posted on imdb.com. There are 50,000 unlabeled reviews, and the remaining 50,000 are split into a 
set of 25,000 reviews for training and 25,000 reviews for testing. Each of the labeled reviews has a 
binary sentiment label, either positive or negative. Yelp is a dataset from the Yelp dataset challenge 
(https://www.yelp.com/dataset/challenge) that contains the restaurant reviews. Scores are on an 
integer scale from 1 to 5. Scores 4 and 5 are considered positive, and 1 and 2 are considered negative 
(Kotzias, Denil, De Freitas, & Smyth, 2015).

#======================================================================
# Text classification example
#======================================================================
"""
Created on Thu Dec 12 12:02:11 2019
@author: absubasi
Text Classification With Python and Keras
"""
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import matplotlib.pyplot as plt
plt.style.use('ggplot')
#importing the libraries
import numpy as np
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import OneHotEncoder
from sklearn.model_selection import RandomizedSearchCV
from keras.models import Sequential
from keras import layers
from keras.preprocessing.text import Tokenizer
from keras.preprocessing.sequence import pad_sequences
from keras.wrappers.scikit_learn import KerasClassifier
from sklearn.model_selection import cross_val_score
from sklearn import metrics
from sklearn.metrics import confusion_matrix
import seaborn as sns
import matplotlib.pyplot as plt
from io import BytesIO #needed for plot
import seaborn as sns; sns.set()

https://www.kaggle.com/lakshmi25npathi/imdb-dataset-of-50k-movie-reviews
https://www.kaggle.com/lakshmi25npathi/imdb-dataset-of-50k-movie-reviews
https://www.yelp.com/dataset/challenge
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#=====================================================================
# Define utility functions
#=====================================================================
def kFold_Cross_Validation_Metrics(model,CV):
    Acc_scores = cross_val_score(model, X, y, cv = CV)
    print("Accuracy: %0.3f (+/- %0.3f)" % (Acc_scores.mean(), Acc_
scores.std() * 2))
    f1_scores = cross_val_score(model, X, y, cv = CV,scoring = 'f1_
macro')
    print("F1 score: %0.3f (+/- %0.3f)" % (f1_scores.mean(), f1_scores.
std() * 2))
    Precision_scores = cross_val_score(model, X, y, cv = CV,scoring = 
'precision_macro')
    print("Precision score: %0.3f (+/- %0.3f)" % (Precision_scores.
mean(), Precision_scores.std() * 2))
    Recall_scores = cross_val_score(model, X, y, cv = CV,scoring = 'recall_
macro')
    print("Recall score: %0.3f (+/- %0.3f)" % (Recall_scores.mean(), 
Recall_scores.std() * 2))
    from sklearn.metrics import cohen_kappa_score, make_scorer
    kappa_scorer = make_scorer(cohen_kappa_score)
    Kappa_scores = cross_val_score(model, X, y, cv = CV,scoring = kappa_
scorer)
    print("Kappa score: %0.3f (+/- %0.3f)" % (Kappa_scores.mean(), 
Kappa_scores.std() * 2))

def Performance_Metrics(model,y_test,y_pred):
    print('Test Accuracy:', np.round(metrics.accuracy_score(y_test,y_
pred),4))
    print('Precision:', np.round(metrics.precision_score(y_test,
                            y_pred,average = 'weighted'),4))
    print('Recall:', np.round(metrics.recall_score(y_test,y_pred,
                                               average = 'weighted'),4))
    print('F1 Score:', np.round(metrics.f1_score(y_test,y_pred,
                                               average = 'weighted'),4))
    print('Cohen Kappa Score:', np.round(metrics.cohen_kappa_score(y_
test,y_pred),4))
    print('Matthews Corrcoef:', np.round(metrics.matthews_corrcoef(y_
test,y_pred),4))
    print('\t\tClassification Report:\n', metrics.classification_report(y_
test,y_pred))
    print("Confusion Matrix:\n",confusion_matrix(y_test,y_pred))
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def print_confusion_matrix(y_test, y_pred, target_names):
    matrix = confusion_matrix(y_test, y_pred)
    plt.figure(figsize = (10, 8))
    sns.heatmap(matrix,cmap = 'coolwarm',linecolor = 'white',linewidths = 1,
                xticklabels = target_names,
                yticklabels = target_names,
                annot = True,
                fmt = 'd')
    plt.title('Confusion Matrix')
    plt.ylabel('True Label')
    plt.xlabel('Predicted Label')
    plt.show()

def print_confusion_matrix_and_save(y_test, y_pred):
    #Print the Confusion Matrix
    matrix = confusion_matrix(y_test, y_pred)
    plt.figure(figsize = (6, 4))
    sns.heatmap(matrix, square = True, annot = True, fmt = 'd', cbar = 
False)
    plt.title('Confusion Matrix')
    plt.ylabel('True Label')
    plt.xlabel('Predicted Label')
    plt.show()
    #Save The Confusion Matrix
    plt.savefig("Confusion.jpg")
    # Save SVG in a fake file object.
    f = BytesIO()
    plt.savefig(f, format = "svg")

def print_metrics(X_test, y_test):
    score = classifier.score(X_test, y_test)
    print('Accuracy for {} data: {:.4f}'.format(source, score))
    # Predicting the Test set results
    y_pred = classifier.predict(X_test)
    precision = np.round(metrics.precision_score(y_test,
                            y_pred,average = 'weighted'),4)
    print('Precision for {} data: {:.4f}'.format(source, precision))
    recall = np.round(metrics.recall_score(y_test,y_pred,
                                               average = 'weighted'),4)
    print('Recall for {} data: {:.4f}'.format(source, recall))
    f1score = np.round(metrics.f1_score(y_test,y_pred,
                                               average = 'weighted'),4)
    print('F1 Score for {} data: {:.4f}'.format(source, f1score))
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    kappa = np.round(metrics.cohen_kappa_score(y_test,y_pred),4)
    print('Cohen Kappa Score for {} data: {:.4f}'.format(source, kappa))
    matthews = np.round(metrics.matthews_corrcoef(y_test,y_pred),4)
    print('Matthews Corrcoef: for {} data: {:.4f}'.format(source, mat-
thews))
    print('\t\tClassification Report:\n', metrics.classification_report(y_
test,y_pred))

def plot_history(history):
    accuracy = history.history['accuracy']
    val_accuracy = history.history['val_accuracy']
    loss = history.history['loss']
    val_loss = history.history['val_loss']
    x = range(1, len(accuracy) + 1)

    plt.figure(figsize = (12, 5))
    plt.subplot(1, 2, 1)
    plt.plot(x, accuracy, 'b', label = 'Training acc')
    plt.plot(x, val_accuracy, 'r', label = 'Validation acc')
    plt.title('Training and validation accuracy')
    plt.legend()
    plt.subplot(1, 2, 2)
    plt.plot(x, loss, 'b', label = 'Training loss')
    plt.plot(x, val_loss, 'r', label = 'Validation loss')
    plt.title('Training and validation loss')
    plt.legend()

def plot_model_accuracy_loss():
    plt.figure(figsize = (6, 4))
    plt.plot(history.history['accuracy'], 'r', label = 'Accuracy of 
training data')
    plt.plot(history.history['val_accuracy'], 'b', label = 'Accuracy of 
validation data')
    plt.plot(history.history['loss'], 'r--', label = 'Loss of training 
data')
    plt.plot(history.history['val_loss'], 'b--', label = 'Loss of 
validation data')
    plt.title('Model Accuracy and Loss')
    plt.ylabel('Accuracy and Loss')
    plt.xlabel('Training Epoch')
    plt.ylim(0)
    plt.legend()
    plt.show()



378 5. Other classification examples

 

#%%
#=====================================================================
# Load and prepare data
#=====================================================================

filepath_dict = {'yelp': 'yelp_labelled.txt',
                 'amazon': 'amazon_cells_labelled.txt',
                 'imdb': 'imdb_labelled.txt'}
df_list = []
for source, filepath in filepath_dict.items():
    df = pd.read_csv(filepath, names = ['sentence', 'label'], sep = '\t')
    df['source'] = source # Add another column filled with the source 
name
    df_list.append(df)
#%%
df = pd.concat(df_list)
df.iloc[0]
#%%
df_yelp = df[df['source'] == 'yelp']
sentences = df_yelp['sentence'].values
y = df_yelp['label'].values

sentences_train, sentences_test, y_train, y_test = train_test_
split(sentences, y, test_size = 0.33, random_state = 1000)
vectorizer = CountVectorizer()
vectorizer.fit(sentences_train)
X = vectorizer.transform(sentences)
X_train = vectorizer.transform(sentences_train)
X_test = vectorizer.transform(sentences_test)
#%%
#=====================================================================
# XGBoost example with cross-validation
#=====================================================================
from xgboost import XGBClassifier
# Create a Model
model = XGBClassifier()
#Evaluate Model Using 10-Fold Cross Validation and Print Performance 
Metrics
CV = 10 #10-Fold Cross Validation
kFold_Cross_Validation_Metrics(model,CV)
#%%
#=====================================================================
# XGBoost example with training and testing set
#=====================================================================
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model.fit(X_train, y_train)
# Predicting the Test set results
y_pred = model.predict(X_test)
target_names = ['NO','YES' ]
#Print the Confusion Matrix
print_confusion_matrix(y_test, y_pred, target_names)
# Print The Performance Metrics
Performance_Metrics(model,y_test,y_pred)
#Print and Save the Confusion Matrix
print_confusion_matrix_and_save(y_test, y_pred)
#%%
from xgboost import XGBClassifier
for source in df['source'].unique():
    df_source = df[df['source'] == source]
    sentences = df_source['sentence'].values
    y = df_source['label'].values
    sentences_train, sentences_test, y_train, y_test = train_test_split(
    sentences, y, test_size = 0.25, random_state = 1000)
    vectorizer = CountVectorizer()
    vectorizer.fit(sentences_train)
    X_train = vectorizer.transform(sentences_train)
    X_test = vectorizer.transform(sentences_test)
    classifier =XGBClassifier()
    classifier.fit(X_train, y_train)
    score = classifier.score(X_test, y_test)
    print('Accuracy for {} data: {:.4f}'.format(source, score))
    print_metrics(X_test, y_test)
#%%
from sklearn.neural_network import MLPClassifier
"""mlp = MLPClassifier(hidden_layer_sizes = (100,), activation = 'relu', 
solver = 'adam',
               alpha = 0.0001, batch_size = 'auto', learning_rate = 

'constant',
              learning_rate_init = 0.001, power_t = 0.5, max_iter = 200,
               shuffle = True, random_state = None, tol = 0.0001, verbose = 

False,
               warm_start = False, momentum = 0.9, nesterovs_momentum = 

True,
               early_stopping = False, validation_fraction = 0.1, beta_1 

= 0.9,
              beta_2 = 0.999, epsilon = 1e-08, n_iter_no_change = 10)"""
for source in df['source'].unique():
    df_source = df[df['source'] == source]
    sentences = df_source['sentence'].values
    y = df_source['label'].values
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    sentences_train, sentences_test, y_train, y_test = train_test_split(
            sentences, y, test_size = 0.25, random_state = 1000)
    vectorizer = CountVectorizer()
    vectorizer.fit(sentences_train)
    X_train = vectorizer.transform(sentences_train)
    X_test = vectorizer.transform(sentences_test)
    classifier =MLPClassifier(hidden_layer_sizes = (50,25), learning_rate_
init = 0.001,
                     alpha = 1, momentum = 0.9,max_iter = 1000)
    classifier.fit(X_train, y_train)
    print_metrics(X_test, y_test)
#%%
from sklearn.neighbors import KNeighborsClassifier
for source in df['source'].unique():
    df_source = df[df['source'] == source]
    sentences = df_source['sentence'].values
    y = df_source['label'].values
    sentences_train, sentences_test, y_train, y_test = train_test_split(
            sentences, y, test_size = 0.25, random_state = 1000)
    vectorizer = CountVectorizer()
    vectorizer.fit(sentences_train)
    X_train = vectorizer.transform(sentences_train)
    X_test = vectorizer.transform(sentences_test)
    classifier =KNeighborsClassifier(n_neighbors = 5)
    classifier.fit(X_train, y_train)
    print_metrics(X_test, y_test)
#%%
from sklearn import svm
""" The parameters and kernels of SVM classifier can be changed as 
follows
C = 10.0 # SVM regularization parameter
svm.SVC(kernel = 'linear', C = C)
svm.LinearSVC(C = C, max_iter = 10000)
svm.SVC(kernel = 'rbf', gamma = 0.7, C = C)
svm.SVC(kernel = 'poly', degree = 3, gamma = 'auto', C = C))
"""
C = 100.0 # SVM regularization parameter
for source in df['source'].unique():
    df_source = df[df['source'] == source]
    sentences = df_source['sentence'].values
    y = df_source['label'].values
    sentences_train, sentences_test, y_train, y_test = train_test_split(
        sentences, y, test_size = 0.25, random_state = 1000)
    vectorizer = CountVectorizer()
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    vectorizer.fit(sentences_train)
    X_train = vectorizer.transform(sentences_train)
    X_test = vectorizer.transform(sentences_test)
    classifier =svm.LinearSVC(C = C, max_iter = 10000)
    classifier.fit(X_train, y_train)
    print_metrics(X_test, y_test)
#%%
from sklearn import metrics
# Fitting Random Forest to the Training set
from sklearn.ensemble import RandomForestClassifier
#In order to change to accuracy increase n_estimators
"""RandomForestClassifier(n_estimators = 'warn', criterion = 'gini', max_
depth = None,
min_samples_split = 2, min_samples_leaf = 1, min_weight_fraction_leaf = 0.0,
max_features = 'auto', max_leaf_nodes = None, min_impurity_decrease = 0.0,
min_impurity_split = None, bootstrap = True, oob_score = False, n_jobs = 
None,
random_state = None, verbose = 0, warm_start = False, class_weight = 
None)"""
for source in df['source'].unique():
    df_source = df[df['source'] == source]
    sentences = df_source['sentence'].values
    y = df_source['label'].values
    sentences_train, sentences_test, y_train, y_test = train_test_split(
    sentences, y, test_size = 0.25, random_state = 1000)
    vectorizer = CountVectorizer()
    vectorizer.fit(sentences_train)
    X_train = vectorizer.transform(sentences_train)
    X_test = vectorizer.transform(sentences_test)
    classifier =RandomForestClassifier(n_estimators = 100)
    classifier.fit(X_train, y_train)
    print_metrics(X_test, y_test)
#%%
#=====================================================================
# Use Keras deep models
#=====================================================================
from sklearn.metrics import confusion_matrix
from sklearn import metrics
from io import BytesIO #needed for plot
import seaborn as sns; sns.set()
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
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#======================================================================
# Create a Keras model
#======================================================================
input_dim = X_train.shape[1] # Number of features

model = Sequential()
model.add(layers.Dense(100, input_dim = input_dim, activation = 'relu'))
model.add(layers.Dense(50, activation = 'relu'))
model.add(layers.Dense(1, activation = 'sigmoid'))
#%%
#======================================================================
# Compile the model
#======================================================================
model.compile(loss = 'binary_crossentropy',
              optimizer = 'adam',
              metrics = ['accuracy'])
#======================================================================
# Train and validate the model
#======================================================================
history = model.fit(X_train, y_train,
                    epochs = 20,
                    verbose = True,
                    validation_split = 0.33,
                    batch_size = 10)
#%%
#======================================================================
# Evaluate the model
#======================================================================
loss, accuracy = model.evaluate(X_train, y_train, verbose = False)
print("Training Accuracy: {:.4f}".format(accuracy))
loss, accuracy = model.evaluate(X_test, y_test, verbose = False)
print("Testing Accuracy: {:.4f}".format(accuracy))
#%%
#======================================================================
# Plot the history
#======================================================================
#Plot the Model Accuracy and Loss for Training and Validation dataset
plot_history(history)
plot_model_accuracy_loss()
#%%
#Test the Model with testing data
y_pred_test = model.predict(X_test,)
# Round the test predictions
y_pred = np.round(y_pred_test)
#%%
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target_names = ['NO','YES' ]
#Print the Confusion Matrix
print_confusion_matrix(y_test, y_pred, target_names)
# Print The Perfromance Metrics
Performance_Metrics(model,y_test,y_pred)
#Print and Save the Confusion Matrix
print_confusion_matrix_and_save(y_test, y_pred)

#%%
tokenizer = Tokenizer(num_words = 5000)
tokenizer.fit_on_texts(sentences_train)

X_train = tokenizer.texts_to_sequences(sentences_train)
X_test = tokenizer.texts_to_sequences(sentences_test)

vocab_size = len(tokenizer.word_index) + 1 # Adding 1 because of reserved 
0 index
print(sentences_train[2])
print(X_train[2])

#%%
for word in ['the', 'all','fan']:
    print('{}: {}'.format(word, tokenizer.word_index[word]))

#%%
maxlen = 100

X_train = pad_sequences(X_train, padding = 'post', maxlen = maxlen)
X_test = pad_sequences(X_test, padding = 'post', maxlen = maxlen)

print(X_train[0, :])

#%%
embedding_dim = 50
#======================================================================
# Create a deep Keras model with embedding
#======================================================================
model = Sequential()
model.add(layers.Embedding(input_dim = vocab_size,
                           output_dim = embedding_dim,
                           input_length = maxlen))
model.add(layers.Flatten())
#model.add(layers.Dense(300, activation = 'relu'))
model.add(layers.Dense(100, activation = 'relu'))
model.add(layers.Dense(50, activation = 'relu'))
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model.add(layers.Dense(1, activation = 'sigmoid'))
#%%
#======================================================================
# Compile the model
#======================================================================
model.compile(loss = 'binary_crossentropy',
              optimizer = 'adam',
              metrics = ['accuracy'])
#======================================================================
# Train and validate the model
#======================================================================
#history = model.fit(X_train, y_train, validation_split = 0.33, nb_epoch 
= 50, batch_size = 25,verbose = 0)
history = model.fit(X_train, y_train,
                    epochs = 20,
                    verbose = True,
                    validation_split = 0.33,
                    batch_size = 10)
loss, accuracy = model.evaluate(X_train, y_train, verbose = False)
print("Training Accuracy: {:.4f}".format(accuracy))
loss, accuracy = model.evaluate(X_test, y_test, verbose = False)
print("Testing Accuracy: {:.4f}".format(accuracy))
#%%
#======================================================================
# Plot the history
#======================================================================
#Plot the Model Accuracy and Loss for Training and Validation dataset
plot_history(history)
plot_model_accuracy_loss()
#%%
#Test the Model with testing data
y_pred_test = model.predict(X_test,)
# Round the test predictions
y_pred = np.round(y_pred_test)
#%%
#Test the Model with testing data
y_pred_test = model.predict(X_test,)
# Round the test predictions
y_pred = np.round(y_pred_test)
#%%
target_names = ['NO','YES' ]
#Print the Confusion Matrix
print_confusion_matrix(y_test, y_pred, target_names)
# Print The Perfromance Metrics
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Performance_Metrics(model,y_test,y_pred)
#Print and Save the Confusion Matrix
print_confusion_matrix_and_save(y_test, y_pred)
#%%
embedding_dim = 50
#======================================================================
# Create a deep Keras model with embedding and pooling
#======================================================================
model = Sequential()
model.add(layers.Embedding(input_dim = vocab_size,
                           output_dim = embedding_dim,
                           input_length = maxlen))
model.add(layers.GlobalMaxPool1D())
model.add(layers.Dense(10, activation = 'relu'))
model.add(layers.Dense(1, activation = 'sigmoid'))
model.compile(optimizer = 'adam',
              loss = 'binary_crossentropy',
              metrics = ['accuracy'])
model.summary()
#%%
history = model.fit(X_train, y_train,
                    epochs = 20,
                    verbose = True,
#                    validation_data = (X_test, y_test),
                    validation_split = 0.33,
                    batch_size = 10)
loss, accuracy = model.evaluate(X_train, y_train, verbose = 1)
print("Training Accuracy: {:.4f}".format(accuracy))
loss, accuracy = model.evaluate(X_test, y_test, verbose = 1)
print("Testing Accuracy: {:.4f}".format(accuracy))
#%%
#======================================================================
# Plot the history
#======================================================================
#Plot the Model Accuracy and Loss for Training and Validation dataset
plot_history(history)
plot_model_accuracy_loss()
#%%
#Test the Model with testing data
y_pred_test = model.predict(X_test,)
# Round the test predictions
y_pred = np.round(y_pred_test)
#%%
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target_names = ['NO','YES' ]
#Print the Confusion Matrix
print_confusion_matrix(y_test, y_pred, target_names)
# Print The Perfromance Metrics
Performance_Metrics(model,y_test,y_pred)
#Print and Save the Confusion Matrix
print_confusion_matrix_and_save(y_test, y_pred)
#%%
embedding_dim = 100
#=====================================================================
# Use Keras convolutional neural networks (CNN) model with word 
embedding
#=====================================================================
model = Sequential()
model.add(layers.Embedding(vocab_size, embedding_dim, input_length = 
maxlen))
model.add(layers.Conv1D(128, 5, activation = 'relu'))
#model.add(layers.Conv1D(64, 5, activation = 'relu'))
model.add(layers.GlobalMaxPooling1D())
model.add(layers.Dense(32, activation = 'relu'))
#model.add(layers.Dense(32, activation = 'relu'))
model.add(layers.Dense(1, activation = 'sigmoid'))
model.compile(optimizer = 'adam',
              loss = 'binary_crossentropy',
              metrics = ['accuracy'])
model.summary()
#%%
history = model.fit(X_train, y_train,
                    epochs = 20,verbose = True,
#                    validation_data = (X_test, y_test),
                    validation_split = 0.33,batch_size = 20)
loss, accuracy = model.evaluate(X_train, y_train, verbose = 1)
print("Training Accuracy: {:.4f}".format(accuracy))
loss, accuracy = model.evaluate(X_test, y_test, verbose = 1)
print("Testing Accuracy: {:.4f}".format(accuracy))

#%%
#=====================================================================
# Plot the history
#=====================================================================
#Plot the Model Accuracy and Loss for Training and Validation dataset
plot_history(history)
plot_model_accuracy_loss()
#%%
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5.10 Summary

Machine learning has begun to be employed in our daily lives. The amount of data that 
grows day by day will be the key skill for researchers working in a data-driven industry. 
Data instances in machine learning include the number of features. Classification is one of 
the crucial tasks of machine learning and is utilized to position an unknown piece of data in 
a known group. In order to train or build a classifier, the training data set is utilized. It can 
greatly improve the quality of life by building an intelligent computer similar to the reliability 
of a human expert. If a piece of software is created to support the decision of the doctor, it 
will be easier to treat patients. Better weather forecasts will lead to less water shortages and 
increased food supply (Harrington, 2012). In the classification of various data as well as their 
different implementations, a wide range of machine learning algorithms and techniques are 
identified in this chapter. Presented separately at the end of each section, such examples in-
clude the complete solutions, which will help the reader become more familiar with machine 
learning techniques and principles. Some of them may also act as an entry point for academic 
work and research into new questions. Numerous machine learning algorithms are discussed 
and implemented, as well as their variants, which can be utilized directly to achieve effi-
cient solutions to real world learning problems. Detailed explanations and assessments of the 
presented algorithms can help with their implementation and adaptation to other learning 
scenarios.
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6
Regression examples

6.1 Introduction

The label space was a discrete set of classes in all the tasks considered for classification. In 
this chapter we will take into consideration the case of a real-valued target variable. A function 
estimator, also known as a regressor, is a mapping f X: R� → . The regression learning problem 
is to learn a function estimator from examples (xi , f (xi )). For instance, we would like to learn 
an estimator for the Dow Jones index or the FTSE 100 based on chosen economic indicators. 
While this may seem to be a natural and innocent generalization of discrete classification, 
it is not without its drawbacks. For one thing, we switched to one with infinite resolution 
from a relatively low-resolution target variable. Trying to match this accuracy in the function 
estimator will almost certainly lead to overfitting. Moreover, some of the target values in the 
examples are more likely because of the variations, which the model cannot capture. Hence 
it is quite logical to assume that the examples are noisy and that the estimator is supposed to 
capture only the general trend or function shape (Flach, 2012).

Regression is a process in which the difference between models of grouping and grading 
comes into play. The grouping model theory involves separating the instance space into seg-
ments and learning a local model in each segment as simply as possible. For example, the 
local model is a majority classifier in decision trees. In the same way, we might estimate a 
constant value in each leaf to obtain a regression tree. This would result in a piecewise con-
stant curve in a univariate problem. Such a grouping model is capable of exactly matching 
the given points, just as a sufficiently high-degree polynomial, and the same caveat applies to 
overfitting. A rule of thumb is that the number of parameters estimated from the data must 
be slightly lower than the number of data points in order to prevent overfitting (Flach, 2012).

We saw that models of classification can be assessed by applying a loss function to the 
margins, penalizing negative margins (misclassifications) and rewarding positive margins 
(correct classification). Regression models are assessed by using a loss function to the residu-
als f x f x�( ) ( )− . Unlike classification loss function, a regression loss function would usually be 
symmetrical around 0, even though it is possible that there are different weights for positive 
and negative residuals. The ordinary choice here is to take the squared residual as the loss 
function. This has the benefit of statistical consistency and the presumption that the observed 
function values are the true values contaminated with additive; normally distributed noise 
can also be justified. When we underestimate the number of parameters in the model, we 

f~:X→R

fx−f~x
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cannot reduce the loss to zero, irrespective of how much training data we have. On the other 
hand, the model will be more dependent on the training sample with a larger number of 
parameters, so small variations in the training sample will lead to a significantly different 
model. This is the so-called bias–variance dilemma: a low complexity model suffers less from 
variability because of the random variations in the training data, but it might lead to a sys-
tematic bias. On the contrary, a high-complexity model eliminates such bias but can suffer 
nonsystematic errors because of the variance (Flach, 2012).

6.2 Stock market price index return forecasting

The efficient market hypothesis claims that current stock values at that moment reflect all 
available information on the market; however, on the basis of that information, the public 
cannot make successful trades. Others assume that the markets are ineffective, partly because 
of the psychological factors of the different market participants together with the market’s 
inability to respond instantaneously to newly released information. Therefore financial vari-
ables such as stock prices, stock market index values, and financial derivative prices are con-
sidered predictable. This allows one to obtain a return above the market average by analyzing 
information provided to the general public with findings that are better than random (Zhong 
& Enke, 2017).

Stock price prediction is crucial in the financial world. In the world of big data, accurate 
and reliable stock market forecasts are becoming increasingly important. When trying to make 
precise forecasts, there are too many factors that go into the stock market fluctuations. Machine 
learning is particularly helpful in this way, as it has the ability to use large amounts of data and 
learn from errors. One of the most interesting issues in the financial world is the estimation 
of market index movement of prices. In particular, the statistical method does not provide an 
automatic solution, as it involves variations and changes to reach regularity and stationarity 
in the target value at each step. More efficient methods are required to mitigate the limitations 
of traditional statistical approaches in order to follow the market’s dynamic and nonstationary 
character. Financial professionals have come up with several different ways of making sound 
trading decisions, such as machine learning techniques (Şenyurt & Subaşı, 2015).

Stock markets are influenced by several extremely correlated factors. These factors include: 
(1) economic variables, such as exchange rates, commodity prices, interest rates, monetary 
growth rates, and general economic conditions; (2) industry specific variables, such as growth 
rates of industrial production and consumer prices; (3) company specific variables, such as 
changes in company’s policies, income statements, and dividend yields; (4) psychological 
variables of investors, such as investors’ expectations and institutional investors’ choices; 
and (5) political variables, such as the occurrence and release of important political events. 
Each one of these factors interacts in a very complex manner. Moreover, the stock market 
is naturally a nonlinear, dynamic, nonparametric, nonstationary, noisy, and chaotic system. 
However investors are hoping to make substantial profit because of the potential market 
inefficiencies by developing trading strategies based on increasingly accurate forecasts of fi-
nancial variables. Hence analyzing the movements of the stock market is challenging and 
attractive for investors and researchers. For example, financial time series forecasting may be 
classified as either univariate or multivariate analysis of the input variables. For univariate 
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analysis, only the financial time series itself is considered as the input, whereas in multi-
variate analysis the input variables may be a lagged time series or another form of informa-
tion, such as a technical indicator, fundamental indicator, or intermarket indicator. Therefore 
statistical and machine learning techniques have been utilized to analyze the stock markets 
(Zhong & Enke, 2017).

In today’s smart finance world, the market price forecasting profession and the associated 
decision-supporting framework plays a crucial role. Scientists have been conducting detailed 
research for a long time to understand the underlying stock market mechanism and to fore-
cast the outcome of the market price accurately. Because money business is all about earning 
high financial profits, each player on the market is pursuing some intelligent computational 
model, which can consistently pick winners and write off losers. Daily market values are 
a sequence of numbers storing data over time that computational models need to process. 
While the use of artificial intelligence (AI) in finance is not novel, problem-solving has been 
the biggest boost ever in AI—including new ideas and methods to develop better techniques, 
such as deep learning that focuses on issues rather than equations. Numerous studies have 
presented the effectiveness of artificial intelligence techniques over traditional models such 
as ARMA, ARIMA, and linear regression in forecasting problems, which show better predic-
tion performance of artificial intelligence–based schemes (Şenyurt & Subaşı, 2015) Table 6.1

TABLE 6.1 Technical indicators for stock market (Şenyurt & Subaşı, 2015)

Name of indicator Formula

*Accumulation/distribution 
oscillator Close Low High Close

High Low
Period s Volume

( )( ) ( )
( )

− − −

−
× ′

*Chaikin oscillator (3 day EMA of ADL)-(10 day EMA of ADL)

Money flow multiplier
Close Low High Close

High Low

( )( ) ( )
( )

− − −

−

Money flow volume money flow multiplier × volume for the period

ADL previous ADL +current period’s money flow volume

*Moving average convergence 
divergence

MACD line = (12 day EMA-26 day EMA)

(MACD) Signal line = 9 day EMA of MACD line

*Stochastic oscillator
K

C L

H L
% 100

14

14 14
( )

( )= ×
−

−













C = the most recent closing price
L14 = the low of the 14 previous trading sessions
H14 = the highest price traded during the same 14 day period
%D = 3- period moving average of %K

Close−Low−High−CloseHigh−Low×Per
iod′sVolume

Close−Low−High−CloseHigh−Low

%K=100×C−L14H14−L14

(Continued)
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Name of indicator Formula

*Acceleration difference between two momentums separated by some
numbers of periods

*Momentum
close J

close J N
100

( )
( )−









 ×













J = current interval
N = the gap between the intervals that are being compared

*Chaikin volatility
EMA High Low EMA High Low days ago

EMA High Low days ago

10

10
100

( )( ) ( )
( )

− − −

−













×
















*Fast stochastics

Fast %K Close Low

High Low
100

( )
( )

−
−













×

Fast %D simple moving average of Fast % K (3 periods)

*Stochastic slow

Slow %K equal to Fast % D (3 period moving average of Fast

Slow %D a moving average of slow % K (3 periods)

*William’s %R Highest high Close

Highest high Lowest low
100

( )
( )

−
−













×

*Negative volume index (NVI)
Close today Close yesterday

Close yesterday
NVI yesterday

( )
( )

  −  
 















×  

*Positive volume index (PVI)
Close today Close yesterday

Close yesterday
PVI yesterday

( )
( )

  −  
 















×  

*Relative strength index (RSI)

RS
RS

average of x days up closes
average of x days down closes

100
100

1
,

*
*−

+








 = ′

′

*Accumulation/distribution 
line (ADL)

previous ADL +current period’s money flow volume

Money flow multiplier
Close Low High Close

High Low

( )( ) ( )
( )

− − −

−

Money flow volume money flow multiplies × volume for the period

*Bollinger band

Middle band 20 day simple moving average (SMA)

closeJcloseJ−N×100

EMAHigh−Low−EMAHigh−Low10days
agoEMAHigh−Low10daysago×100

Close−LowHigh−Low×100

Highesthigh−CloseHighesthigh−Lowestl
ow×100

Closetoday−CloseyesterdayCloseyesterd
ay×NVIyesterday

Closetoday−CloseyesterdayCloseyesterd
ay×PVIyesterday

100−1001+RS*,RS*=averageofxdays′upclo
sesaverageofxdays′downcloses

Close−Low−High−CloseHigh−Low

TABLE 6.1 Technical indicators for stock market (Şenyurt & Subaşı, 2015) (Cont.)
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Example 6.1
The following Python code is used to forecast stock market price index return employing different 
classifiers with separate training and testing datasets. Statistical quality measures, including mean-
absolute error (MAE), mean squared error (MSE), and correlation coefficient (R), are calculated. 
Scatter plot, real, and predicted values are also plotted.

Dataset information: NASDAQ, DOWJONES, S&P, RUSSEL, and NYSE composite indexes rep-
resent different stock markets worldwide. Datasets can be downloaded from Yahoo finance website 
using the following command:
yahoo_data = pdr.data.get_data_yahoo(’^IXIC’, start_date, stop_date)

“ “ “

TABLE 6.1 Technical indicators for stock market (Şenyurt & Subaşı, 2015) (Cont.)

Name of indicator Formula

Upper band 20 day SMA + (20 day standard deviantionor price × 2)

Lower band 20 day SMA – (20 days tandard deviationor price × 2)

*Highest high generates a vector of highest high values for the past 14 period

*Lowest low generates a vector of lowest low values for the past 14 periods

*Median price MP = (High + Low)/2

*On-balance volume If close for the period is higher than the previous close
OBV = OBV [previous period]+ Volume [current period]

If close for the period is lower than the previous close OBV = OBV [previous 
period]+ Volume [current period]

If close for the period is equal to the previous close OBV = OBV [previous period]

*Price rate of change (Closing price(today) – Closing price(n periods ago)) / Closing price(n periods ago)

*Price-volume trend

Closing price percentage change (Closing price(today) – Closing price(n periods ago)) / Closing price(n periods ago)

Price-volume trend Percentage change* Volume(today) + PVT(yesterday)

*Typical price (High + Low + Close)/3

*Volume rate of change (Volume(today)-Volume(n periods ago)) /Volume(n periods ago)*100

*Weighted close ((Close*2) +High +Low)/4

*William’s accumulation/
distribution

True range high (TRH) Yesterday’s close or today’s high, whichever is greater

True range low (TRL) Yesterday’s close or today’s low, whichever is less

Today’s A/D Today’s close – TRL (If today’s close is greater than yesterday’s close)
Today’s close-TRH (If today’s close is less than yesterday’s close)
0 (If today’s close is equal to yesterday’s close)

*Williams’s A/D Today’s A/D + Yesterday’s Williams’s A/D
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Created on Fri Dec 13 14:00:48 2019
@author: subasi
This example uses regression model to predict stock prices
For this example, Technical Indicators are also calculated on stock data.
Some part of this example is taken from
 https://www.kaggle.com/kratisaxena/stock-market-technical-indicators-
visualization
Please refer the above kernel for visualization part.“ “ “
#======================================================================
# Stock market analysis
#======================================================================
#%%
# Import Modules
import pandas as pd
import numpy as np
from datetime import datetime
import statsmodels.api as sm
import copy
import matplotlib.pyplot as plt
from IPython.display import Image
from matplotlib.pylab import rcParams
from statsmodels.tsa.stattools import adfuller
from statsmodels.tsa.stattools import acf, pacf
from sklearn.linear_model import LinearRegression
from statsmodels.tsa.arima_model import ARMA, ARIMA
from sklearn.metrics import explained_variance_score
from numpy import array
from pandas import read_csv
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.metrics import mean_absolute_error
import matplotlib.pyplot as plt
#You should install mpl_finance module before using
#pip install mpl_finance
from mpl_finance import candlestick_ohlc #parse_yahoo_historical_ochl
rcParams[’figure.figsize’] = 15, 5
#You should install pandas_datareader module before using
#!pip install pandas_datareader
import pandas_datareader as pdr
#=======================================================================
# Define utility functions
#=======================================================================
def plot_model_loss(history):
plt.figure(figsize = (6, 4))
 plt.plot(history.history[’loss’], ’r--’, label = ’Loss of training 
data’)
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 plt.plot(history.history[’val_loss’], ’b--’, label = ’Loss of 
validation data’)
plt.title(’Model Error’)
plt.ylabel(’Loss’)
plt.xlabel(’Training Epoch’)
plt.ylim(0)
plt.legend()
plt.show()

def print_performance_metrics(ytest, ypred):
# The mean absolute error
print(“MAE = %5.3f” % mean_absolute_error(ytest, ypred))
# Explained variance score: 1 is perfect prediction
print(“R^2 = %0.5f” % r2_score(ytest, ypred))
# The mean squared error
print(“MSE = %5.3f” % mean_squared_error(ytest, ypred))

def plot_scatter(ytest, ypred):
fig, ax = plt.subplots()
ax.scatter(ytest, ypred, edgecolors = (0, 0, 0))
ax.text(10, ytest.max()-10, r’$R^2$ = %.2f, MAE = %.2f’ % (

r2_score(ytest, ypred), mean_absolute_error(ytest, ypred)))
 ax.plot([ytest.min(), ytest.max()], [ytest.min(), ytest.max()], ’k--’, 
lw = 4)
ax.set_xlabel(’Measured’)
ax.set_ylabel(’Predicted’)
plt.show()

def plot_real_predicted(ytest, ypred):
plt.plot(ytest[1:200], color = ’red’, label = ’Real data’)
plt.plot(ypred[1:200], color = ’blue’, label = ’Predicted data’)
plt.title(’Prediction’)
plt.legend()
plt.show()

#======================================================================
# Download data from Yahoo Finance and save it as a csv file
#======================================================================
start_date = pd.to_datetime(’2009-12-01’)
mid_date = pd.to_datetime(’2014-12-01’)
stop_date = pd.to_datetime(’2019-12-01’)

#NASDAQ
yahoo_data = pdr.data.get_data_yahoo(’^IXIC’, start_date, stop_date)



398 6. Regression examples

 

yahoo_data.to_csv(’NASDAQ.csv’)
#DOW JONES
yahoo_data = pdr.data.get_data_yahoo(’^DJI’, start_date, stop_date)
yahoo_data.to_csv(’DOWJONES.csv’)
#S&P 500 (^GSPC)
yahoo_data = pdr.data.get_data_yahoo(’^GSPC’, start_date, stop_date)
yahoo_data.to_csv(’S&P.csv’)
#Russell 2000 (^RUT)
yahoo_data = pdr.data.get_data_yahoo(’^RUT’, start_date, stop_date)
yahoo_data.to_csv(’RUSSEL.csv’)
#NYSE
yahoo_data = pdr.data.get_data_yahoo(’^NYA’, start_date, stop_date)
yahoo_data.to_csv(’NYSE.csv’)
#======================================================================
# Add various technical indicators in the data frame
#======================================================================
“”There are four types of technical indicators. Let us take 4 sets 
of indicators and test which performs better in prediction of stock 
markets. These 4 sets of technical indicators are:
RSI, Volume (plain), Bollinger Bands, Aroon, Price Volume Trend, 
acceleration bands
Stochastic, Chaikin Money Flow, Parabolic SAR, Rate of Change, Volume 
weighted average Price, momentum
Commodity Channel Index, On Balance Volume, Keltner Channels, Triple 
Exponential Moving Average, Normalized Averager True Range, directional 
movement indicators
MACD, Money flowindex, Ichimoku, William %R, Volume MINMAX, adaptive  
moving average“”
# Create copy of data to add columns of different sets of technical 
indicators
dff = pd.read_csv(“DOWJONES.csv”)
techind = copy.deepcopy(dff)
#%%
#======================================================================
# Calculate the relative strength index (RSI)
#======================================================================
# Relative Strength Index
# Avg(PriceUp)/(Avg(PriceUP) + Avg(PriceDown)*100
# Where: PriceUp(t) = 1*(Price(t)-Price(t-1)){Price(t)- Price(t-1) > 0};
# PriceDown(t) = -1*(Price(t)-Price(t-1)){Price(t)- Price(t-1) < 0};
def rsi(values):
up = values[values > 0].mean()
down = -1*values[values < 0].mean()
return 100 * up / (up + down)
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# Add Momentum_1D column for all 15 stocks.
# Momentum_1D = P(t) - P(t-1)
techind[’Momentum_1D’] = (techind[’Close’]-techind[’Close’].shift(1)).
fillna(0)
techind[’RSI_14D’] = techind[’Momentum_1D’].rolling(center = False, 
window = 14).apply(rsi).fillna(0)
#======================================================================
# Calculate the volume (plain)
#======================================================================
techind[’Volume_plain’] = techind[’Volume’].fillna(0)
#======================================================================
# Calculate the Bollinger bands
#======================================================================
def bbands(price, length = 30, numsd = 2):

“ “ “ returns average, upper band, and lower band“ “ “
#ave = pd.stats.moments.rolling_mean(price,length)
ave = price.rolling(window = length, center = False).mean()
#sd = pd.stats.moments.rolling_std(price,length)
sd = price.rolling(window = length, center = False).std()
upband = ave + (sd*numsd)
dnband = ave - (sd*numsd)
return np.round(ave,3), np.round(upband,3), np.round(dnband,3)

techind[’BB_Middle_Band’], techind[’BB_Upper_Band’], techind[’BB_Lower_
Band’] = bbands(techind[’Close’], length = 20, numsd = 1)
techind[’BB_Middle_Band’] = techind[’BB_Middle_Band’].fillna(0)
techind[’BB_Upper_Band’] = techind[’BB_Upper_Band’].fillna(0)
techind[’BB_Lower_Band’] = techind[’BB_Lower_Band’].fillna(0)
#======================================================================
# Calculate the Aroon oscillator
#======================================================================
def aroon(df, tf = 25):

aroonup = []
aroondown = []
x = tf
while x< len(df[’Date’]):
aroon_up = ((df[’High’][x-tf:x].tolist().index(max(df[’High’]
[x-tf:x])))/float(tf))*100
aroon_down = ((df[’Low’][x-tf:x].tolist().index(min(df[’Low’]
[x-tf:x])))/float(tf))*100
aroonup.append(aroon_up)
aroondown.append(aroon_down)
x + = 1
return aroonup, aroondown
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listofzeros = [0] * 25
up, down = aroon(techind)
aroon_list = [x - y for x, y in zip(up,down)]
if len(aroon_list) = =0:

aroon_list = [0] * techind.shape[0]
techind[’Aroon_Oscillator’] = aroon_list

else:
techind[’Aroon_Oscillator’] = listofzeros + aroon_list

#======================================================================
# Calculate the price volume trend
#======================================================================
#PVT = [((CurrentClose - PreviousClose) / PreviousClose) x  
Volume] + PreviousPVT
techind[“PVT”] = (techind[’Momentum_1D’]/ techind[’Close’].
shift(1))*techind[’Volume’]
techind[“PVT”] = techind[“PVT”]-techind[“PVT”].shift(1)
techind[“PVT”] = techind[“PVT”].fillna(0)
#======================================================================
# Calculate the acceleration bands
#======================================================================
def abands(df):

#df[’AB_Middle_Band’] = pd.rolling_mean(df[’Close’], 20)
df[’AB_Middle_Band’] = df[’Close’].rolling(window = 20, center = False).
mean()
# High * ( 1 + 4 * (High - Low) / (High + Low))
df[’aupband’] = df[’High’] * (1 + 4 * (df[’High’]-df[’Low’])/
(df[’High’] + df[’Low’]))
df[’AB_Upper_Band’] = df[’aupband’].rolling(window = 20, center = False).
mean()
# Low *(1 - 4 * (High - Low)/ (High + Low))
df[’adownband’] = df[’Low’] * (1 - 4 * (df[’High’]-df[’Low’])/
(df[’High’] + df[’Low’]))
df[’AB_Lower_Band’] = df[’adownband’].rolling(window = 20,  
center = False).mean()

abands(techind)
techind = techind.fillna(0)
#=====================================================================
# Drop unwanted columns
#=====================================================================
columns2Drop = [’Momentum_1D’, ’aupband’, ’adownband’]
techind = techind.drop(labels = columns2Drop, axis = 1)
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#=====================================================================
# Calculate the stochastic oscillator (%K and %D)
#=====================================================================
def STOK(df, n):

df[’STOK’] = ((df[’Close’] - df[’Low’].rolling(window = n,  
center = False).mean()) / (df[’High’].rolling(window = n,  
center = False).max() - df[’Low’].rolling(window = n, center = False).
min())) * 100
df[’STOD’] = df[’STOK’].rolling(window = 3, center = False).mean()

STOK(techind, 4)
techind = techind.fillna(0)
#=====================================================================
# Calculate the Chaikin money flow
#=====================================================================
def CMFlow(df, tf):

CHMF = []
MFMs = []
MFVs = []
x = tf

while x < len(df[’Date’]):
PeriodVolume = 0
volRange = df[’Volume’][x-tf:x]
for eachVol in volRange:
PeriodVolume+=eachVol

MFM = ((df[’Close’][x] - df[’Low’][x]) - (df[’High’][x] - df[’Close’]
[x])) / (df[’High’][x] - df[’Low’][x])
MFV = MFM*PeriodVolume

MFMs.append(MFM)
MFVs.append(MFV)
x + = 1

y = tf
while y < len(MFVs):
PeriodVolume = 0
volRange = df[’Volume’][x-tf:x]
for eachVol in volRange:
PeriodVolume+=eachVol
consider = MFVs[y-tf:y]
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tfsMFV = 0

for eachMFV in consider:
tfsMFV+=eachMFV

tfsCMF = tfsMFV/PeriodVolume
CHMF.append(tfsCMF)
y + = 1
return CHMF

listofzeros = [0] * 40
CHMF = CMFlow(techind, 20)
if len(CHMF) = =0:

CHMF = [0] * techind.shape[0]
techind[’Chaikin_MF’] = CHMF

else:
techind[’Chaikin_MF’] = listofzeros + CHMF

#=====================================================================
# Calculate the parabolic SAR
#=====================================================================
def psar(df, iaf = 0.02, maxaf = 0.2):

length = len(df)
dates = (df[’Date’])
high = (df[’High’])
low = (df[’Low’])
close = (df[’Close’])
psar = df[’Close’][0:len(df[’Close’])]
psarbull = [None] * length
psarbear = [None] * length
bull = True
af = iaf
ep = df[’Low’][0]
hp = df[’High’][0]
lp = df[’Low’][0]
for i in range(2,length):
if bull:
psar[i] = psar[i - 1] + af * (hp - psar[i - 1])
else:
psar[i] = psar[i - 1] + af * (lp - psar[i - 1])
reverse = False
if bull:
if df[’Low’][i] < psar[i]:
bull = False
reverse = True
psar[i] = hp
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lp = df[’Low’][i]
af = iaf
else:
if df[’High’][i] > psar[i]:
bull = True
reverse = True
psar[i] = lp
hp = df[’High’][i]
af = iaf
if not reverse:
if bull:
if df[’High’][i] > hp:
hp = df[’High’][i]
af = min(af + iaf, maxaf)
if df[’Low’][i - 1] < psar[i]:
psar[i] = df[’Low’][i - 1]
if df[’Low’][i - 2] < psar[i]:
psar[i] = df[’Low’][i - 2]
else:
if df[’Low’][i] < lp:
lp = df[’Low’][i]
af = min(af + iaf, maxaf)
if df[’High’][i - 1] > psar[i]:
psar[i] = df[’High’][i - 1]
if df[’High’][i - 2] > psar[i]:
psar[i] = df[’High’][i - 2]
if bull:
psarbull[i] = psar[i]
else:
psarbear[i] = psar[i]
#return {“dates”:dates, “high”:high, “low”:low, “close”:close, 
“psar”:psar, “psarbear”:psarbear, “psarbull”:psarbull}
#return psar, psarbear, psarbull
df[’psar’] = psar
#df[’psarbear’] = psarbear
#df[’psarbull’] = psarbull

psar(techind)
#=====================================================================
# Calculate the price rate of change
#=====================================================================
# ROC = [(Close - Close n periods ago) / (Close n periods ago)] * 100
techind[’ROC’] = ((techind[’Close’] - techind[’Close’].shift(12))/
(techind[’Close’].shift(12)))*100
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techind = techind.fillna(0)
#=====================================================================
# Calculate the volume weighted average price
#=====================================================================
techind[’VWAP’] = np.cumsum(techind[’Volume’] * (techind[’High’] + techind
[’Low’])/2) / np.cumsum(techind[’Volume’])
techind = techind.fillna(0)
techind.tail()
#=====================================================================
# Calculate the momentum
#=====================================================================
techind[’Momentum’] = techind[’Close’] - techind[’Close’].shift(4)
techind = techind.fillna(0)
techind.tail()
#=====================================================================
# Calculate the commodity channel index
#=====================================================================
def CCI(df, n, constant):

TP = (df[’High’] + df[’Low’] + df[’Close’]) / 3
CCI = pd.Series((TP - TP.rolling(window = n, center = False).mean()) 
/ (constant * TP.rolling(window = n, center = False).std())) #, 
name = ’CCI_’ + str(n))
return CCI

techind[’CCI’] = CCI(techind, 20, 0.015)
techind = techind.fillna(0)
#=====================================================================
# Calculate on balance volume
#=====================================================================
“ “ “If the closing price is above the prior close price then: Current 
OBV = Previous OBV + Current Volume
If the closing price is below the prior close price then: Current 
OBV = Previous OBV - Current Volume
If the closing prices equals the prior close price then: Current 
OBV = Previous OBV (no change)“ “ “
new = (techind[’Volume’] * (∼techind[’Close’].diff().le(0) * 2 -1)).cum-
sum()
techind[’OBV’] = new
#%%
#=====================================================================
# Calcualte the Keltner channels
#=====================================================================
def KELCH(df, n):

KelChM = pd.Series(((df[’High’] + df[’Low’] + df[’Close’]) / 
3).rolling(window=n, center = False).mean(), name = ’KelChM_’ + str(n))
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KelChU = pd.Series(((4 * df[’High’] - 2 * df[’Low’] + df[’Close’]) / 
3).rolling(window=n, center = False).mean(), name = ’KelChU_’ + str(n))
KelChD = pd.Series(((-2 * df[’High’] + 4 * df[’Low’] + df[’Close’]) / 
3).rolling(window=n, center = False).mean(), name = ’KelChD_’ + str(n))
return KelChM, KelChD, KelChU

KelchM, KelchD, KelchU = KELCH(techind, 14)
techind[’Kelch_Upper’] = KelchU
techind[’Kelch_Middle’] = KelchM
techind[’Kelch_Down’] = KelchD
techind = techind.fillna(0)
#=====================================================================
# Calculate the triple exponential moving average
#=====================================================================
“ “ “Triple Exponential MA Formula:
T-EMA = (3EMA – 3EMA(EMA)) + EMA(EMA(EMA))
Where:
EMA = EMA(1) + α* (Close – EMA(1))
α = 2 / (N + 1)
N = The smoothing period.“ “ “
techind[’EMA’] = techind[’Close’].ewm(span = 3,min_periods = 0,ad-
just = True,ignore_na = False).mean()
techind = techind.fillna(0)
techind[’TEMA’] = (3 * techind[’EMA’] - 3 * techind[’EMA’] * 
techind[’EMA’]) + (techind[’EMA’]*techind[’EMA’]*techind[’EMA’])
#=====================================================================
# Calculation of normalized average true range¶
#=====================================================================
“ “ “True Range = Highest of (High - low, abs(High - previous close), 
abs(low - previous close))
Average True Range = 14 day MA of True Range
Normalized Average True Range = ATR / Close * 100“ “ “
techind[’HL’] = techind[’High’] - techind[’Low’]
techind[’absHC’] = abs(techind[’High’] - techind[’Close’].shift(1))
techind[’absLC’] = abs(techind[’Low’] - techind[’Close’].shift(1))
techind[’TR’] = techind[[’HL’,’absHC’,’absLC’]].max(axis = 1)
techind[’ATR’] = techind[’TR’].rolling(window = 14).mean()
techind[’NATR’] = (techind[’ATR’] / techind[’Close’]) *100
techind = techind.fillna(0)
#=====================================================================
# Calculate the average directional movement index (ADX)
#=====================================================================
“ “ “Calculating the DMI can actually be broken down into two parts. 
First, calculating the+DI and -DI, and second, calculating the ADX.
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To calculate the+DI and -DI you need to find the+DM and -DM (Directional 
Movement).+DM and -DM are calculated using the High, Low, and Close for 
each period. You can then calculate the following:
Current High - Previous High = UpMove Previous Low - Current  
Low = DownMove
If UpMove > DownMove and UpMove > 0, then+DM = UpMove, else+DM = 0 If  
DownMove > Upmove and Downmove > 0, then -DM = DownMove, else -DM = 0
Once you have the current+DM and -DM calculated, the+DM and -DM lines 
can be calculated and plotted based on the number of user defined  
periods.
+DI = 100 times Exponential Moving Average of (+DM / Average True Range) 
-DI = 100 times Exponential Moving Average of (-DM / Average True Range)
Now that - + DX and -DX have been calculated, the last step is  
calculating the ADX.
ADX = 100 times the Exponential Moving Average of the Absolute Value of 
(+DI - -DI) / (+DI + -DI)“ “ “
def DMI(df, period):

df[’UpMove’] = df[’High’] - df[’High’].shift(1)
df[’DownMove’] = df[’Low’].shift(1) - df[’Low’]
df[’Zero’] = 0

df[’PlusDM’] = np.where((df[’UpMove’] > df[’DownMove’]) & 
(df[’UpMove’] > df[’Zero’]), df[’UpMove’], 0)
df[’MinusDM’] = np.where((df[’UpMove’] < df[’DownMove’]) & 
(df[’DownMove’] > df[’Zero’]), df[’DownMove’], 0)

df[’plusDI’] = 100 * (df[’PlusDM’]/df[’ATR’]).ewm(span = period,min_
periods = 0,adjust = True,ignore_na = False).mean()
df[’minusDI’] = 100 * (df[’MinusDM’]/df[’ATR’]).ewm(span = period,min_
periods = 0,adjust = True,ignore_na = False).mean()

df[’ADX’] = 100 * (abs((df[’plusDI’] - df[’minusDI’])/
(df[’plusDI’] + df[’minusDI’]))).ewm(span = period,min_
periods = 0,adjust = True,ignore_na = False).mean()

DMI(techind, 14)
techind = techind.fillna(0)
#=====================================================================
# Drop unwanted columns
#=====================================================================
columns2Drop = [’UpMove’, ’DownMove’, ’ATR’, ’PlusDM’, ’MinusDM’, ’Zero’, 
’EMA’, ’HL’, ’absHC’, ’absLC’, ’TR’]
techind = techind.drop(labels = columns2Drop, axis = 1)
#=====================================================================
# Calculate the MACD
#=====================================================================
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#MACD: (12-day EMA - 26-day EMA)
techind[’26_ema’] = techind[’Close’].ewm(span = 26,min_periods = 0,ad-
just = True,ignore_na = False).mean()
techind[’12_ema’] = techind[’Close’].ewm(span = 12,min_periods = 0,ad-
just = True,ignore_na = False).mean()
techind[’MACD’] = techind[’12_ema’] - techind[’26_ema’]
techind = techind.fillna(0)
#=====================================================================
# Calculate the money flow index
#=====================================================================
“ “ “Typical Price = (High + Low + Close)/3
Raw Money Flow = Typical Price x Volume
The money flow is divided into positive and negative money flow.
Positive money flow is calculated by adding the money flow of all the days 
where the typical price is higher than the previous day’s typical price.
Negative money flow is calculated by adding the money flow of all the days 
where the typical price is lower than the previous day’s typical price.
If typical price is unchanged then that day is discarded.
Money Flow Ratio = (14-period Positive Money Flow)/(14-period Negative 
Money Flow)
Money Flow Index = 100 - 100/(1 + Money Flow Ratio)“ “ “
def MFI(df):

# typical price
df[’tp’] = (df[’High’] + df[’Low’] + df[’Close’])/3
#raw money flow
df[’rmf’] = df[’tp’] * df[’Volume’]
# positive and negative money flow
df[’pmf’] = np.where(df[’tp’] > df[’tp’].shift(1), df[’tp’], 0)
df[’nmf’] = np.where(df[’tp’] < df[’tp’].shift(1), df[’tp’], 0)
# money flow ratio
df[’mfr’] = df[’pmf’].rolling(window = 14,center = False).sum()/
df[’nmf’].rolling(window = 14,center = False).sum()
df[’Money_Flow_Index’] = 100 - 100 / (1 + df[’mfr’])

MFI(techind)
techind = techind.fillna(0)
#=====================================================================
# Calculate the Ichimoku cloud
#=====================================================================
“ “ “Turning Line = ( Highest High + Lowest Low ) / 2, for the past 9 days
Standard Line = ( Highest High + Lowest Low ) / 2, for the past 26 days
Leading Span 1 = ( Standard Line + Turning Line ) / 2, plotted 26 days 
ahead of today
Leading Span 2 = ( Highest High + Lowest Low ) / 2, for the past 52 days, 
plotted 26 days ahead of today



408 6. Regression examples

 

Cloud = Shaded Area between Span 1 and Span 2“ “ “
def ichimoku(df):

# Turning Line
period9_high = df[’High’].rolling(window = 9,center = False).max()
period9_low = df[’Low’].rolling(window = 9,center = False).min()
df[’turning_line’] = (period9_high + period9_low) / 2

# Standard Line
period26_high = df[’High’].rolling(window = 26,center = False).max()
period26_low = df[’Low’].rolling(window = 26,center = False).min()
df[’standard_line’] = (period26_high + period26_low) / 2

# Leading Span 1
df[’ichimoku_span1’] = ((df[’turning_line’] + df[’standard_line’]) / 
2).shift(26)

# Leading Span 2
period52_high = df[’High’].rolling(window = 52,center = False).max()
period52_low = df[’Low’].rolling(window = 52,center = False).min()
df[’ichimoku_span2’] = ((period52_high + period52_low) / 2).shift(26)

# The most current closing price plotted 22 time periods behind 
(optional)
df[’chikou_span’] = df[’Close’].shift(-22) # 22 according to 
investopedia

ichimoku(techind)
techind = techind.fillna(0)
#=====================================================================
# Calculate the William %R
#=====================================================================
“ “ “%R = -100 * ( ( Highest High - Close) / ( Highest High - Lowest Low 
) )“ “ “
def WillR(df):

highest_high = df[’High’].rolling(window = 14,center = False).max()
lowest_low = df[’Low’].rolling(window = 14,center = False).min()
df[’WillR’] = (-100) * ((highest_high - df[’Close’]) / (highest_high - 
lowest_low))

WillR(techind)
techind = techind.fillna(0)
#=====================================================================
# Calculate the MINMAX
#=====================================================================
def MINMAX(df):

df[’MIN_Volume’] = df[’Volume’].rolling(window = 14,center = False).min()
df[’MAX_Volume’] = df[’Volume’].rolling(window = 14,center = False).max()
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MINMAX(techind)
techind = techind.fillna(0)
#=====================================================================
# Calculate the adaptive moving average
#=====================================================================
def KAMA(price, n = 10, pow1 = 2, pow2 = 30):

“ “ “ kama indicator “ “ “
“ “ “ accepts pandas dataframe of prices “ “ “
absDiffx = abs(price - price.shift(1) )
ER_num = abs( price - price.shift(n) )
ER_den = absDiffx.rolling(window = n,center = False).sum()
ER = ER_num / ER_den
sc = ( ER*(2.0/(pow1 + 1)-2.0/(pow2 + 1.0)) + 2/(pow2 + 1.0) ) ** 2.0
answer = np.zeros(sc.size)
N = len(answer)
first_value = True

for i in range(N):
if sc[i] !=sc[i]:
answer[i] = np.nan
else:
if first_value:
answer[i] = price[i]
first_value = False
else:
answer[i] = answer[i-1] + sc[i] * (price[i] - answer[i-1])
return answer

techind[’KAMA’] = KAMA(techind[’Close’])
techind = techind.fillna(0)
#=====================================================================
# Drop unwanted columns
#=====================================================================
columns2Drop = [’26_ema’, ’12_ema’,’tp’,’rmf’,’pmf’,’nmf’,’mfr’]
techind = techind.drop(labels = columns2Drop, axis = 1)

techind.index = techind[’Date’]
techind = techind.drop(labels = [’Date’], axis = 1)
#save Save dataset as a file
techind.to_csv(’TechIndout.csv’)
#%%
# = =====================================================
# Regression model
# = =====================================================
# importing necessary libraries
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import numpy as np
import matplotlib
import matplotlib.pyplot as plt
from distutils.version import LooseVersion
from sklearn.model_selection import train_test_split
from sklearn.metrics import median_absolute_error, r2_score
from sklearn.metrics import mean_absolute_error, mean_squared_error

# Create the dataset
a = np.array(techind)
#Skip first 50 rows as they contain zeros
X = a[50:2400,8:43 ]
#y = a[50:2400,4 ]
y = a[51:2401,4 ] #To forecast one day ahead
X_train, X_test, y_train, y_test = train_test_split(X, y, random_
state = 1)
#######################################################################
#%%
from sklearn.datasets import make_regression
from sklearn.model_selection import train_test_split
from sklearn.compose import TransformedTargetRegressor
from sklearn.metrics import median_absolute_error, r2_score
from sklearn.ensemble.forest import RandomForestRegressor
from sklearn.preprocessing import QuantileTransformer, quantile_transform
#=====================================================================
# Create random forest regressor model
#=====================================================================
regr = RandomForestRegressor(n_estimators = 100)
#=====================================================================
# Train the model
#=====================================================================
regr.fit(X_train, y_train)
#=====================================================================
# Predict unseen data with the model
#=====================================================================
y_pred = regr.predict(X_test)
#=====================================================================
# Evaluate the model and print performance metrics
#=====================================================================
print_performance_metrics(y_test,y_pred)
#%%
#=====================================================================
# Plot scatter
#=====================================================================
plot_scatter(y_test,y_pred)
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#%%
#=====================================================================
# Plot real and predicted outputs
#=====================================================================
plot_real_predicted(y_test,y_pred)
#%%
#=====================================================================
# Create linear regression model
#=====================================================================
from sklearn import linear_model
# Create linear regression object
regr = linear_model.LinearRegression()
# Train the model using the training sets
regr.fit(X_train, y_train)
# Make predictions using the testing set
y_pred = regr.predict(X_test)
#=====================================================================
# Evaluate the model and print performance metrics
#=====================================================================
print_performance_metrics(y_test,y_pred)
#%%
#=====================================================================
# Plot scatter
#=====================================================================
plot_scatter(y_test,y_pred)
#%%
#=====================================================================
# Plot real and predicted outputs
#=====================================================================
plot_real_predicted(y_test,y_pred)
#%%
#=====================================================================
# Create MLP regressor model
#=====================================================================
from sklearn.neural_network import MLPClassifier
# Create MLP regressor object
“ “ “mlp = MLPClassifier(hidden_layer_sizes = (100, ), activation = ’relu’, 
solver = ’adam’,

alpha = 0.0001, batch_size = ’auto’, learning_rate = ’constant’,
learning_rate_init = 0.001, power_t = 0.5, max_iter = 200,
shuffle = True, random_state = None, tol = 0.0001, verbose = False,
warm_start = False, momentum = 0.9, nesterovs_momentum = True,
early_stopping = False, validation_fraction = 0.1, beta_1 = 0.9,
beta_2 = 0.999, epsilon = 1e-08, n_iter_no_change = 10)“ “ “

mlp = MLPClassifier(hidden_layer_sizes = (100, ), learning_rate_init = 0.001,
alpha = 1, momentum = 0.9,max_iter = 1000)
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# Train the model using the training sets
regr.fit(X_train, y_train)
# Make predictions using the testing set
y_pred = regr.predict(X_test)
#=====================================================================
# Evaluate the model and print performance metrics
#=====================================================================
print_performance_metrics(y_test,y_pred)
#%%
#=====================================================================
# Plot scatter
#=====================================================================
plot_scatter(y_test,y_pred)
#%%
#=====================================================================
# Plot real and predicted outputs
#=====================================================================
plot_real_predicted(y_test,y_pred)
#%%
#=====================================================================
# Create k-NN regressor model
#=====================================================================
from sklearn.neighbors import KNeighborsRegressor
# Create a Regression object
print(“Training Regressor...”)
regr = KNeighborsRegressor(n_neighbors = 2)
# Train the model using the training sets
regr.fit(X_train, y_train)
# Make predictions using the testing set
y_pred = regr.predict(X_test)
#=====================================================================
# Evaluate the model and print performance metrics
#=====================================================================
print_performance_metrics(y_test,y_pred)
#%%
#=====================================================================
# Plot scatter
#=====================================================================
plot_scatter(y_test,y_pred)
#%%
#=====================================================================
# Plot real and predicted outputs
#=====================================================================
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6.3 Inflation forecasting

Inflation, which is the percentage change in the average price level, is one of the most 
important indicators of economic activity. It has an impact on households, investors, govern-
ments, and policymakers’ decisions. High rates of inflation deteriorate levels of economic 
growth, decrease real wages, and increase cost of production. Similarly, a low inflationary en-
vironment is considered to be a negative economic indicator associated with lower demand 
levels in the economy. It is therefore crucial to forecast inflation in different time horizons. The 
machine learning models are used for inflation forecasting and for the forecasting of other 
macroeconomic variables as well (Ülke, Sahin, & Subasi, 2018).

plot_real_predicted(y_test,y_pred)
#%%
#=====================================================================
# Create SVR regressor model
#=====================================================================
from sklearn.svm import SVR
# Create a Regression object
print(“Training Regressor...”)
regr = SVR(gamma = ’scale’, C = 200.0, epsilon = 0.2)
# Train the model using the training sets
regr.fit(X_train, y_train)
# Make predictions using the testing set
y_pred = regr.predict(X_test)
#=====================================================================
# Evaluate the model and print performance metrics
#=====================================================================
print_performance_metrics(y_test,y_pred)
#%%
#=====================================================================
# Plot scatter
#=====================================================================
plot_scatter(y_test,y_pred)
#%%
#=====================================================================
# Plot real and predicted outputs
#=====================================================================
plot_real_predicted(y_test,y_pred)
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Example 6.2
The following Python code is used for inflation forecasting employing different classifiers with 
separate training and testing datasets. The statistical quality measures, including mean-absolute 
error (MAE), mean squared error (MSE), and correlation coefficient (R), are calculated. Scatter plot, 
real, and predicted values are also plotted.
Dataset information: In order to forecast inflation, four measures of the monthly price index can 
be used. These are the consumer price index (CPI) for all items, the CPI excluding food and energy 
(core-CPI), the personal consumption expenditure deflator (PCE), and the PCE excluding food and 
energy (Core-PCE). Considering the models as predictors of inflation, six economic activities—
namely the civilian unemployment rate (UNEM), the index of industrial production (IP), real 
personal consumption expenditure (INC), employees on nonfarm payrolls (WORK), housing starts 
(HS), and the term spread (SPREAD), defined as the yield on the 5-year treasury bond minus the 
3-month treasury bill—can be considered. These data were collected from the Federal Reserve Bank 
of Saint Louis database, FRED, spanning from January 1984 until December 2014. Furthermore, 
the stationarity conditions, regime change, volatility (noise), and distribution of series are crucial 
points for forecasting. For inflation forecasting, CPI, core-CPI, PCI, and core-CPI can be considered 
separately (Ülke et al., 2018).

“ “ “
Created on Tue May 21 19:39:42 2019
@author: asubasi“ “ “
#=====================================================================
# Inflation forecasting
#=====================================================================
# importing necessary libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_absolute_error,mean_squared_error,  
r2_score

# Load Inflation data set
Dataset = pd.read_csv(“Inflation.csv”)
# Create the dataset
rng = np.random.RandomState(1)
a = np.array(Dataset)
X = a[0:370,5:10 ]
y = a[0:370,10 ]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3, 
random_state = 1)
#%%
# Create a regression model
from sklearn.ensemble.forest import RandomForestRegressor
regr = RandomForestRegressor(n_estimators = 100)
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6.4 Electrical load forecasting

Load is a major and crucial information for facilities and traders in power generation, 
particularly in production planning, day-to-day operations, unit commitment, and economic 
dispatch. Load forecasting is carried out at different intervals based on requirements: long-
term load forecasting includes one to several years for plant and infrastructure investment 

# Train the model using the training sets
regr.fit(X_train, y_train)
# Make predictions using the testing set
y_pred = regr.predict(X_test)
#=====================================================================
# Evaluate the model and print performance metrics
#=====================================================================
# The mean absolute error
print(“MAE = %5.3f” % mean_absolute_error(y_test, y_pred))
# Explained variance score: 1 is perfect prediction
print(“R^2 = %0.5f” % r2_score(y_test, y_pred))
# The mean squared error
print(“MSE = %5.3f” % mean_squared_error(y_test, y_pred))
#%%
#=====================================================================
# Plot scatter
#=====================================================================
fig, ax = plt.subplots()
ax.scatter(y_test, y_pred, edgecolors = (0, 0, 0))
ax.text(-10, 15, r’$R^2$ = %.2f, MAE = %.2f’ % (
  r2_score(y_test, y_pred), mean_absolute_error(y_test, y_pred)))
ax.plot([y_test.min(), y_test.max()], [y_test.min(), y_test.max()], ’k--
’, lw = 4)
ax.set_xlabel(’Measured’)
ax.set_ylabel(’Predicted’)
#ax.set_xlim([0, 10])
#ax.set_ylim([0, 10])
plt.show()
#%%
#=====================================================================
# Plot real and predicted outputs
#=====================================================================
plt.plot(y_test[1:200], color = ’red’, label = ’Real data’)
plt.plot(y_pred[1:200], color = ’blue’, label = ’Predicted data’)
plt.title(’Prediction’)
plt.legend()
plt.show()
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decisions; mid-term load forecasting includes a few days to several months for maintenance 
scheduling and forward contract negotiation; short-term load forecasting (STLF) includes 1 
hour to a few days for real-time generation control and energy transaction planning (Bozkurt, 
Biricik, & Tayşi, 2017). Short-term, mid-term, and long-term planning or forecasting is a com-
mon concept found in the literature in the sense of the time horizon of planning or forecast-
ing. Short-term planning is typically an hourly, regular, or weekly power system operational 
planning, and one of the most crucial aspects during this phase is reliable and precise electric-
ity demand forecasting. On the electricity market, reliable short-term forecasts are necessary 
since they could impact the price of electricity that is provided to consumers. On the other 
hand, mid-term power system operational planning is usually prepared on a time horizon of 
one or more months, while long-term planning is usually prepared on an annual basis. Long-
term electricity demand forecasting is usually presented for several years and is an input in 
the process of building new generating unit planning (Sikiric, Avdakovic, & Subasi, 2013).

Smart grids are designed to create integrated and efficient energy supply networks that en-
hance the reliability and quality of power supply, as well as network security, energy efficiency, 
and demand management aspects. Modern power distribution structures are enabled by ad-
vanced monitoring infrastructures, which generate a huge amount of data, enabling fine grain 
analysis and enhanced forecasting performance. The forecasting of electrical loads is a particu-
larly crucial task in the energy field, because it helps with decision-making, the promotion of 
optimal pricing strategies, the easy integration of renewables, and the reduction of maintenance 
costs. Management and successful operations in critical infrastructure like smart grids take 
significant advantage of accurate power demand forecasting that remains a challenging task 
due to its nonlinear nature. Recently, deep learning has appeared to achieve impressive perfor-
mance in a wide range of tasks, from the classification of images to machine translation. Appli-
cations of deep learning models to the problem of electrical load forecasting are gaining interest 
among researchers as well as the industry. This example utilizes a real-world dataset for electric 
load forecasting using the deep learning model with short-term forecast (hourly). In particular, 
we concentrate on recurrent neural networks, sequence-to-sequence models, and temporal con-
volutional neural networks along with architectural variants known in the signal processing 
community and the load-forecasting community (Gasparin, Lukovic, & Alippi, 2019).

Well-known supply-demand balance laws are also applicable in energy markets: prices 
increase during the hours of higher demand and reduce during the hours of lower demand 
such as evenings, weekends, and holidays. In a huge power plant, demand is developed 
hourly and output cannot be started or stopped instantly; thus, development planning is 
mostly carried out on a daily basis. STLF therefore plays a key role in the management of 
operations in the electricity markets. Electrical load is a typical time series, because it involves 
consecutive hourly measurements. An important part of the time series analysis is forecast-
ing, which focuses on predicting future events based on time series (Bozkurt et al., 2017). 
Because deregulation of the distribution of electricity and the broad use of renewables have 
a major impact on regular market prices, STLF is of fundamental importance for efficient 
power supply (Gasparin et al., 2019). Engineers try to identify key factors influencing electric-
ity consumption during forecasting, such as GDP growth, demographic and climate change, 
consumer standards and preferences, etc. Air temperature is one of the most important fac-
tors in short-term and mid-term forecasting. Ambient temperature, human social behavior, 
and other variables also provide crucial information during the forecasting process so that 
forecast outcomes can be much more reliable (Sikiric et al., 2013).
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Example 6.3
The following Python code is used for electrical load forecasting employing the LSTM model with 
separate training and testing datasets. The statistical quality measures, including mean-absolute 
error (MAE), mean squared error (MSE), and correlation coefficient (R), are calculated. Scatter plot, 
real, and predicted values are also drawn. This example is adapted from machinelearningmastery 
(https://machinelearningmastery.com/how-to-develop-lstm-models-for-time-series-forecasting/)

Dataset information: One of the most complex types of time series for forecasting is short-term 
load data. Such data are considered nonlinear, with a lot of intraseasonality that makes it even 
more difficult to solve the problem. This data is chosen to utilize the deep learning models, because 
short-term load forecasting is a complex forecasting problem. Thus the hourly load data of the 
power supply company of the city of Johor in Malaysia produced in 2009 and 2010 were utilized to 
implement deep learning Keras models for load forecasting. Temperature time series was combined 
with hourly load data to enhance the performance of the model (Sadaei, e Silva, de, Guimarães, & 
Lee, 2019). The dataset can be downloaded from the Mendeley website (https://data.mendeley.
com/datasets/f4fcrh4tn9/1).

“ “ “
Created on Thu Oct 10 11:07:13 2019
@author: asubasi
“ “ “
#=====================================================================
# Load forecasting with univariate LSTM
#=====================================================================
from numpy import array
from keras.models import Sequential
from keras.layers import LSTM
from keras.layers import Dense
from pandas import read_csv
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.metrics import mean_absolute_error
import matplotlib.pyplot as plt
#=====================================================================
# Define utility functions
#=====================================================================
def plot_model_loss(history):
plt.figure(figsize = (6, 4))
plt.plot(history.history[’loss’], ’r--’, label = ’Loss of training data’)
plt.plot(history.history[’val_loss’], ’b--’, label = ’Loss of validation 
data’)
plt.title(’Model Error’)
plt.ylabel(’Loss’)
plt.xlabel(’Training Epoch’)

https://machinelearningmastery.com/how-to-develop-lstm-models-for-time-series-forecasting/
https://data.mendeley.com/datasets/f4fcrh4tn9/1
https://data.mendeley.com/datasets/f4fcrh4tn9/1


418 6. Regression examples

 

plt.ylim(0)
plt.legend()
plt.show()

def plot_real_predicted(ytest, ypred):
plt.plot(ytest[1:200], color = ’red’, label = ’Real data’)
plt.plot(ypred[1:200], color = ’blue’, label = ’Predicted data’)
plt.title(’Prediction’)
plt.legend()
plt.show()

def print_performance_metrics(ytest, ypred):
# The mean absolute error
print(“MAE = %5.3f” % mean_absolute_error(ytest, ypred))
# Explained variance score: 1 is perfect prediction
print(“R^2 = %0.5f” % r2_score(ytest, ypred))
# The mean squared error
print(“MSE = %5.3f” % mean_squared_error(ytest, ypred))

def plot_scatter(ytest, ypred):
fig, ax = plt.subplots()
ax.scatter(ytest, ypred, edgecolors = (0, 0, 0))
ax.text(10, ytest.max()-10, r’$R^2$ = %.2f, MAE = %.2f’ % (
r2_score(ytest, ypred), mean_absolute_error(ytest, ypred)))
ax.plot([ytest.min(), ytest.max()], [ytest.min(), ytest.max()], ’k--’, 
lw = 4)
ax.set_xlabel(’Measured’)
ax.set_ylabel(’Predicted’)
plt.show()

# split a univariate sequence into samples
def split_sequence(sequence, n_steps):
X, y = list(), list()
for i in range(len(sequence)):
# find the end of this pattern
end_ix = i + n_steps
# check if we are beyond the sequence
if end_ix > len(sequence)-1:
break
# gather input and output parts of the pattern
seq_x, seq_y = sequence[i:end_ix], sequence[end_ix]
X.append(seq_x)
y.append(seq_y)
return array(X), array(y)
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#=====================================================================
# Prepare dataset
#=====================================================================
# Load all data
dataset = read_csv(’malaysia_all_data_for_paper.csv’)
# define input sequence
raw_seq = dataset.values[:,2]
# choose a number of time steps
X_train=dataset.values[0:10000,2]
X_test = dataset.values[10000:17000,2]
n_steps = 5
# Split data into training and testing samples
Xtrain, ytrain = split_sequence(X_train, n_steps)
Xtest, ytest = split_sequence(X_test, n_steps)
#%%
n_features = 1
Xtrain = Xtrain.reshape((Xtrain.shape[0], Xtrain.shape[1], n_features))
#=====================================================================
# Build and compile the model
#=====================================================================
model = Sequential()
model.add(LSTM(50, activation = ’relu’, input_shape = (n_steps,  
n_features)))
model.add(Dense(1))
model.compile(optimizer = ’adam’, loss = ’mse’)
#=====================================================================
# Train the model
#=====================================================================
#model.fit(Xtrain, ytrain, epochs = 50, verbose = 1)
history = model.fit(Xtrain, ytrain, validation_split = 0.3,

epochs = 50, batch_size = 20, verbose = 2)
#=====================================================================
# Plot the model loss for training and validation dataset
#=====================================================================
plot_model_loss(history)
#%%
#=====================================================================
# Predict unseen data with the model
#=====================================================================
Xtest = Xtest.reshape((Xtest.shape[0], Xtest.shape[1], n_features))
ypred = model.predict(Xtest, verbose = 2)
#=====================================================================
# Evaluate the model and print performance metrics
#=====================================================================
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print_performance_metrics(ytest, ypred)
#%%
#=====================================================================
# Plot scatter
#=====================================================================
plot_scatter(ytest, ypred)
#%%
#=====================================================================
# Plot real and predicted outputs
#=================================

Example 6.4
The following Python code is used for electrical load forecasting employing the convolutional 
neural network model with separate training and testing datasets. The statistical quality measures 
including mean-absolute error (MAE), mean squared error (MSE), and correlation coefficient (R) 
are calculated. Scatter plot, real, and predicted values are also drawn. This example is adapted 
from machinelearningmastery (https://machinelearningmastery.com/how-to-develop-convolu-
tional-neural-network-models-for-time-series-forecasting/).
Dataset information: One of the most complex types of time series for forecasting is short-term 
load data. Such data are considered nonlinear, with a lot of intraseasonality that makes it even 
more difficult to solve this problem. This data is chosen to utilize the deep learning models since 
short-term load forecasting is a complex forecasting problem. Thus the hourly load data of the 
power supply company of the city of Johor in Malaysia produced in 2009 and 2010 were utilized to 
implement deep learning Keras models for load forecasting. Temperature time series was combined 
with hourly load data to enhance the performance of the model (Sadaei et al., 2019) The dataset can 
be downloaded from the Mendeley website (https://data.mendeley.com/datasets/f4fcrh4tn9/1).

“ “ “
Created on Mon Oct 14 10:32:03 2019
@author: asubasi “ “ “
#=====================================================================
# Load forecasting with convolutional neural network model
#=====================================================================
from numpy import array
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Flatten
from keras.layers.convolutional import Conv1D
from keras.layers.convolutional import MaxPooling1D
from pandas import read_csv
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.metrics import mean_absolute_error

https://machinelearningmastery.com/how-to-develop-convolutional-neural-network-models-for-time-series-forecasting/
https://machinelearningmastery.com/how-to-develop-convolutional-neural-network-models-for-time-series-forecasting/
https://data.mendeley.com/datasets/f4fcrh4tn9/1
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import matplotlib.pyplot as plt
#======================================================================
# Define utility functions
#======================================================================
def plot_model_loss(history):

plt.figure(figsize = (6, 4))
plt.plot(history.history[’loss’], ’r--’, label = ’Loss of training  
data’)
plt.plot(history.history[’val_loss’], ’b--’, label = ’Loss of  
validation data’)
plt.title(’Model Error’)
plt.ylabel(’Loss’)
plt.xlabel(’Training Epoch’)
plt.ylim(0)
plt.legend()
plt.show()

def plot_real_predicted(ytest, ypred):
plt.plot(ytest[1:200], color = ’red’, label = ’Real data’)
plt.plot(ypred[1:200], color = ’blue’, label = ’Predicted data’)
plt.title(’Prediction’)
plt.legend()
plt.show()

def print_performance_metrics(ytest, ypred):
# The mean absolute error
print(“MAE = %5.3f” % mean_absolute_error(ytest, ypred))
# Explained variance score: 1 is perfect prediction
print(“R^2 = %0.5f” % r2_score(ytest, ypred))
# The mean squared error
print(“MSE = %5.3f” % mean_squared_error(ytest, ypred))

def plot_scatter(ytest, ypred):
fig, ax = plt.subplots()
ax.scatter(ytest, ypred, edgecolors = (0, 0, 0))
ax.text(10, ytest.max()-10, r’$R^2$ = %.2f, MAE = %.2f’ % (
r2_score(ytest, ypred), mean_absolute_error(ytest, ypred)))
ax.plot([ytest.min(), ytest.max()], [ytest.min(), ytest.max()], ’k--’, 
lw = 4)
ax.set_xlabel(’Measured’)
ax.set_ylabel(’Predicted’)
plt.show()

# split a univariate sequence into samples
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def split_sequence(sequence, n_steps):
X, y = list(), list()
for i in range(len(sequence)):
# find the end of this pattern
end_ix = i + n_steps
# check if we are beyond the sequence
if end_ix > len(sequence)-1:
break
# gather input and output parts of the pattern
seq_x, seq_y = sequence[i:end_ix], sequence[end_ix]
X.append(seq_x)
y.append(seq_y)
return array(X), array(y)
#%%
#=====================================================================
# Univariate convolutional neural network models for load forecasting
#=====================================================================
# load all data
dataset = read_csv(’malaysia_all_data_for_paper.csv’)

X_train=dataset.values[0:10000,2]
X_test = dataset.values[10000:17000,2]

# split a univariate sequence into samples
def split_sequence(sequence, n_steps):
X, y = list(), list()
for i in range(len(sequence)):
# find the end of this pattern
end_ix = i + n_steps
# check if we are beyond the sequence
if end_ix > len(sequence)-1:
break
# gather input and output parts of the pattern
seq_x, seq_y = sequence[i:end_ix], sequence[end_ix]
X.append(seq_x)
y.append(seq_y)
return array(X), array(y)
n_steps = 5
# split into samples
Xtrain, ytrain = split_sequence(X_train, n_steps)
Xtest, ytest = split_sequence(X_test, n_steps)
# reshape from [samples, timesteps] into [samples, timesteps, features]
n_features = 1
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Xtrain = Xtrain.reshape((Xtrain.shape[0], Xtrain.shape[1], n_features))
#%%
#=====================================================================
# Build and compile the model
#=====================================================================
model = Sequential()
model.add(Conv1D(filters = 64, kernel_size = 2, activation = ’relu’, input_
shape = (n_steps, n_features)))
model.add(MaxPooling1D(pool_size = 2))
model.add(Flatten())
model.add(Dense(50, activation = ’relu’))
model.add(Dense(1))
model.compile(optimizer = ’adam’, loss = ’mse’)
#=====================================================================
# Train the model
#=====================================================================
history = model.fit(Xtrain, ytrain, validation_split = 0.3,

epochs = 50, batch_size = 20, verbose = 2)
#=====================================================================
# Plot the model loss for training and validation dataset
#=====================================================================
plot_model_loss(history)
#%%
#=====================================================================
# Predict unseen data with the model
#=====================================================================
Xtest = Xtest.reshape((Xtest.shape[0], n_steps, n_features))
ypred = model.predict(Xtest, verbose = 0)
#=====================================================================
# Evaluate the model and print performance metrics
#=====================================================================
print_performance_metrics(ytest, ypred)
#%%
#=====================================================================
# Plot scatter
#=====================================================================
plot_scatter(ytest, ypred)
#%%
#=====================================================================
# Plot real and predicted outputs
#=====================================================================
plot_real_predicted(ytest, ypred)
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6.5 Wind speed forecasting

Governments, regulators, and energy companies currently use a broad range of tools to 
promote the implementation of various renewable energy technologies, including incentives 
for projects, funds, cash, and tax credits. Recently rapid growth was seen in realizing the 
advantages of wind power as a key role in reducing emissions and oil dependence, diversify-
ing energy supplies, and providing low-cost electricity. Many countries developed policies 
that support the exploration of renewable energy technology, in particular, solar and wind 
energy. Wind velocity and nonlinear fluctuations are the main components of aerodynamic 
load prediction and wind turbine efficiency. Determining the characteristics of wind speed 
is critical for measuring the power generated, the loads and stress on rotor blades, and the 
fatigue of structural components. Unlike conventional power plants, the electricity produced 
by wind turbines mainly depends on weather conditions, in particular, the magnitude of the 
wind speed (Shen, Zhou, Li, Fu, & Lie, 2018). A wind turbine’s capacity is proportional to 
the cube of the wind speed. Therefore it is highly recommended to predict the wind speed 
distribution accurately so that the power generated by the wind turbine can be collected effi-
ciently, especially when we know that wind speed is fluctuating. Investigating the generation 
of wind energy at a given location involves an intensive study of the distribution of wind in 
terms of availability, direction, hourly distribution, variation, and frequency. The wind speed 
forecast could be very short term (up to 30 minutes), short term (30 min to 6 hours), medium 
term (6 hours to 24 hours), and long term (up to 7 days) (Okumus & Dinler, 2016). Over re-
cent years, numerous techniques have been used to measure wind speed. Such techniques 
are based on (1) physical modeling, where a significant amount of data is derived from the 
weather forecast; (2) statistical modeling using data input and output to find patterns; and (3) 
hybrid modeling using a mixture of data (Lei, Shiyan, Chuanwen, Hongling, & Yan, 2009). 
Physical modeling involves an unnecessary computational power in addition to poor per-
formance. Statistical modeling uses the study of time series, and the application of machine 
learning tries to find relations between present and future (Sideratos & Hatziargyriou, 2007). 
Hence a common approach to predict wind speed is by using artificial intelligence and ma-
chine learning tools, where a large number of historical input data is employed as training to 
learn the relationship and dependence of the input/output data.

Example 6.5
The following Python code is used for wind speed forecasting employing convolutional neural 
network (CNN) with separate training and testing datasets. The statistical quality measures, in-
cluding mean-absolute error (MAE), mean squared error (MSE), and correlation coefficient (R), are 
calculated. Scatter plot, real, and predicted values are also drawn. This example is adapted from 
machinelearningmastery (https://machinelearningmastery.com/how-to-develop-convolutional-
neural-network-models-for-time-series-forecasting/).
Dataset information: Investigating wind energy production from wind turbine machines in each 
location requires a rigorous study of wind distribution in terms of its availability, direction, hourly 

https://machinelearningmastery.com/how-to-develop-convolutional-neural-network-models-for-time-series-forecasting/
https://machinelearningmastery.com/how-to-develop-convolutional-neural-network-models-for-time-series-forecasting/
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distribution, diurnal variation, and frequency. Data used in this example have been collected from 
the King Abdullah City for Atomic and Renewable Energy K.A.CARE (https://rratlas.kacare.
gov.sa) as part of the Renewable Resource Monitoring and Mapping (RRMM) program. Hourly 
data provided, from May 2013 to July 2016, include different attributes such as air temperature, 
wind direction and speed, global horizontal irradiance (GHI), relative humidity, and barometric 
pressure. A rotating shadow-band radiometer is utilized for the measurement of diffuse horizontal 
irradiance (DHI), direct normal irradiance (DNI), and global horizontal irradiance (GHI). An air 
temperature probe is employed to measure air temperature, and a barometer and relative humid-
ity probe are employed to measure the pressure and the relative humidity respectively. Finally, 
an anemometer and wind vane are employed to measure the wind speed and wind direction 
respectively.

“ “ “
Created on Mon Oct 14 10:32:03 2019
@author: absubasi
“ “ “
#=====================================================================
# Wind speed forecasting
#=====================================================================
from numpy import array
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Flatten
from keras.layers.convolutional import Conv1D
from keras.layers.convolutional import MaxPooling1D
from pandas import read_csv
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.metrics import mean_absolute_error
import matplotlib.pyplot as plt
#=====================================================================
# Define utility functions
#=====================================================================
def plot_model_loss(history):

plt.figure(figsize = (6, 4))
plt.plot(history.history[’loss’], ’r--’, label = ’Loss of training  
data’)
plt.plot(history.history[’val_loss’], ’b--’, label = ’Loss of  
validation data’)
plt.title(’Model Error’)
plt.ylabel(’Loss’)
plt.xlabel(’Training Epoch’)
plt.ylim(0)
plt.legend()
plt.show()

https://rratlas.kacare.gov.sa
https://rratlas.kacare.gov.sa
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def plot_real_predicted(ytest, ypred):
plt.plot(ytest[1:200], color = ’red’, label = ’Real data’)
plt.plot(ypred[1:200], color = ’blue’, label = ’Predicted data’)
plt.title(’Prediction’)
plt.legend()
plt.show()

def print_performance_metrics(ytest, ypred):
# The mean absolute error
print(“MAE = %5.3f” % mean_absolute_error(ytest, ypred))
# Explained variance score: 1 is perfect prediction
print(“R^2 = %0.5f” % r2_score(ytest, ypred))
# The mean squared error
print(“MSE = %5.3f” % mean_squared_error(ytest, ypred))

def plot_scatter(ytest, ypred):
fig, ax = plt.subplots()
ax.scatter(ytest, ypred, edgecolors = (0, 0, 0))
ax.text(10, ytest.max()-10, r’$R^2$ = %.2f, MAE = %.2f’ % (
r2_score(ytest, ypred), mean_absolute_error(ytest, ypred)))
ax.plot([ytest.min(), ytest.max()], [ytest.min(), ytest.max()], ’k--’, 
lw = 4)
ax.set_xlabel(’Measured’)
ax.set_ylabel(’Predicted’)
plt.show()

#%%#===================================================================
# Convolutional neural network models for wind forecasting
#======================================================================
from numpy import array
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Flatten
from keras.layers.convolutional import Conv1D
from keras.layers.convolutional import MaxPooling1D
from pandas import read_csv
# load all data
dataset = read_csv(’Wind.csv’)

Xtrain=dataset.values[0:17000,0:12]
ytrain=dataset.values[1:17001,12] #Forecast One hour ahead
Xtest = dataset.values[17000:27000,0:12]
ytest = dataset.values[17001:27001,12] #Forecast One hour ahead
# reshape from [samples, timesteps] into [samples, timesteps, features]
n_features = 1
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Xtrain = Xtrain.reshape((Xtrain.shape[0], Xtrain.shape[1], n_features))
Xtest = Xtest.reshape((Xtest.shape[0], Xtrain.shape[1], n_features))
#%%
#=====================================================================
# Build and compile the model
#=====================================================================
model = Sequential()
model.add(Conv1D(filters = 128, kernel_size = 2, activation = ’relu’, input_
shape = (Xtrain.shape[1], n_features)))
model.add(MaxPooling1D(pool_size = 2))
model.add(Flatten())
model.add(Dense(64, activation = ’relu’))
model.add(Dense(1))
model.compile(optimizer = ’adam’, loss = ’mse’)
#=====================================================================
# Train the model
#=====================================================================
#history = model.fit(Xtrain, ytrain, epochs = 100, verbose = 1)
history = model.fit(Xtrain, ytrain, validation_split = 0.3, epochs = 50, 
batch_size = 20, verbose = 2)
#=====================================================================
# Plot the model loss for training and validation dataset
#=====================================================================
plot_model_loss(history)
#%%
#=====================================================================
# Predict unseen data with the model
#=====================================================================
ypred = model.predict(Xtest, verbose = 0)
#=====================================================================
# Evaluate the model and print performance metrics
#=====================================================================
print_performance_metrics(ytest, ypred)
#%%
#=====================================================================
# Plot scatter
#=====================================================================
plot_scatter(ytest, ypred)
#%%
#=====================================================================
# Plot real and predicted outputs
#=====================================================================
plot_real_predicted(ytest, ypred)
#%%
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#=====================================================================
# Multivariate CNN model for wind speed forecasting
#=====================================================================
# multivariate cnn example
from numpy import array
from numpy import hstack
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Flatten
from keras.layers.convolutional import Conv1D
from keras.layers.convolutional import MaxPooling1D
from pandas import read_csv
# load all data
dataset = read_csv(’Wind.csv’)

Xtrain=dataset.values[0:17000,0:12]
ytrain=dataset.values[1:17001,12] #Forecast One hour ahead
Xtest = dataset.values[17000:27000,0:12]
ytest = dataset.values[17001:27001,12] #Forecast One hour ahead
n_steps = 12
# reshape from [samples, timesteps] into [samples, timesteps, features]
n_features = 1
Xtrain = Xtrain.reshape((Xtrain.shape[0], Xtrain.shape[1], n_features))
Xtest = Xtest.reshape((Xtest.shape[0], Xtrain.shape[1], n_features))
#%%
#=====================================================================
# Build and compile the model
#=====================================================================
model = Sequential()
model.add(Conv1D(filters = 128, kernel_size = 2, activation = ’relu’,

input_shape = (n_steps, n_features)))
model.add(MaxPooling1D(pool_size = 2))
model.add(Flatten())
model.add(Dense(64, activation = ’relu’))
model.add(Dense(1))
model.compile(optimizer = ’adam’, loss = ’mse’)
#=====================================================================
# Train the model
#=====================================================================
#history = model.fit(Xtrain, ytrain, epochs = 100, verbose = 1)
history = model.fit(Xtrain, ytrain, validation_split = 0.3, epochs = 50, 
batch_size = 20, verbose = 2)
#=====================================================================
# Plot the model loss for training and validation dataset
#=====================================================================
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6.6 Tourism demand forecasting

In general, the demand for tourism has shown steady growth. Nevertheless, due to the 
uncertainty of determining factors and external measures, this sector has undergone multiple 
fluctuations. Scientists, policymakers, and practitioners have paid serious attention to the 
cycles of tourism growth and demand ripple as they try to predict future tourist flows. The 
demand for tourism is determined by tourist arrivals, tourism expenses, or length of stay. 
Such statistics are correlated with multiple types of variability, such as the seasonality of the 
regions of origin and destination, the business cycles associated with exchange rates and lev-
els of income, or various environmental impacts related to climate change or special events. 
Tourism is expanding from developed countries to newly industrialized countries with the 
rapid expansion of international tourism due to social, cultural, political, and technological 
changes. This growth will result in a mix of costs and benefits, as more countries/regions of 
tourist destinations compete for scarce resources. Accurate forecasts are therefore crucial for 
destinations in which decision-makers are trying to capitalize on the tourism industry trends 
and/or balance their local ecological and social carrying capacities. In these cases, interna-
tional tourism demand forecasters have tried to take into account the overall conditions of 
the markets, destinations, and even neighboring or competing countries/regions that may 
impact their tourist flows (Song, Li, & Cao, 2018; Song, Qiu, & Park, 2019).

Time series models forecast the tourism demand based on historical trends. Such models 
try to identify patterns, slopes, and cycles between time series data by utilizing measure-
ment sequences produced over successive periods. Unlike random sampling approaches, the 

plot_model_loss(history)
#%%
#=====================================================================
# Predict unseen data with the model
#=====================================================================
Xtest = Xtest.reshape((Xtest.shape[0], n_steps, n_features))
ypred = model.predict(Xtest, verbose = 0)
#=====================================================================
# Evaluate the model and print performance metrics
#=====================================================================
print_performance_metrics(ytest, ypred)
#%%
#=====================================================================
# Plot scatter
#=====================================================================
plot_scatter(ytest, ypred)
#%%
#=====================================================================
# Plot real and predicted outputs
#=====================================================================
plot_real_predicted(ytest, ypred)



430 6. Regression examples

 

time series forecasting models are based on successive values reflecting consecutive measure-
ments taken at regularly spaced intervals such as monthly, quarterly, or annually. The time 
series models produce predictions of future values for the upcoming time series once a trend 
is formed (Song et al., 2019).

Vacant hotel rooms, unpurchased tickets for events, and unused food items reflect un-
necessary costs and unrealized sales, a combination that presents a potential threat to fi-
nancial stability. In short, many tourism and hospitality goods cannot be preserved for 
future demand, making it vital to forecast the need for accurate tourism demand. Pre-
cise tourism demand forecasts therefore provide important support for political, tactical, 
and operational decisions. Governments, for instance, need specific tourism criteria for 
informed decision-making on problems such as capacity building and accommodation 
site planning. Organizations need predictions to make tactical decisions relevant to bro-
chures on tourism promotion, and tourism and hospitality professionals need accurate 
predictions for organizational decisions such as staffing and scheduling. Accurate tourism 
demand forecasting is therefore an important component that produces critical informa-
tion for decision-making relevant to tourism. Many tourism demand forecasting studies 
fall within the well-established category of quantitative approach that builds the model 
from training data on past tourist arrival volumes and specific tourism need predictive 
factors. The ability to choose all potentially good relations in a dataset will therefore allow 
greater flexibility in creating more accurate predictive models. Time series, econometric, 
and artificial intelligence models offer excellent forecasting efficiency, breaking the func-
tion engineering barrier based on the destination market’s domain knowledge (Law, Li, 
Fong, & Han, 2019).

For both public and private actors, demand forecasting in the tourism sector is of great 
economic importance. Since we have no ability to store most tourism products, demand fore-
casting accuracy plays an important role for the tourism industry in improving its decision-
making, productivity in management, competitiveness, and sustainable economic growth. 
Classical statistical methods are the most commonly used models for forecasting of time se-
ries analysis. Such models have the limitation of being linear models. For most real-life prob-
lems, the relationship between the variables is not linear and the use of linear models for such 
problems is not effective. Conventional statistical methods such as multiple linear regressions 
are suitable for data showing specific patterns such as trend, seasonality, and cyclicality (Can-
kurt & Subasi, 2016). Recent advances in artificial intelligence, especially in deep learning, 
have offered ways to circumvent the above barriers and allow for more accurate tourism de-
mand forecasting (Pouyanfar et al., 2019). Deep network architectures extend artificial neural 
network models with more than two nonlinear layers of computation and have been shown 
to be efficient for different applications. Their success is usually attributed to their built-in 
engineering ability that motivates us to breach these two barriers in the field of machine 
learning simultaneously. In terms of contextual information for the study of time series, deep 
network architectures also have some advantages in robust and hierarchical nonlinear rela-
tionships. Recurrent neural network (RNN), long short-term memory (LSTM), and attention 
mechanism in particular are capable of handling and learning long-term dependencies. Such 
resources make deep learning an alternative solution for tourism demand forecasting (Law 
et al., 2019).
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Example 6.6
The following Python code is used for tourism demand forecasting employing different regres-
sion models with separate training and testing datasets. The statistical quality measures, including 
mean-absolute error (MAE), mean squared error (MSE), and correlation coefficient (R), are calcu-
lated. Scatter plot, real, and predicted values are also plotted. Target transformation is also used to 
see the effect of target transformation. As you can see from the examples, target transformation is 
effective for some regressor models but not effective for others.
Dataset information: In this example, tourism demand forecasting data for Turkey is utilized. 
Since tourism is the world’s largest industry and Turkey is one of the biggest players on the tour-
ism market, every work on tourism is producing great economic value and making major contri-
butions to the tourism sector. In addition to modern and well-tourism infrastructure, price stabil-
ity, and high-quality tourism services, Turkey has exciting potential with long and rich heritage 
challenges in culture and history, beautiful nature, four-season climate, and hospitable people in 
Europe and the Mediterranean. In this example, the number of tourists with monthly frequency 
is selected as a metric to measure the tourism demand in Turkey between 1992 and 2010 from the 
top 24 ranked tourism clients of Turkey. The number of ministry licensed hotel beds in Turkey, 
consumer price indexes (CPI), and exchange rates of tourism clients of Turkey were included in 
the models as environmental and economic time series that might affect foreign tourism demand 
in Turkey.
The input variables are the list of wholesale prices index, US dollar selling, 1 ounce gold London 
selling price USD, hotel bed capacity of Turkey, CPI of leading clients of Turkey (namely Austria, 
Belgium, Canada, Denmark, France, Germany, Greece, Italy, Netherlands, Norway, Poland, Spain, 
Sweden, Switzerland, Turkey, United Kingdom, United States, Russian Federation), number of 
the tourists coming from the leading clients of Turkey (namely Germany, Russia, France, Iran, 
Bulgaria, Georgia, Greece, Ukraine, Azerbaijan, Austria, Belgium, Denmark, Holland, England, 
Spain, Sweden, Switzerland, Italy, Norway, Poland, Romania, USA, Iraq, Syria), exchange rate of 
the leading countries of Turkey (Canadian dollar, Danish crone, Norwegian crone, Polish zloty, 
Swedish crone, Swiss franc, Turkish lira, British pound, Russian ruble), year, month, season, and 
number of the former tourists. Monthly time series data were collected from the Ministry of the 
Tourism of the Republic of Turkey (www.turizm.gov.tr), State Institute of Statistics of Turkey 
(www.die.gov.tr), Databank of the Central Bank of the Republic of Turkey (http://evds.tcmb.gov.
tr), TÜRSAB (www.tursab.org.tr), and World Bank databank (http://databank.worldbank.org) 
(Cankurt & Subasi, 2016).

“ “ “
Created on Fri Aug 2 01:23:04 2019
@author: asubasi
“ “ “
#=====================================================================
# Tourism demand forecasting example
#=====================================================================
import matplotlib.pyplot as plt
import numpy as np

http://evds.tcmb.gov.tr
http://evds.tcmb.gov.tr
http://databank.worldbank.org
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from sklearn.metrics import mean_squared_error, r2_score
from sklearn.metrics import mean_absolute_error
from sklearn.model_selection import train_test_split
#=====================================================================
# Define utility functions
#=====================================================================
def print_performance_metrics(ytest, ypred):

# The mean absolute error
print(“MAE = %5.3f” % mean_absolute_error(ytest, ypred))
# Explained variance score: 1 is perfect prediction
print(“R^2 = %0.5f” % r2_score(ytest, ypred))
# The mean squared error
print(“MSE = %5.3f” % mean_squared_error(ytest, ypred))

def plot_scatter(ytest, ypred):
fig, ax = plt.subplots()
ax.scatter(ytest, ypred, edgecolors = (0, 0, 0))
ax.text(ypred.max()-4.5, ytest.max()-0.1, r’$R^2$ = %.2f, MAE = %.2f’ % (
r2_score(ytest, ypred), mean_absolute_error(ytest, ypred)))
ax.plot([ytest.min(), ytest.max()], [ytest.min(), ytest.max()], ’k--’, 
lw = 4)
ax.set_xlabel(’Measured’)
ax.set_ylabel(’Predicted’)
plt.show()

def plot_real_predicted(ytest, ypred):
plt.plot(ytest[1:200], color = ’red’, label = ’Real data’)
plt.plot(ypred[1:200], color = ’blue’, label = ’Predicted data’)
plt.title(’Prediction’)
plt.legend()
plt.show()

# = ====================================================================
# Load the tourism dataset
# = ====================================================================
import pandas as pd
dataset = pd.read_csv(’TurkeyVisitors.csv’)
AllData = dataset.iloc[:, :].values
X = AllData[:,1:60]
y = AllData[:,60]
Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, test_size = 0.33, 
random_state = 0)
#%%



 6.6 Tourism demand forecasting 433

 

#=====================================================================
# Linear regression example
#=====================================================================
import matplotlib.pyplot as plt
from sklearn import linear_model
#=====================================================================
# Forecasting without target transformation
#=====================================================================
# Create linear regression object
regr = linear_model.LinearRegression()
# Train the model using the training sets
regr.fit(Xtrain, ytrain)
# Make predictions using the testing set
ypred = regr.predict(Xtest)
#=====================================================================
# Evaluate the model and print performance metrics
#=====================================================================
print_performance_metrics(ytest, ypred)
#%%
#=====================================================================
# Plot scatter
#=====================================================================
plot_scatter(ytest, ypred)
#%%
#=====================================================================
# Plot real and predicted outputs
#=====================================================================
plot_real_predicted(ytest, ypred)
#%%
#=====================================================================
# Forecasting with target transformation
#=====================================================================
from sklearn.preprocessing import QuantileTransformer
from sklearn.compose import TransformedTargetRegressor
transformer = QuantileTransformer(output_distribution = ’normal’)
# Create linear regression object
regr = linear_model.LinearRegression()
regr = TransformedTargetRegressor(regressor = regr,

transformer = transformer)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_ 
size = 0.33, random_state = 0)
regr.fit(X_train, y_train)
y_pred = regr.predict(X_test)
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#=====================================================================
# Evaluate the model and print performance metrics
#=====================================================================
print_performance_metrics(y_test,y_pred)
#%%
#=====================================================================
# Plot scatter
#=====================================================================
plot_scatter(y_test, y_pred)
#%%
#=====================================================================
# Plot real and predicted outputs
#=====================================================================
plot_real_predicted(y_test, y_pred)
#%%
from sklearn.neural_network import MLPRegressor
#=====================================================================
# ANN regression example
#=====================================================================
#=====================================================================
# Forecasting without target transformation
#=====================================================================
# Create MLP regression object
print(“Training MLPRegressor...”)
regr = MLPRegressor(activation = ’logistic’)
# Train the model using the training sets
regr.fit(Xtrain, ytrain)
# Make predictions using the testing set
ypred = regr.predict(Xtest)
#=====================================================================
# Evaluate the model and print performance metrics
#=====================================================================
print_performance_metrics(ytest, ypred)
#%%
#=====================================================================
# Plot scatter
#=====================================================================
plot_scatter(ytest, ypred)
#%%
#=====================================================================
# Plot real and predicted outputs
#=====================================================================
plot_real_predicted(ytest, ypred)
#%%
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#=====================================================================
# Forecasting with target transformation
#=====================================================================
from sklearn.preprocessing import QuantileTransformer
from sklearn.compose import TransformedTargetRegressor
transformer = QuantileTransformer(output_distribution = ’normal’)
# Create MLP regression object
print(“Training MLPRegressor...”)
regr = MLPRegressor(activation = ’logistic’)
regr = TransformedTargetRegressor(regressor = regr,

transformer = transformer)
regr.fit(X_train, y_train)
y_pred = regr.predict(X_test)
#=====================================================================
# Evaluate the model and print performance metrics
#=====================================================================
print_performance_metrics(y_test,y_pred)
#%%
#=====================================================================
# Plot scatter
#=====================================================================
plot_scatter(y_test, y_pred)
#%%
#=====================================================================
# Plot real and predicted outputs
#=====================================================================
plot_real_predicted(y_test, y_pred)
#%%
#=====================================================================
# k-NN regression example
#=====================================================================
from sklearn.neighbors import KNeighborsRegressor
#=====================================================================
# Forecasting without target transformation
#=====================================================================
# Create a Regression object
print(“Training Regressor...”)
regr = KNeighborsRegressor(n_neighbors = 2)
# Train the model using the training sets
regr.fit(Xtrain, ytrain)
# Make predictions using the testing set
ypred = regr.predict(Xtest)
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#=====================================================================
# Evaluate the model and print performance metrics
#=====================================================================
print_performance_metrics(ytest, ypred)
#%%
#=====================================================================
# Plot scatter
#=====================================================================
plot_scatter(ytest, ypred)
#%%
#=====================================================================
# Plot real and predicted outputs
#=====================================================================
plot_real_predicted(ytest, ypred)

#%%
#=====================================================================
# Forecasting with target transformation
#=====================================================================
from sklearn.preprocessing import QuantileTransformer
from sklearn.compose import TransformedTargetRegressor
transformer = QuantileTransformer(output_distribution = ’normal’)
# Create a Regression object
print(“Training Regressor...”)
regr = KNeighborsRegressor(n_neighbors = 2)
regr = TransformedTargetRegressor(regressor = regr,

transformer = transformer)
regr.fit(X_train, y_train)
y_pred = regr.predict(X_test)
#=====================================================================
# Evaluate the model and print performance metrics
#=====================================================================
print_performance_metrics(y_test,y_pred)
#%%
#=====================================================================
# Plot scatter
#=====================================================================
plot_scatter(y_test, y_pred)
#%%
#=====================================================================
# Plot real and predicted outputs
#=====================================================================
plot_real_predicted(y_test, y_pred)
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#%%
#=====================================================================
# Random forest regressor example
#=====================================================================
from sklearn.ensemble.forest import RandomForestRegressor
#=====================================================================
# Forecasting without target transformation
#=====================================================================
# Create Random Forest Regressor Model
regr = RandomForestRegressor(n_estimators = 100)
# Train the model using the training sets
regr.fit(Xtrain, ytrain)
# Make predictions using the testing set
ypred = regr.predict(Xtest)
#=====================================================================
# Evaluate the model and print performance metrics
#=====================================================================
print_performance_metrics(ytest, ypred)
#%%
#=====================================================================
# Plot scatter
#=====================================================================
plot_scatter(ytest, ypred)
#%%
#=====================================================================
# Plot real and predicted outputs
#=====================================================================
plot_real_predicted(ytest, ypred)
#%%
#=====================================================================
# Forecasting with target transformation
#=====================================================================
from sklearn.compose import TransformedTargetRegressor
from sklearn.preprocessing import QuantileTransformer
transformer = QuantileTransformer(output_distribution = ’normal’)
regr = RandomForestRegressor(n_estimators = 100)
regr = TransformedTargetRegressor(regressor = regr,

transformer = transformer)
regr.fit(X_train, y_train)
y_pred = regr.predict(X_test)
#=====================================================================
# Evaluate the model and print performance metrics
#=====================================================================
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print_performance_metrics(y_test,y_pred)
#%%
#=====================================================================
# Plot scatter
#=====================================================================
plot_scatter(y_test, y_pred)
#%%
#=====================================================================
# Plot real and predicted outputs
#=====================================================================
plot_real_predicted(y_test, y_pred)
#%%
#=====================================================================
# SVR regression example
#=====================================================================
from sklearn.svm import SVR
#=====================================================================
# Forecasting without target transformation
#=====================================================================
#Create Regression object
regr = SVR(gamma = ’scale’, C = 200.0, epsilon = 0.2)
# Train the model using the training sets
# Train the model using the training sets
regr.fit(Xtrain, ytrain)
# Make predictions using the testing set
ypred = regr.predict(Xtest)
#=====================================================================
# Evaluate the model and print performance metrics
#=====================================================================
print_performance_metrics(ytest, ypred)
#%%
#=====================================================================
# Plot scatter
#=====================================================================
plot_scatter(ytest, ypred)
#%%
#=====================================================================
# Plot real and predicted outputs
#=====================================================================
plot_real_predicted(ytest, ypred)
#%%
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#=====================================================================
# Forecasting with target transformation
#=====================================================================
from sklearn.compose import TransformedTargetRegressor
from sklearn.preprocessing import QuantileTransformer
transformer = QuantileTransformer(output_distribution = ’normal’)
regr = TransformedTargetRegressor(regressor = regr,

transformer = transformer)
regr.fit(X_train, y_train)
y_pred = regr.predict(X_test)
#=====================================================================
# Evaluate the model and print performance metrics
#=====================================================================
print_performance_metrics(y_test,y_pred)
#%%
#=====================================================================
# Plot scatter
#=====================================================================
plot_scatter(y_test,y_pred)
#%%
#=====================================================================
# Plot real and predicted outputs
#=====================================================================
plot_real_predicted(y_test,y_pred)

#%%
#=====================================================================
# Gradient boosting regression example
#=====================================================================
from sklearn.ensemble import GradientBoostingRegressor
#=====================================================================
# Create a regressor model
#=====================================================================
regr = GradientBoostingRegressor(n_estimators = 100, learning_rate = 0.1,

max_depth = 1, random_state = 0, loss = ’ls’).fit(X_train, y_train)
#=====================================================================
# Forecasting without target transformation
#=====================================================================
# Train the model using the training sets
regr.fit(Xtrain, ytrain)
# Make predictions using the testing set
ypred = regr.predict(Xtest)
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#=====================================================================
# Evaluate the model and print performance metrics
#=====================================================================
print_performance_metrics(ytest, ypred)
#%%
#=====================================================================
# Plot scatter
#=====================================================================
plot_scatter(ytest, ypred)
#%%
#=====================================================================
# Plot real and predicted outputs
#=====================================================================
plot_real_predicted(ytest, ypred)
#%%
#=====================================================================
# Forecasting with target transformation
#=====================================================================
from sklearn.compose import TransformedTargetRegressor
from sklearn.preprocessing import QuantileTransformer
transformer = QuantileTransformer(output_distribution = ’normal’)
regr = GradientBoostingRegressor(n_estimators = 100, learning_rate = 0.1,

max_depth = 1, random_state = 0, loss = ’ls’).fit(X_train, y_train)
regr = TransformedTargetRegressor(regressor = regr,

transformer = transformer)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_ 
state = 0)
regr.fit(X_train, y_train)
y_pred = regr.predict(X_test)
#=====================================================================
# Evaluate the model and print performance metrics
#=====================================================================
print_performance_metrics(y_test,y_pred)
#%%
#=====================================================================
# Plot scatter
#=====================================================================
plot_scatter(y_test,y_pred)
#%%
#=====================================================================
# Plot real and predicted outputs
#=====================================================================
plot_real_predicted(y_test,y_pred)
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6.7 House prices prediction

Growth of secondary mortgage markets has required the use of increasingly sophisti-
cated analytical, econometric, and machine learning approaches for pricing mortgage credit 
risks. For mortgage pricing and underwriting, as well as for more general housing market 
research, house price forecasting is needed. Since it is difficult to collect timely and consis-
tent regional economic data, univariate time series methods can be preferred over struc-
tural housing market models, especially for short-term forecasts. Time series models are 
frequently utilized and have become popular in many applications for financial modeling. 
The role of asymmetries and nonlinearities relevant to changing underlying economic con-
ditions has become increasingly popular in recent years. Intuitively, the regime-switching 
paradigm is very relevant to an application for real estate, as real estate markets have tra-
ditionally been susceptible to booms and bust. The basic intuition underlying this model is 
that housing markets behave differently in different economic conditions, resulting in dis-
tinct shifts in the characteristics of home price indices in the time series. For instance, shocks 
on the housing market may be more permanent during a recession, or home price volatility 
may increase, while the opposite may occur during a boom. Because of regional economies 
and demographic variations, the defining characteristics of the various regimes are likely to 
vary depending on the geographic area (Crawford & Fratantoni, 2003). There are significant 
differences across the United States in real income growth rates and levels. In addition, this 
heterogeneity should be expressed in real house prices. The impacts of specific shocks on 
whether observed house prices, such as increases in interest rates and oil prices, or nonob-
served effects, such as technological change, could also vary across areas (Holly, Pesaran, & 
Yamagata, 2010).

Over recent years, the trends of residential house prices in the euro area have shown sig-
nificant volatility. The growth rate of house prices in the euro area grew steadily through 
the middle of this decade, only to drop sharply in recent years. The rise and subsequent 
fall in inflation of house prices shows a time-varying difference between real house prices 
and their fundamental determinants of supply and demand. These recent developments 
seem to be consistent with a long-term trend characterized by transient fluctuations in 
house prices from a wide-ranging, long-term evolution of normal demand for housing 
and supply fundamentals. Combined with a lower volatility of demand-determinants, 
such as income and a slower supply response, many metrics widely used to calculate the 
equilibrium value of house prices signaled a varying degree of over- or under-value of 
house prices vis-à-vis certain fundamentals. As a consequence, good house price forecast-
ing models such as machine learning techniques are needed. In particular, this approach 
is utilized to receive impulse response functions to selected shocks—a shock of temporary 
housing demand along with permanent financing costs, shocks of economical technology 
and housing technology—as well as a decomposition variance and permanent-transitory 
contribution based on this shock interpretation. The machine learning approach reveals 
not only that the model has superior forecasting efficiency for naive time series models 
but also that the cointegrating relationship can help to predict recent developments in 
house prices with greater accuracy than models without such a long-term balance condi-
tion (Gattini & Hiebert, 2010).
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Example 6.7
The following Python code is used to forecast California house prices employing different regres-
sion models with separate training and testing datasets. The statistical quality measures, including 
mean-absolute error (MAE), mean squared error (MSE), and correlation coefficient (R), are calcu-
lated. Scatter plot, real, and predicted values are also plotted.
Dataset information: The data was collected from the variables employing all the block groups in 
California from the 1990 census. The data includes 20,640 observations on 9 characteristics, which 
are shown below (Pace & Barry, 1997).

Longitude A measure of how far west a house is; a higher value is farther west
Latitude A measure of how far north a house is; a higher value is farther north
HousingMedianAge Median age of a house within a block; a lower number is a newer building
TotalRooms Total number of rooms within a block
TotalBedrooms Total number of bedrooms within a block
Population Total number of people residing within a block
Households Total number of households, a group of people residing within a home unit,  

within a block
MedianIncome Median income for households within a block of houses (measured in tens of  

thousands of U.S. dollars)
MedianHouseValue Median house value for households within a block (measured in U.S. dollars)

#=====================================================================
# House prices prediction using California housing data set
#=====================================================================
import matplotlib.pyplot as plt
import numpy as np
from sklearn.neighbors import KNeighborsRegressor
from sklearn.datasets.california_housing import fetch_california_housing
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.metrics import mean_absolute_error
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.metrics import mean_absolute_error
import matplotlib.pyplot as plt
#=====================================================================
# Define utility functions
#=====================================================================
def print_performance_metrics(ytest, ypred):

# The mean absolute error
print(“MAE = %5.3f” % mean_absolute_error(ytest, ypred))
# Explained variance score: 1 is perfect prediction
print(“R^2 = %0.5f” % r2_score(ytest, ypred))
# The mean squared error
print(“MSE = %5.3f” % mean_squared_error(ytest, ypred))



 6.7 House prices prediction 443

 

def plot_scatter(ytest, ypred):
fig, ax = plt.subplots()
ax.scatter(ytest, ypred, edgecolors = (0, 0, 0))
ax.text(ypred.max()-4.5, ytest.max()-0.1, r’$R^2$ = %.2f, MAE = %.2f’ % (

r2_score(ytest, ypred), mean_absolute_error(ytest, ypred)))
ax.plot([ytest.min(), ytest.max()], [ytest.min(), ytest.max()], ’k--’, 
lw = 4)
ax.set_xlabel(’Measured’)
ax.set_ylabel(’Predicted’)
plt.show()

def plot_real_predicted(ytest, ypred):
plt.plot(ytest[1:200], color = ’red’, label = ’Real data’)
plt.plot(ypred[1:200], color = ’blue’, label = ’Predicted data’)
plt.title(’Prediction’)
plt.legend()
plt.show()

# =====================================================================
# Load the California housing dataset
# = ====================================================================
cal_housing = fetch_california_housing()
X, y = cal_housing.data, cal_housing.target
names = cal_housing.feature_names
Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, test_size = 0.3, 
random_state = 0)

#%%
#=====================================================================
# Linear regression example
#=====================================================================
import matplotlib.pyplot as plt
from sklearn import linear_model
# Create linear regression object
regr = linear_model.LinearRegression()
# Train the model using the training sets
regr.fit(Xtrain, ytrain)
# Make predictions using the testing set
ypred = regr.predict(Xtest)
#=====================================================================
# Evaluate the model and print performance metrics
#=====================================================================
print_performance_metrics(ytest, ypred)
#%%
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#=====================================================================
# Plot scatter
#=====================================================================
plot_scatter(ytest, ypred)
#%%
#=====================================================================
# Plot real and predicted outputs
#=====================================================================
plot_real_predicted(ytest, ypred)
#%%
from sklearn.neural_network import MLPRegressor
#=====================================================================
# ANN regression example
#=====================================================================
# Create MLP regression object
print(“Training MLPRegressor...”)
regr = MLPRegressor(activation = ’logistic’)
# Train the model using the training sets
regr.fit(Xtrain, ytrain)
# Make predictions using the testing set
ypred = regr.predict(Xtest)
#=====================================================================
# Evaluate the model and print performance metrics
#=====================================================================
print_performance_metrics(ytest, ypred)
#%%
#=====================================================================
# Plot scatter
#=====================================================================
plot_scatter(ytest, ypred)
#%%
#=====================================================================
# Plot real and predicted outputs
#=====================================================================
plot_real_predicted(ytest, ypred)

#%%
#=====================================================================
# k-NN regression example
#=====================================================================
from sklearn.neighbors import KNeighborsRegressor
# Create a Regression object
print(“Training Regressor...”)
regr = KNeighborsRegressor(n_neighbors = 2)



 6.7 House prices prediction 445

 

# Train the model using the training sets
regr.fit(Xtrain, ytrain)
# Make predictions using the testing set
ypred = regr.predict(Xtest)
#=====================================================================
# Evaluate the model and print performance metrics
#=====================================================================
print_performance_metrics(ytest, ypred)
#%%
#=====================================================================
# Plot scatter
#=====================================================================
plot_scatter(ytest, ypred)
#%%
#=====================================================================
# Plot real and predicted outputs
#=====================================================================
plot_real_predicted(ytest, ypred)

#%%
#=====================================================================
# Random forest regressor example
#=====================================================================
from sklearn.ensemble.forest import RandomForestRegressor
# Create Random Forest Regressor Model
regr = RandomForestRegressor(n_estimators = 100)
# Train the model using the training sets
regr.fit(Xtrain, ytrain)
# Make predictions using the testing set
ypred = regr.predict(Xtest)
#=====================================================================
# Evaluate the model and print performance metrics
#=====================================================================
print_performance_metrics(ytest, ypred)
#%%
#=====================================================================
# Plot scatter
#=====================================================================
plot_scatter(ytest, ypred)
#%%
#=====================================================================
# Plot real and predicted outputs
#=====================================================================
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plot_real_predicted(ytest, ypred)
#%%
#=====================================================================
# SVR regression example
#=====================================================================
from sklearn.svm import SVR
#Create Regression object
regr = SVR(gamma = ’scale’, C = 50.0, epsilon = 0.2)
# Train the model using the training sets
regr.fit(Xtrain, ytrain)
# Make predictions using the testing set
ypred = regr.predict(Xtest)
#=====================================================================
# Evaluate the model and print performance metrics
#=====================================================================
print_performance_metrics(ytest, ypred)
#%%
#=====================================================================
# Plot scatter
#=====================================================================
plot_scatter(ytest, ypred)
#%%
#=====================================================================
# Plot real and predicted outputs
#=====================================================================
plot_real_predicted(ytest, ypred)
#%%
#=====================================================================
# Gradient boosting regressor example
#=====================================================================
from sklearn.ensemble import GradientBoostingRegressor
#=====================================================================
# Create a regressor model
#=====================================================================
regr = GradientBoostingRegressor(n_estimators = 100, learning_rate = 0.1,

max_depth = 1, random_state = 0, loss = ’ls’)
# Train the model using the training sets
regr.fit(Xtrain, ytrain)
# Make predictions using the testing set
ypred = regr.predict(Xtest)
#=====================================================================
# Evaluate the model and print performance metrics
#=====================================================================
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print_performance_metrics(ytest, ypred)
#%%
#=====================================================================
# Plot scatter
#=====================================================================
plot_scatter(ytest, ypred)
#%%
#=====================================================================
# Plot real and predicted outputs
#=====================================================================
plot_real_predicted(ytest, ypred)

#%%
#=====================================================================
# AdaBoost regressor example
#=====================================================================
from sklearn.ensemble import AdaBoostRegressor
#=====================================================================
# Create a regressor model
#=====================================================================
regr = AdaBoostRegressor(random_state = 0, n_estimators = 100)
# Train the model using the training sets
regr.fit(Xtrain, ytrain)
# Train the model using the training sets
regr.fit(Xtrain, ytrain)
# Make predictions using the testing set
ypred = regr.predict(Xtest)
#=====================================================================
# Evaluate the model and print performance metrics
#=====================================================================
print_performance_metrics(ytest, ypred)
#%%
#=====================================================================
# Plot scatter
#=====================================================================
plot_scatter(ytest, ypred)
#%%
#=====================================================================
# Plot real and predicted outputs
#=====================================================================
plot_real_predicted(ytest, ypred)
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Example 6.8
The following Python code is used to forecast Boston house prices employing different regression 
models with separate training and testing datasets. The statistical quality measures, including 
mean-absolute error (MAE), mean squared error (MSE), and correlation coefficient (R), are calcu-
lated. Scatter plot, real, and predicted values are also plotted. Target transformation is also used to 
see the effect of target transformation. As you can see from the examples, target transformation is 
effective for some regressor models but not effective for others.
Dataset information: This dataset includes information collected by the U.S. Census Service re-
garding housing in the area of Boston, Mass. It was taken from the StatLib archive (http://lib.stat.
cmu.edu/datasets/boston) and has been utilized broadly throughout literature to test benchmark 
algorithms. The dataset contains only 506 cases. The data was originally published by Harrison and 
Rubinfeld (Harrison & Rubinfeld, 1978). There are 14 attributes in each case of the dataset. They are:

1. CRIM—per capita crime rate by town
2. ZN—proportion of residential land zoned for lots over 25,000 sq ft
3. INDUS—proportion of nonretail business acres per town
4. CHAS—Charles river dummy variable (1 if tract bounds river; 0 otherwise)
5. NOX—nitric oxides concentration (parts per 10 million)
6. RM—average number of rooms per dwelling
7. AGE—proportion of owner-occupied units built prior to 1940
8. DIS—weighted distances to five Boston employment centers
9. RAD—index of accessibility to radial highways
10. TAX—full-value property-tax rate per $10,000
11. PTRATIO—pupil–teacher ratio by town
12. B—1000(Bk - 0.63)^2 where Bk is the proportion of blacks by town
13. LSTAT—% lower status of the population
14. MEDV—median value of owner-occupied homes in $1000s

“ “ “
Created on Fri Aug 2 01:23:04 2019
@author: asubasi
“ “ “
#=====================================================================
# House prices prediction example with Boston house prices dataset
#=====================================================================
import matplotlib.pyplot as plt
import numpy as np
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.metrics import mean_absolute_error
from sklearn.model_selection import train_test_split
#=====================================================================
# Define utility functions
#=====================================================================

http://lib.stat.cmu.edu/datasets/boston
http://lib.stat.cmu.edu/datasets/boston
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def print_performance_metrics(ytest, ypred):
# The mean absolute error
print(“MAE = %5.3f” % mean_absolute_error(ytest, ypred))
# Explained variance score: 1 is perfect prediction
print(“R^2 = %0.5f” % r2_score(ytest, ypred))
# The mean squared error
print(“MSE = %5.3f” % mean_squared_error(ytest, ypred))

def plot_scatter(ytest, ypred):
fig, ax = plt.subplots()
ax.scatter(ytest, ypred, edgecolors = (0, 0, 0))
ax.text(ypred.max()-4.5, ytest.max()-0.1, r’$R^2$ = %.2f, MAE = %.2f’ % (
r2_score(ytest, ypred), mean_absolute_error(ytest, ypred)))
ax.plot([ytest.min(), ytest.max()], [ytest.min(), ytest.max()], ’k--’, 
lw = 4)
ax.set_xlabel(’Measured’)
ax.set_ylabel(’Predicted’)
plt.show()

def plot_real_predicted(ytest, ypred):
plt.plot(ytest[1:200], color = ’red’, label = ’Real data’)
plt.plot(ypred[1:200], color = ’blue’, label = ’Predicted data’)
plt.title(’Prediction’)
plt.legend()
plt.show()

# = ====================================================================
# Load the Boston house prices dataset
# = ====================================================================
from sklearn.datasets import load_boston
boston = load_boston()
X = boston.data
y = boston.target
Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, test_size = 0.33,  
random_state = 0)
#%%
#=====================================================================
# Linear regression example
#=====================================================================
import matplotlib.pyplot as plt
from sklearn import linear_model
#=====================================================================
# Forecasting without target transformation
#=====================================================================
# Create linear regression object
regr = linear_model.LinearRegression()
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# Train the model using the training sets
regr.fit(Xtrain, ytrain)
# Make predictions using the testing set
ypred = regr.predict(Xtest)
#=====================================================================
# Evaluate the model and print performance metrics
#=====================================================================
print_performance_metrics(ytest, ypred)
#%%
#=====================================================================
# Plot scatter
#=====================================================================
plot_scatter(ytest, ypred)
#%%
#=====================================================================
# Plot real and predicted outputs
#=====================================================================
plot_real_predicted(ytest, ypred)
#%%
#=====================================================================
# Forecasting with target transformation
#=====================================================================
from sklearn.preprocessing import QuantileTransformer
from sklearn.compose import TransformedTargetRegressor
transformer = QuantileTransformer(output_distribution = ’normal’)
# Create linear regression object
regr = linear_model.LinearRegression()
regr = TransformedTargetRegressor(regressor = regr,

transformer = transformer)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_ 
size = 0.33, random_state = 0)
regr.fit(X_train, y_train)
y_pred = regr.predict(X_test)
#=====================================================================
# Evaluate the model and print performance metrics
#=====================================================================
print_performance_metrics(y_test,y_pred)
#%%
#=====================================================================
# Plot scatter
#=====================================================================
plot_scatter(y_test, y_pred)
#%%
#=====================================================================
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# Plot real and predicted outputs
#=====================================================================
plot_real_predicted(y_test, y_pred)

#%%
#=====================================================================
# ANN regression example
#=====================================================================
from sklearn.neural_network import MLPRegressor
#=====================================================================
# Forecasting without target transformation
#=====================================================================
# Create MLP regression object
print(“Training MLPRegressor...”)
regr = MLPRegressor(activation = ’logistic’)
# Train the model using the training sets
regr.fit(Xtrain, ytrain)
# Make predictions using the testing set
ypred = regr.predict(Xtest)
#=====================================================================
# Evaluate the model and print performance metrics
#=====================================================================
print_performance_metrics(ytest, ypred)
#%%
#=====================================================================
# Plot scatter
#=====================================================================
plot_scatter(ytest, ypred)
#%%
#=====================================================================
# Plot real and predicted outputs
#=====================================================================
plot_real_predicted(ytest, ypred)

#%%
#=====================================================================
# Forecasting with target transformation
#=====================================================================
from sklearn.preprocessing import QuantileTransformer
from sklearn.compose import TransformedTargetRegressor
transformer = QuantileTransformer(output_distribution = ’normal’)
# Create MLP regression object
print(“Training MLPRegressor...”)
regr = MLPRegressor(activation = ’logistic’)
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regr = TransformedTargetRegressor(regressor = regr,
transformer = transformer)

regr.fit(X_train, y_train)
y_pred = regr.predict(X_test)
#=====================================================================
# Evaluate the model and print performance metrics
#=====================================================================
print_performance_metrics(y_test,y_pred)
#%%
#=====================================================================
# Plot scatter
#=====================================================================
plot_scatter(y_test, y_pred)
#%%
#=====================================================================
# Plot real and predicted outputs
#=====================================================================
plot_real_predicted(y_test, y_pred)
#%%
#=====================================================================
# k-NN regression example
#=====================================================================
from sklearn.neighbors import KNeighborsRegressor
#=====================================================================
# Forecasting without target transformation
#=====================================================================
# Create a Regression object
print(“Training Regressor...”)
regr = KNeighborsRegressor(n_neighbors = 2)
# Train the model using the training sets
regr.fit(Xtrain, ytrain)
# Make predictions using the testing set
ypred = regr.predict(Xtest)
#=====================================================================
# Evaluate the model and print performance metrics
#=====================================================================
print_performance_metrics(ytest, ypred)
#%%
#=====================================================================
# Plot scatter
#=====================================================================
plot_scatter(ytest, ypred)
#%%
#=====================================================================
# Plot real and predicted outputs
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#=====================================================================
plot_real_predicted(ytest, ypred)

#%%
#=====================================================================
# Forecasting with target transformation
#=====================================================================
from sklearn.preprocessing import QuantileTransformer
from sklearn.compose import TransformedTargetRegressor
transformer = QuantileTransformer(output_distribution = ’normal’)
# Create a Regression object
print(“Training Regressor...”)
regr = KNeighborsRegressor(n_neighbors = 2)
regr = TransformedTargetRegressor(regressor = regr,

transformer = transformer)
regr.fit(X_train, y_train)
y_pred = regr.predict(X_test)
#=====================================================================
# Evaluate the model and print performance metrics
#=====================================================================
print_performance_metrics(y_test,y_pred)
#%%
#=====================================================================
# Plot scatter
#=====================================================================
plot_scatter(y_test, y_pred)
#%%
#=====================================================================
# Plot real and predicted outputs
#=====================================================================
plot_real_predicted(y_test, y_pred)
#%%
#=====================================================================
# Random forest regressor example
#=====================================================================
from sklearn.ensemble.forest import RandomForestRegressor
#=====================================================================
# Forecasting without target transformation
#=====================================================================
# Create random forest regressor model
regr = RandomForestRegressor(n_estimators = 100)
# Train the model using the training sets
regr.fit(Xtrain, ytrain)
# Make predictions using the testing set
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ypred = regr.predict(Xtest)
#=====================================================================
# Evaluate the model and print performance metrics
#=====================================================================
print_performance_metrics(ytest, ypred)
#%%
#=====================================================================
# Plot scatter
#=====================================================================
plot_scatter(ytest, ypred)
#%%
#=====================================================================
# Plot real and predicted outputs
#=====================================================================
plot_real_predicted(ytest, ypred)
#%%
#=====================================================================
# Forecasting with target transformation
#=====================================================================
from sklearn.compose import TransformedTargetRegressor
from sklearn.preprocessing import QuantileTransformer
transformer = QuantileTransformer(output_distribution = ’normal’)
regr = RandomForestRegressor(n_estimators = 100)
regr = TransformedTargetRegressor(regressor = regr,

transformer = transformer)
regr.fit(X_train, y_train)
y_pred = regr.predict(X_test)
#=====================================================================
# Evaluate the model and print performance metrics
#=====================================================================
print_performance_metrics(y_test,y_pred)
#%%
#=====================================================================
# Plot scatter
#=====================================================================
plot_scatter(y_test, y_pred)
#%%
#=====================================================================
# Plot real and predicted outputs
#=====================================================================
plot_real_predicted(y_test, y_pred)
#%%
#=====================================================================
# SVR regression example
#=====================================================================
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from sklearn.svm import SVR
#=====================================================================
# Forecasting without target transformation
#=====================================================================
#Create Regression object
regr = SVR(gamma = ’scale’, C = 200.0, epsilon = 0.2)
# Train the model using the training sets
# Train the model using the training sets
regr.fit(Xtrain, ytrain)
# Make predictions using the testing set
ypred = regr.predict(Xtest)
#=====================================================================
# Evaluate the model and print performance metrics
#=====================================================================
print_performance_metrics(ytest, ypred)
#%%
#=====================================================================
# Plot scatter
#=====================================================================
plot_scatter(ytest, ypred)
#%%
#=====================================================================
# Plot real and predicted outputs
#=====================================================================
plot_real_predicted(ytest, ypred)
#%%
#=====================================================================
# Forecasting with target transformation
#=====================================================================
from sklearn.compose import TransformedTargetRegressor
from sklearn.preprocessing import QuantileTransformer
transformer = QuantileTransformer(output_distribution = ’normal’)
regr = TransformedTargetRegressor(regressor = regr,

transformer = transformer)
regr.fit(X_train, y_train)
y_pred = regr.predict(X_test)
#=====================================================================
# Evaluate the model and print performance metrics
#=====================================================================
print_performance_metrics(y_test,y_pred)
#%%
#=====================================================================
# Plot scatter
#=====================================================================
plot_scatter(y_test,y_pred)
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#%%
#=====================================================================
# Plot real and predicted outputs
#=====================================================================
plot_real_predicted(y_test,y_pred)

#%%
#=====================================================================
# Gradient boosting regression example
#=====================================================================
from sklearn.ensemble import GradientBoostingRegressor
#=====================================================================
# Create a regressor model
#=====================================================================
regr = GradientBoostingRegressor(n_estimators = 100, learning_rate = 0.1,

max_depth = 1, random_state = 0, loss = ’ls’).fit(X_train, y_train)
#=====================================================================
# Forecasting without target transformation
#=====================================================================
# Train the model using the training sets
regr.fit(Xtrain, ytrain)
# Make predictions using the testing set
ypred = regr.predict(Xtest)
#=====================================================================
# Evaluate the model and print performance metrics
#=====================================================================
print_performance_metrics(ytest, ypred)
#%%
#=====================================================================
# Plot scatter
#=====================================================================
plot_scatter(ytest, ypred)
#%%
#=====================================================================
# Plot real and predicted outputs
#=====================================================================
plot_real_predicted(ytest, ypred)
#%%
#=====================================================================
# Forecasting with target transformation
#=====================================================================
from sklearn.compose import TransformedTargetRegressor
from sklearn.preprocessing import QuantileTransformer
transformer = QuantileTransformer(output_distribution = ’normal’)
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6.8 Bike usage prediction

With more people living in cities, a growing population has led to increased emissions of 
pollution, noise, congestion, and greenhouse gases. The use of bike-sharing systems (BSSs) 
is one possible approach to addressing these problems. In many cities, BSSs are an important 
part of urban mobility and are sustainable and environmentally friendly. When urban density 
and its associated problems increase, there is likely to be more BSSs in the future due to rela-
tively low capital and operating costs, ease of installation, pedal support for people who are 
physically unable to pedal long distances or on difficult terrain, and better tracking of bikes 
(Ashqar et al., 2017; DeMaio, 2009). Bike-sharing systems for promoting green transport and 
a healthy lifestyle have been deployed in many cities. One of the key factors for optimizing 
the utility of such systems is to place bike stations at places that best meet the demand for 
the trips of riders. Generally, urban planners depend on dedicated surveys to understand the 
demand for local bike trips, which is expensive in terms of time and work, especially when 
they need to compare several locations. In recent years, more and more cities have launched 
initiatives for bike sharing to encourage environmental sustainability and promote a healthy 
lifestyle (Pucher, Dill, & Handy, 2010). These systems for bike sharing allow people to pick 
up and drop off public bikes at self-service stations for short trips within a community. Given 
the large investment in infrastructure needed to support a bike-sharing scheme, such as ar-
ranging parking facilities and making the roads more bike friendly, maximizing the value of 

regr = GradientBoostingRegressor(n_estimators = 100, learning_rate = 0.1,
max_depth = 1, random_state = 0, loss = ’ls’).fit(X_train, y_train)

regr = TransformedTargetRegressor(regressor = regr,
transformer = transformer)

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state = 0)
regr.fit(X_train, y_train)
y_pred = regr.predict(X_test)
#=====================================================================
# Evaluate the model and print performance metrics
#=====================================================================
print_performance_metrics(y_test,y_pred)
#%%
#=====================================================================
# Plot scatter
#=====================================================================
plot_scatter(y_test,y_pred)
#%%
#=====================================================================
# Plot real and predicted outputs
#=====================================================================
plot_real_predicted(y_test,y_pred)
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shared bikes is important for urban planners. One of the key factors for encouraging citizen 
involvement in a bike-sharing system is to place bike stations at locations that best meet po-
tential users’ trip demands (Chen et al., 2015; García-Palomares, Gutiérrez, & Latorre, 2012).

Machine learning tools help to build a precise model of prediction that estimates demand 
for bike trips between pairs of locations. The machine learning models can therefore be em-
ployed to predict even if one or both of these locations currently do not have bike stations in 
place and can be used as a planning tool when determining how to extend the bike-sharing 
network of a community. By providing predictions of the demand for trips between each 
origin–destination pair, machine learning approach provides not only an estimation of how 
much incoming and outgoing demand will be realized if a new bike station is installed, but 
also where the incoming/outgoing demand will originate and end, predicting the impact on 
the existing network of this new station (Divya, Somya, & Peter, 2015).

Example 6.9
The following Python code is used to forecast bike usage employing random forest regressor with 
separate training and testing datasets. The statistical quality measures, including mean-absolute 
error (MAE), mean squared error (MSE), and correlation coefficient (R), are calculated. Scatter plot, 
real, and predicted values are also plotted.
Dataset information: The bike-sharing data is utilized by Fanaee-T and Gama (Fanaee-T & 
Gama, 2014). It can be downloaded from UCI machine learning repository (https://archive.ics.uci.
edu/ml/datasets/bike+sharing+dataset). The dataset contains two separate sets of information: 
hour.csv and day.csv. Both hour.csv and day.csv have the following fields, except hr, which is not 
available in day.csv.

•	 instant:	record	index
•	 dteday:	date
•	 season:	season	(1:winter,	2:spring,	3:summer,	4:fall)
•	 yr:	year	(0:	2011,	1:2012)
•	 mnth:	month	(	1	to	12)
•	 hr:	hour	(0	to	23)
•	 holiday:	weather	day	is	holiday	or	not	(extracted	from	[Web	Link])
•	 weekday:	day	of	the	week
•	 workingday:	if	day	is	neither	weekend	nor	holiday	is	1,	otherwise	is	0.
•	 weathersit:
•	 1:	Clear,	few	clouds,	partly	cloudy
•	 2:	Mist	+	cloudy,	mist	+	broken	clouds,	mist	+	few	clouds,	mist
•	 3:	Light	snow,	light	rain	+	thunderstorm	+	scattered	clouds,	light	rain	+	scattered	clouds
•	 4:	Heavy	rain	+	ice	pellets	+	thunderstorm	+	mist,	snow	+	fog
•	 temp:	normalized	temperature	in	Celsius;	the	values	are	derived	via	(t-t_min)/(t_max-t_min),	

t_min	=	-8,	t_max	=	+39	(only	in	hourly	scale)
•	 atemp:	normalized	feeling	temperature	in	Celsius;	the	values	are	derived	via	(t-t_min)/(t_

max-t_min),	t_min	=	-16,	t_max	=	+50	(only	in	hourly	scale)
•	 hum:	normalized	humidity;	the	values	are	divided	to	100	(max)

https://archive.ics.uci.edu/ml/datasets/bike+sharing+dataset
https://archive.ics.uci.edu/ml/datasets/bike+sharing+dataset
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•	 windspeed:	normalized	wind	speed;	the	values	are	divided	to	67	(max)
•	 casual:	count	of	casual	users
•	 registered:	count	of	registered	users
•	 cnt:	count	of	total	rental	bikes	including	both	casual	and	registered

“ “ “
Created on Fri Aug 2 01:23:04 2019
@author: asubasi
“ “ “
#=====================================================================
# Bike-sharing example
#=====================================================================
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import zipfile
import requests, io, os
import warnings
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_ 
error
from scipy import stats
#=====================================================================
# Define utility functions
#=====================================================================
def print_performance_metrics(ytest, ypred):

# The mean absolute error
print(“MAE = %5.3f” % mean_absolute_error(ytest, ypred))
# Explained variance score: 1 is perfect prediction
print(“R^2 = %0.5f” % r2_score(ytest, ypred))
# The mean squared error
print(“MSE = %5.3f” % mean_squared_error(ytest, ypred))

def plot_scatter(ytest, ypred):
fig, ax = plt.subplots()
ax.scatter(ytest, ypred, edgecolors = (0, 0, 0))
ax.text(ypred.max()-4.5, ytest.max()-0.1, r’$R^2$ = %.2f, MAE = %.2f’ % (
r2_score(ytest, ypred), mean_absolute_error(ytest, ypred)))
ax.plot([ytest.min(), ytest.max()], [ytest.min(), ytest.max()], ’k--’, 
lw = 4)
ax.set_xlabel(’Measured’)
ax.set_ylabel(’Predicted’)
plt.show()
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def plot_real_predicted(ytest, ypred):
plt.plot(ytest[1:200], color = ’red’, label = ’Real data’)
plt.plot(ypred[1:200], color = ’blue’, label = ’Predicted data’)
plt.title(’Prediction’)
plt.legend()
plt.show()

#Unzip downloaded data
def unzip_from_UCI(UCI_url, dest = ”):

#Downloads and unpacks datasets from UCI in zip format
response = requests.get(UCI_url)
compressed_file = io.BytesIO(response.content)
z = zipfile.ZipFile(compressed_file)
print (’Extracting in %s’ % os.getcwd() + ’\\’ + dest)
for name in z.namelist():
if ’.csv’ in name:
print (’\tunzipping %s’ %name)
z.extract(name, path = os.getcwd() + ’\\’ + dest)
# data cleaning i.e. removing outliers
def remove_outliers(data, type):
print(“Shape of {} Data frame before removing Outliers: {}”.
format(type, data.shape))
no_outliers = data[(np.abs(stats.zscore(data)) < 3).all(axis = 1)]
print(“Shape of {} Data frame before removing Outliers: {}”.
format(type, no_outliers.shape))
return no_outliers

#%%
#Ignore Warnings
warnings.filterwarnings(“ignore”)
#Download data from UCI website
UCI_url = ’https://archive.ics.uci.edu/ml/machine-learning-databas-
es/00275/Bike-Sharing-Dataset.zip’
unzip_from_UCI(UCI_url, dest = ’bikesharing’)

#Read and drop missing values if any
hourly_data = pd.read_csv(“bikesharing/hour.csv”, na_values = ’?’).
dropna()
daily_data = pd.read_csv(“bikesharing/day.csv”, na_values = ’?’).drop-
na()
#%%
#change date to int
list_dh = []
for i in hourly_data[’dteday’]:
list1 = i.split(’-’)
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list_dh.append(int(list1[2]))
dfh = pd.DataFrame(list_dh, columns = [’dteday’])
hourly_data[[’dteday’]] = dfh[[’dteday’]]

list_dd = []
for i in daily_data[’dteday’]:
list2 = i.split(’-’)
list_dd.append(int(list2[2]))

dfd = pd.DataFrame(list_dd, columns = [’dteday’])
daily_data[[’dteday’]] = dfd[[’dteday’]]

no_outliers = remove_outliers(hourly_data,’Hourly’)
y_hour = no_outliers.cnt
x_hour = no_outliers.drop([’cnt’,’instant’,’registered’,’casual’],ax
is = 1)

no_outliers = remove_outliers(daily_data,’Daily’)
y_day = no_outliers.cnt
x_day = no_outliers.drop([’cnt’,’instant’,’registered’,’casual’],ax
is = 1)

#%%
# choosing alpha as 0.8 where coefficients of holiday, atemp and  
windspeed are becoming zero.
x_hour = x_hour.drop([’holiday’,’atemp’,’windspeed’],axis = 1)

# choosing alpha as 0.3 where coefficients of holiday is becoming zero.
x_day = x_day.drop([’holiday’,’dteday’,’mnth’],axis = 1)

#Splitting data
X_hour_train, X_hour_test, Y_hour_train, Y_hour_test = train_test_
split(x_hour, y_hour, test_size = 0.3, random_state = 5)
X_day_train, X_day_test, Y_day_train, Y_day_test = train_test_split(x_
day, y_day, test_size = 0.3, random_state = 5)

#Random Forest Regressor
rgr = RandomForestRegressor(n_estimators = 200, n_jobs = -1, min_ 
samples_split = 4)
print(’\nRandom Forest’)

#%%
#General Model training and Testing for Hourly Data
print(“\n\t Hour Dataset”)
rgr.fit(X_hour_train, Y_hour_train)
predictions = rgr.predict(X_hour_test)
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6.9 Summary

In this chapter we present many examples related to the regression learning problem, 
which involves forecasting or predicting correct, real-evaluated labels as closely as possible 
using data. Since regression is a common task with different applications in machine learning, 
this particular chapter is dedicated to explaining and studying it. Regression is a process in 
which you determine the difference between models of grouping and grading. The grouping 
model theory involves dividing the instance space into segments and learning a local model 
in each segment as simply as possible. In previous chapters the learning tasks focused pri-
marily on classification problems. In this chapter different machine learning algorithms and 
deep learning methods for regression, including both finite and infinite sets of hypotheses, 
are presented. The application of these algorithms to different fields is discussed in detail. 
These fields are stock market price index return forecasting, inflation forecasting, electrical 
load forecasting, wind speed forecasting, tourism demand forecasting, house prices predic-
tion, and bike usage prediction.
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7
Clustering examples

7.1 Introduction

Clustering is one of the most commonly used experimental data analysis methods. 
Throughout all disciplines, from social sciences to biology to computer science, by defin-
ing meaningful categories among data points people try to obtain an initial sense of their 
results. For instance, retailers cluster customers, on the basis of their customer profiles, for 
the purpose of targeted marketing; computational biologists cluster genes on the basis of 
similarities in their expression in diverse researches; and astronomers cluster stars on the 
basis of their distinct closeness. The first question to be answered is, of course, what is clus-
tering? Clustering is the process of intuitively grouping a collection of objects in such a way 
that identical objects end up in the same category and divide dissimilar objects into different 
groups. This definition is obviously rather imprecise and perhaps vague. Yet, it is not easy 
to find a more accurate definition. There are several reasons for this. One fundamental prob-
lem is that in many cases the two objectives stated in the previous statement contradict one 
another. Mathematically speaking, similarity (or proximity) is not a transitive relationship, 
whereas cluster sharing is a relationship of equivalence, and particularly a transitive relation-
ship. More specifically, there can be a long series of objects, x1, . . . , xm, where each xi is very 
similar to its two neighbors, xi–1 and xi+1, but x1 and xm are very dissimilar. If we want to make 
sure that two elements share the same cluster if they are identical, then we have to place all 
the sequence elements in the same cluster. In that case, however, we end up sharing a cluster 
with dissimilar elements (x1 and xm) by violating the second criterion. A clustering algorithm, 
which highlights not separating nearby points, clusters this input by dividing it horizontally 
on both lines. On the other hand, a clustering approach, which stresses that distant points do 
not share the same cluster, clusters the same input by dividing it vertically (Shalev-Shwartz 
& Ben-David, 2014).

Another fundamental problem for clustering is the lack of “ground truth,” which is a com-
mon problem with unsupervised learning. We’ve been dealing primarily with supervised 
learning in the book so far (e.g., the issue of learning a classifier from labeled data on train-
ing). The purpose of supervised learning is simple—we want to train a classifier to predict 
as accurately as possible the labels of future examples. In addition, by estimating the empiri-
cal loss, a supervised learner can estimate the success or risk of the hypotheses utilizing the 
labeled training data. Clustering, on the other hand, is an unsupervised learning problem; 
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namely, we are not trying to predict any labels. Rather we want some practical way to orga-
nize the data. Hence there is no straightforward clustering performance assessment method. 
In addition, it is not clear what the “correct” clustering for that data is or how to assess a 
proposed clustering, even on the basis of full knowledge of the underlying data distribution 
(Shalev-Shwartz & Ben-David, 2014).

7.2 Clustering

Clustering is a mechanism in which related objects are bunched together. There are two 
types of inputs we can use. In similarity-based clustering, the input to the algorithm is a 
matrix of dissimilarity or distance matrix D. The input to the algorithm in feature-based clus-
tering is a matrix or design matrix X feature matrix of N x D. Similarity-based clustering has 
the advantage of allowing domain-specific similarity or kernel functions to be conveniently 
included. The benefit of feature-based clustering is that it applies to “raw” data, which is 
potentially noisy. Besides the two input types, there are two potential output types: flat clus-
tering, also called partition clustering, where we divide the objects into disjoint sets, and 
hierarchical clustering, where a nested partition tree is formed (Murphy, 2012).

A matrix of dissimilarity D is a matrix in which di,i = 0 and di, j ≥ 0 is a “distance” measure 
between i and j. In the strict sense, subjectively determined dissimilarities are seldom dis-
tances, as the inequality of the triangle, di,j ≤ di,k + dj,k, does not often hold. Some algorithms 
claim that D is a true matrix of distance, but others do not. If we have a similarity matrix S, by 
applying any monotonically decreasing function, for example, D = max(S) − S, we can con-
vert it to a dissimilarity matrix. The most common way of describing object dissimilarity is 
in terms of their attributes’ dissimilarity. The square (Euclidean) distance, city block distance, 
correlation coefficient, and hamming distance are some common attribute dissimilarity func-
tions (Murphy, 2012).

For the k-means clustering algorithm in which k initial points are selected to represent the 
initial cluster centers, all data points are allocated to the closest one, the mean value of the 
points in each cluster is calculated to form its current cluster core, and replication continues 
until there are no cluster changes. This procedure only works when you know the number of 
clusters beforehand, and this section begins by describing what you can do if not. First, we 
look at strategies for “agglomeration” to construct a hierarchical clustering structure—that 
is, beginning with individual instances and merging them successively into clusters. So, we 
look at a system that incrementally works; that is, any new instance is processed as it oc-
curs. Finally, we are investigating a statistical method of clustering based on a mixture model 
with various distributions of probability, one for each cluster. It does not separate instances 
into disjoint clusters, as does k-means, but rather assigns instances probabilistically to classes 
(Witten, Frank, Hall, & Pal, 2016).

Clustering is one of human beings’ most rudimentary mental practices, used to accommo-
date the enormous amount of information we obtain each day. It would be difficult to handle 
each piece of information as a single entity. Therefore, human beings appear to categorize 
things into clusters (i.e., objects, individuals, events). The specific attributes of the entities it 
comprises are then characterized by each cluster. We must presume, as in the case of super-
vised learning, that all patterns are defined in terms of features that form one-dimensional 
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feature vectors. The basic steps to be taken by an expert to establish a clustering function are 
as follows:

•Feature selection: Features should be chosen properly in order to encode as much 
information as possible about the value function. Once again, a major goal is parsimony 
and thus minimal duplication of knowledge among the features. As in the supervised 
classification, preprocessing of features may be needed in subsequent stages before they 
are used.

•Proximity measure: This measure defines how the two feature vectors are similar or 
dissimilar. It is necessary to ensure that all selected characteristics contribute equally to 
the proximity measure calculation and there are no features that dominate others. This 
should be taken care of during preprocessing.

•Clustering criterion: This criterion relies on the definition given to the term by the expert 
on the basis of the form of clusters of the dataset. The criterion of clustering can be 
expressed through a cost function or some other rules.

•Clustering algorithms: This phase refers to the selection of a particular algorithmic scheme 
that unravels the clustering structure of the data set, having adopted a proximity measure 
and a clustering criterion.

•Validation of the results: Once the results have been obtained from the clustering 
algorithm, we will check their correctness. Usually this is done using suitable measures.

•Interpretation of the results: In many cases, to draw the correct conclusions, the 
application expert should combine the clustering findings with other experimental 
evidence and interpretation.

A phase known as the clustering tendency should be involved in a number of cases. It in-
cludes various tests determining whether or not there is a clustering pattern in the data avail-
able. For instance, the dataset may be entirely random in nature, so it would be pointless to 
try to unravel clusters. Different feature choices, proximity measures, clustering criteria, and 
clustering algorithms might result in completely different clustering results (Theodoridis, Pi-
krakis, Koutroumbas, & Cavouras, 2010).

7.2.1 Evaluating the output of clustering methods

The most difficult and frustrating aspect of cluster analysis is the validation of clustering 
structures. Without a strong effort to do so, cluster analysis would remain a black art acces-
sible only to those true believers with great experience and confidence. Clustering is an un-
supervised learning technique, so it is difficult to assess the output quality of any given tech-
nique. If we use probabilistic models, we can always evaluate a test set’s likelihood, but this 
has two drawbacks: firstly, it does not evaluate any clustering found by the model directly, 
and secondly, it does not apply to nonprobabilistic methods. And now we are discussing cer-
tain non-probability-based success indicators. Conceptually, the aim of clustering is to assign 
similar points to the same cluster and to ensure that dissimilar points are present in different 
clusters. Such quantities can be measured in several forms. Such internal requirements can, 
however, be of limited benefit. An alternative is to use any external data type to validate the 
system. For instance, if we have labels for each object then we can compare the clustering 
with the labels using different metrics like silhouette (Murphy, 2012).
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7.2.2 Applications of cluster analysis

In a number of applications, clustering is a major tool. The application areas in which clus-
tering is useful can be summarized as follows (Theodoridis et al., 2010):

•Data reduction: The amount of data available, N, is often very high in several instances, 
and as a result, its processing becomes very challenging. In order to organize the data 
into a number of “important” clusters and treat each cluster as a single entity, cluster 
analysis can be utilized. For instance, a representative for each cluster is specified in data 
transmission. Instead of transmitting the data samples, we then transmit a code number 
that corresponds to the cluster representative where each specific sample is located. 
Hence the data compression is accomplished.

•Hypothesis generation: In this case, we apply cluster analysis to a dataset to conclude some 
hypotheses regarding the nature of the data. To propose hypotheses, clustering is used 
here as a tool. It is then important to test these hypotheses using other datasets.

•Hypothesis testing: Cluster analysis is used to test the validity of a given hypothesis in this 
sense.

•Prediction based on groups: In this case, the cluster analysis is applied to the existing dataset 
and the subsequent clusters are identified based on the characteristics of the patterns 
through which they are formed. In the sequel, if we are given an ambiguous pattern, we 
can evaluate the cluster to which it is more likely to belong and define it on the basis of 
the respective cluster category.

7.2.3 Number of possible clustering

Different proximity metrics give a different description of similar and dissimilar terms 
related to the types of clusters that must be identified by our clustering process. As it is men-
tioned, various combinations of a proximity measure and a clustering scheme can result in 
different outcomes to be interpreted by the expert. The best way to designate the feature vec-
tors xi, i = 1, . . . , N, of a set X to clusters would be to describe all possible partitions and to 
choose the most sensible one according to a previously chosen criterion. But even for moder-
ate values of N, this is not possible (Theodoridis et al., 2010).

7.2.4 Types of clustering algorithms

Clustering algorithms can be seen as schemes that provide sensitive clustering by consid-
ering only a small portion of the set that comprises all possible X partitions. The outcome 
depends on the algorithm and criteria used. A clustering algorithm is therefore a learning 
process that attempts to identify the specific features of the clusters that underlie the dataset. 
It is possible to divide clustering algorithms into the following major categories:

•Sequential algorithms: Such algorithms create a single cluster. They are quite 
straightforward and fast. In most of them, all the feature vectors are given to the 
algorithm once or a few times. Normally the final result depends on the order the vectors 
are given to the algorithm. Depending on the distance metric used, these techniques tend 
to generate compact, hyperspherically, or hyperellipsoidally shaped clusters.
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•Hierarchical clustering algorithms: Such methods will also be categorized into two groups.
•Agglomerative algorithms: Such algorithms in each stage generate a clustering sequence of 

decreasing number of clusters. The clustering generated by merging two clusters into 
one at each stage results from the previous one. Single and full connection algorithms 
are the key representatives of the agglomerative algorithms. Such algorithms are ideal 
for the recovery of big clusters and compact clusters.

•Divisive algorithms: These algorithms work in the opposite direction; that is, at each stage 
they generate a clustering sequence of m. The clustering is created by dividing a single 
cluster into two results from the previous one at each stage.

•Clustering algorithms based on cost function optimization: This group includes 
algorithms in which a cost function, J, quantifies as “sensitive” to determine a clustering. 
The number of m clusters is usually kept unchanged. Most of these algorithms use 
differential calculus principles when attempting to optimize J. They end when a local 
optimum of J is decided. Also, algorithms of this category are called iterative function 
optimization techniques. The following subcategories are included in this category:
•Hard or crisp clustering algorithms are when a vector belongs to a particular cluster 

exclusively. The assignment of the vectors to individual clusters is done optimally on 
the basis of the accepted criterion of optimality. The Isodata or Lloyd algorithm is the 
most popular algorithm in this group.

•Probabilistic clustering algorithms are a special type of hard clustering algorithms that 
adopt Bayesian classification arguments and each vector x is assigned to the cluster Ci 
for which P(Ci |x) (i.e., the a posteriori probability) is maximum. Such probabilities are 
calculated through an optimization process that is properly defined.

•Fuzzy clustering algorithms are when a vector belongs up to a certain degree to a 
particular cluster.

•Possibilistic clustering algorithms are when we test the probability of a vector x being a 
part of a cluster Ci.

•Boundary detection algorithms are when, instead of identifying the clusters themselves 
by the feature vectors, they iteratively update the boundaries of the regions where 
clusters are located. Although these algorithms evolve from a theory of cost function 
optimization, they are different from the algorithms described previously (Theodoridis 
et al., 2010).

Apart from these clustering algorithms, branch and bound clustering algorithms, genetic 
clustering algorithms, stochastic relaxation methods, valley-seeking clustering algorithms, 
competitive learning algorithms, morphological transformation technique–based algorithms, 
density-based algorithms, subspace clustering algorithms, and kernel-based methods are 
also types of clustering algorithms (Theodoridis et al., 2010).

7.3 The k-means clustering algorithm

K-means clustering begins with the description of a cost function over a parameterized 
set of possible clustering, and the objective of the clustering algorithm is to find a minimum 
cost partitioning (clustering). The clustering function is turned into an optimization problem 
under this model. The objective function is a function ranging from pairs of an input, (X, d), 
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and a suggested clustering solution C = (C1, . . .,Ck) to positive real numbers. The target of a 
clustering algorithm is described as finding, for a given input (X, d), a clustering C so that 
G((X, d),C) is minimized, given such an objective function that is denoted by G. To achieve 
this goal, a suitable search algorithm must be utilized. K-means clustering is therefore a spe-
cific common approximation algorithm rather than the cost function or the corresponding 
exact solution to the minimization problem. Most common objective functions include as 
a parameter the number of clusters, k. In practice, it is often up to the clustering algorithm 
user to choose the parameter k that is best suited to the clustering problem. Some of the most 
common objective functions are defined in the following. The k-means objective function is 
one of the most common objectives in clustering. The objective function k-means measures 
the square distance from each point in X to its cluster’s centroid. For instance, in digital com-
munication tasks, where X members can be interpreted as a set of signals to be transmitted, 
the k-means objective function is important. In practical clustering applications, the k-means 
objective function is quite common. But it turns out that it is always computationally infea-
sible to find the optimal solution for k-means. Instead, a simple iterative algorithm is often 
used, so the term k-means clustering in many cases refers to the outcome of this algorithm 
rather than the clustering that minimizes the objective cost of k-means (Shalev-Shwartz & 
Ben-David, 2014).

Example 7.1
The following Python code utilizes k-means clustering to find the center of the clusters of breast 

cancer data by using the scikit-learn library APIs. In this example, the breast cancer dataset that 
exists in sklearn.datasets is utilized. Scatter plot is presented to show the effectiveness of the al-
gorithm. The cluster centers are plotted in as scatter plot. Note that this example is adapted from 
scikit-learn.
# ======================================================================
# K-means clustering example
# ======================================================================
from sklearn import datasets
import matplotlib.pyplot as plt
import numpy as np
from sklearn.cluster import KMeans
#%%
# ######################################################################
# Import some data to play with
Breast_Cancer = datasets.load_breast_cancer()
X = Breast_Cancer.data
y = Breast_Cancer.target

# Plot the original data points
plt.scatter(X[:, 0], X[:, 1], c = y, cmap = plt.cm.Set1,
       edgecolor = 'k')
plt.xlabel('Attribute I')
plt.ylabel('Attribute II')
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7.4 The k-medoids clustering algorithm

Each cluster is represented by the mean of its vectors in the k-means algorithm, but the 
cluster is represented by a vector selected among the elements of X in the k-medoids meth-
ods, and we will refer to it as the medoid. In addition to their medoid, each cluster includes 
all vectors in X that (1) are not employed as medoids in other clusters and (2) are closer to 
their medoid than those representing the other clusters. There are two benefits over the k-
means algorithm to represent clusters using medoids. First, it can be utilized for datasets 
originating from either continuous or discrete domains, while k-means is only suitable for 
continuous domains since the mean of a subset of data vectors is not essentially a point ly-
ing in the domain for a discrete domain context. Second, k-medoids algorithms appear to be 
less sensitive than k-means algorithms to outliers. It should be remembered, however, that 
a cluster’s mean has a strong geometric and statistical meaning that is not necessarily true 
with medoids. Moreover, the algorithms for the calculation of the best set of medoids needs 
more computational power compared to the k-means algorithm. PAM (partitioning around 

plt.title('Original data Scatter')
plt.xticks(())
plt.yticks(())
#%%
" " "

sklearn.cluster.KMeans(n_clusters = 8, init = 'k-means + +', n_
init = 10, max_iter = 300, tol = 0.0001,
precompute_distances = 'auto', verbose = 0, random_state = None, 
copy_x = True, n_jobs = None,
algorithm = 'auto')
" " "
#Find Cluster Centers
kmeans = KMeans(n_clusters = 2)
kmeans.fit(X)
y_kmeans = kmeans.predict(X)

#Plot the Cluster Centers
plt.scatter(X[:, 0], X[:, 1], c = y_kmeans, s = 50, cmap = 'viridis')
centers = kmeans.cluster_centers_
plt.scatter(centers[:, 0], centers[:, 1], c = 'black', s = 200, 
alpha = 0.5);
plt.xlabel('Attribute I')
plt.ylabel('Attribute II')
plt.title('Cluster Centers')
plt.xticks(())
plt.yticks(())
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medoids), CLARA (clustering large applications), and CLARANS (clustering large applica-
tions based on randomized search) are the well-known k-medoids algorithms. Remember 
that the last two algorithms are inspired from the PAM but are more effective than PAM in 
handling large datasets (Theodoridis et al., 2010).

Example 7.2
The following Python code utilizes k-medoids clustering to find the center of the clusters of 

synthetic data and Mall_Customers data (https://www.kaggle.com/akram24/mall-customers) 
by using the KMedoids clustering function. Scatter plot is presented to show the effectiveness of 
the algorithm. The cluster centers are plotted in as scatter plot.
# ======================================================================
# K-medoids clustering example
# ======================================================================
from k_medoids import KMedoids
import numpy as np
import matplotlib.pyplot as plt
#Define a distance utility function
def example_distance_func(data1, data2):
   "'example distance function"'
   return np.sqrt(np.sum((data1 - data2)**2))
#%%
# K-Medoids Clustering using synthetic data with 3 clusters
from sklearn.datasets import make_blobs
# ######################################################################
# Generate sample data
np.random.seed(0)
batch_size = 45
centers = [[1, 1], [-1, -1], [1, -1]]
n_clusters = len(centers)
X, labels_true = make_blobs(n_samples = 300, centers = centers, cluster_
std = 0.7)

model = KMedoids(n_clusters = n_clusters, dist_func = example_distance_
func)
model.fit(X, plotit = True, verbose = True)
plt.show()
#%%
# K-Medoids clustering using Mall_Customers data
import pandas as pd
#loading the dataset
# Importing the Mall_Customers dataset by pandas
dataset = pd.read_csv('Mall_Customers.csv')
X = dataset.iloc[:, [2,3,4]].values

https://www.kaggle.com/akram24/mall-customers
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7.5 Hierarchical clustering

Hierarchical clustering algorithms have different philosophies. In particular, they gener-
ate a hierarchy of clustering instead of producing a single clustering. In the social sciences 
and biological taxonomy, this sort of algorithm is usually found. Hierarchical clustering al-
gorithms build a hierarchy of nested clustering. More precisely, these algorithms include N 
steps, as many as the number of data vectors. A new clustering on the basis of the clustering 
generated at the previous step t-1 is obtained at each step t (Theodoridis et al., 2010). Two 
main approaches exist in hierarchical clustering: bottom-up, or agglomerative, clustering and 
top-down, or divisive, clustering. These methods take a matrix of dissimilarity between the 
objects as their input. At each step, the most similar groups are combined in the bottom-up 
method. Groups are divided in the top-down approach using different criteria. Remember 
that both agglomerative and divisive clustering are merely heuristics that do not optimize 
any well-defined objective function. Therefore, in any formal sense, it is difficult to assess 
the quality of the clustering they create. In fact, they will always generate a clustering of the 
input data, even if the data does not have any structure (e.g., random noise) (Murphy, 2012).

7.5.1 Agglomerative clustering algorithm

Agglomerative clustering begins with N groups, each containing initially one entity, and 
then the two most similar groups merge at each stage until there is a single group containing 
all the data. A typical heuristic for large N is to run k-means first and then apply hierarchical 
clustering to the cluster centers estimated. A binary tree called a dendrogram will represent 
the merging process. The initial groups (objects) are on the leaves (at the bottom of the figure), 
and we join them in the tree each time when two groups are merged. The height of the divi-
sions is the dissimilarity between the groups being joined. The tree root (which is at the top) 
is a category with all the data. We produce a clustering of a given size if we cut the tree at any 
given height. In addition, there are three variants of agglomerative clustering, depending on 
how we define the dissimilarity between object categories (Murphy, 2012).

Alternatively, we can assume that if two vectors at level t of the hierarchy come together 
in a single cluster, they will remain in the same cluster for all subsequent clusters. This is 
another way to view the nesting property. A nesting property drawback is that there is no 
way to recover from a “poor” clustering, which might have arisen at an earlier hierarchy 
level. A threshold dendrogram, or simply a dendrogram, is an efficient way of describing 
the sequence of clusters generated by an agglomerative algorithm. Each phase of the general 
agglomerative scheme (GAS) is related to a dendrogram stage. Cutting the dendrogram may 
result in a clustering at a specific level. A dendrogram of proximity is a dendrogram that takes 
into account the proximity level in which two clusters are first merged. Once a measure of 
dissimilarity (similarity) is employed, the proximity dendrogram is termed a dissimilarity 

model = KMedoids(n_clusters = 5, dist_func = example_distance_func)
model.fit(X, plotit = True, verbose = True)
plt.show()
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(similarity) dendrogram. This method can be utilized at any stage as an indicator of natural 
or forced cluster formation. Similarly, a suitable level for cutting the dendrogram related to 
the resulting hierarchy must be calculated (Theodoridis et al., 2010).

Example 7.3
The following Python code utilizes agglomerative clustering to cluster the customers as Careful, 

Standard, Target, Careless, and Sensible using Mall_Customers data (https://www.kaggle.com/
akram24/mall-customers) and standard scikit-learn library APIs. Customers’ dendrogram is plot-
ted against the Euclidean distance. In addition, the clusters are plotted in a scatter plot to show five 
different customer groups. Note that this example is adapted from the web page (https://www.
kdnuggets.com/2019/09/hierarchical-clustering.html).
# ======================================================================
# Agglomerative clustering example
# ======================================================================
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
dataset = pd.read_csv('Mall_Customers.csv')
#%%
" " "Out of all the features, CustomerID and Genre are irrelevant fields 
and can be dropped and create a matrix of independent variables by select 
only Age and Annual Income." " "
X = dataset.iloc[:, [3, 4]].values
import scipy.cluster.hierarchy as sch
dendrogrm = sch.dendrogram(sch.linkage(X, method = 'ward'))
plt.title('Dendrogram')
plt.xlabel('Customers')
plt.ylabel('Euclidean distance')
plt.show()

#%%
from sklearn.cluster import AgglomerativeClustering
hc = AgglomerativeClustering(n_clusters = 5, affinity = 'euclidean', 
linkage = 'ward')
y_hc = hc.fit_predict(X)
# Visualising the clusters
plt.scatter(X[y_hc == 0, 0], X[y_hc == 0, 1], s = 50, c = 'red', label = 
'Careful')
plt.scatter(X[y_hc == 1, 0], X[y_hc == 1, 1], s = 50, c = 'blue', label = 
'Standard')
plt.scatter(X[y_hc == 2, 0], X[y_hc == 2, 1], s = 50, c = 'green', label = 
'Target')
plt.scatter(X[y_hc == 3, 0], X[y_hc == 3, 1], s = 50, c = 'cyan', label 
= 'Careless')

https://www.kaggle.com/akram24/mall-customers
https://www.kaggle.com/akram24/mall-customers
https://www.kdnuggets.com/2019/09/hierarchical-clustering.html
https://www.kdnuggets.com/2019/09/hierarchical-clustering.html
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plt.scatter(X[y_hc == 4, 0], X[y_hc == 4, 1], s = 50, c = 'magenta', 
label = 'Sensible')
plt.title('Clusters of customers')
plt.xlabel('Annual Income (k$)')
plt.ylabel('Spending Score (1-100)')
plt.legend()
plt.show()

Example 7.4
The following Python code utilizes agglomerative clustering to group the customers using Mall_

Customers data (https://www.kaggle.com/akram24/mall-customers) and standard scikit-learn li-
brary APIs. Scatter plot is presented to show the effectiveness of the algorithm. In this example, we 
present the effect of imposing a connectivity graph to capture local structure in the customer data. It 
is possible to see two implications of implementing a connectivity. First, clustering is much quicker 
with a connectivity matrix. Second, a single, average, and complete linkage is unstable when using 
a connectivity matrix and tends to create a few clusters that grow very fast. Nonetheless, average 
and complete linkage tackle this filtration behavior by including all the distances between two clus-
ters when combining them (while only the shortest distance among clusters is considered to exag-
gerate the behavior). The connectivity graph removes this process for average and total connection, 
making it look like the more fragile single connection. Having a very small number of neighbors in 
the graph introduces a geometry similar to that of a single connection that is well-known for having 
this instability of percolation. This is presented in this example. Note that this example is adapted 
from scikit-learn. 

# Authors: Gael Varoquaux, Nelle Varoquaux
# License: BSD 3 clause
import time
import matplotlib.pyplot as plt
import numpy as np

from sklearn.cluster import AgglomerativeClustering
from sklearn.neighbors import kneighbors_graph
import pandas as pd
#2 Importing the Mall_Customers dataset by pandas
dataset = pd.read_csv('Mall_Customers.csv')
X = dataset.iloc[:, [3,4]].values

# Create a graph capturing local connectivity. Larger number of neighbors
# will give more homogeneous clusters to the cost of computation
# time. A very large number of neighbors gives more evenly distributed

https://www.kaggle.com/akram24/mall-customers
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7.5.2 Divisive clustering algorithm

The divisive algorithms adopt the counter-strategy of agglomerative schemes. There is a 
single set in the first cluster, X. We are looking for the best possible partitioning of X into two 
clusters in the first step. The straightforward approach is to consider all possible X partitions 
in two sets and, according to a predetermined criterion, to choose the maximum. This process 
is then extended to each of the two sets created in the preceding stage iteratively. The final 
clustering includes a number of N clusters, each with a single X vector. Various choices of g 
give rise to various algorithms. One can easily observe that even for moderate values of N, 
this divisive scheme is computationally very demanding. Compared with the agglomerative 
system, this is its main drawback. Therefore some further computational simplifications are 
needed if these schemes are to be of any practical use. One option is to make choices and not 

# cluster sizes, but may not impose the local manifold structure of
# the data
knn_graph = kneighbors_graph(X, 30, include_self = False)

for connectivity in (None, knn_graph):
 for n_clusters in (4, 5, 6):
 plt.figure(figsize = (10, 4))
 for index, linkage in enumerate(('average',
 'complete',
 'ward',
 'single')):
 plt.subplot(1, 4, index + 1)
 model = AgglomerativeClustering(linkage = linkage,
 connectivity = connectivity,
 n_clusters = n_clusters)
 t0 = time.time()
 model.fit(X)
 elapsed_time = time.time() - t0
 plt.scatter(X[:, 0], X[:, 1], c = model.labels_,
 cmap = plt.cm.nipy_spectral)
 plt.title('linkage = %s\n(time %.2fs)' % (linkage, elapsed_time),
 fontdict = dict(verticalalignment = 'top'))
 plt.axis('equal')
 plt.axis('off')
 plt.subplots_adjust(bottom = 0, top = .89, wspace = 0,
 left = 0, right = 1)
 plt.suptitle('n_cluster = %i, connectivity = %r' %
 (n_clusters, connectivity is not None), size = 17)

plt.show()
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to look for all possible cluster partitions. This can be accomplished by ruling out several par-
titions under a preset criterion as not reasonable. The cluster division is based on all the fea-
tures (coordinates) of the feature vectors in the previous algorithm. These type of algorithms 
are also known as polythetic algorithms. On the other hand, there are divisive algorithms at 
each stage that achieve a cluster division based on a single feature. These are the algorithms 
known as monothetic (Theodoridis et al., 2010).

Divisive clustering begins with all the data in a single cluster and then, in a top-down 
manner, splits each cluster into two daughter clusters. Since there are 2N–1 –1 ways to divide 
a group of N items into two groups, it is hard to compute the optimal split, hence several 
heuristics are utilized. One approach is to pick the largest diameter cluster and divide it into 
two using the k-means or k-medoids algorithm with K = 2. This is known as the bisecting k-
means algorithm (Steinbach, Karypis, & Kumar, 2000). We can repeat this until we have any 
number of clusters desired. This can be utilized as an alternative to standard k-means, but a 
hierarchical clustering is also induced. Another strategy is to construct from the dissimilar-
ity graph a minimum spanning tree and then make new clusters by breaking the connection 
related to the largest dissimilarity. Divisive clustering is less common than clustering in ag-
glomerations, but it has two benefits. First, it can be quicker because it only takes O(N) time if 
we break for a constant number of levels. Secondly, the splitting decisions are made in view of 
all the results, while the bottom-up methods make myopic merge decisions (Murphy, 2012).

Example 7.5
The following Python code utilizes divisive clustering to plot a dendrogram of amino acid se-

quence of human genes. In this example, amino acid sequence of human genes is utilized. The 
dendrogram plot presents the effectiveness of the algorithm. Note that this example is adapted 
from github (https://github.com/ronak-07/Divisive-Hierarchical-Clustering). A phylogenetic tree 
or evolutionary tree is a branching diagram or “tree” displaying the implied evolutionary relations 
between different biological species based upon similarities and differences in their physical or ge-
netic characteristics. The goal of this example is to build the phylogenetic tree based on DNA/pro-
tein sequences of species given in the dataset employing divisive (top-down) hierarchical clustering. 

# ======================================================================
# Divisive clustering
# ======================================================================
import numpy as np
import scipy
import matplotlib.pyplot as plt
from scipy.cluster import hierarchy
global g
import time
# ======================================================================
# Define utility functions
# ======================================================================
def subtract(indices,splinter):

https://github.com/ronak-07/Divisive-Hierarchical-Clustering
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l3 = [x for x in indices if x not in splinter]
return l3

def divisive(a,indices,splinter,sub):
if(len(indices) = =1):
return
avg = []
flag = 0
for i in indices:
if(i not in splinter):
sum = 0
for j in indices:
if(j not in splinter):
sum = sum + a[i][j]
if((len(indices)-len(splinter)-1) = =0):
avg.append(sum)
else:
avg.append(sum/(len(indices)-len(splinter)-1))
if(splinter):
k = 0
for i in sub:
total = 0
for j in splinter:
total = total + a[i][j]
avg[k] = avg[k] - (total/(len(splinter)))
k + = 1
positive = []
for i in range(0,len(avg)):
if(avg[i] > 0):
positive.append(avg[i])
flag = 1
if(flag = =1):
splinter.append(sub[avg.index(max(positive))])
sub.remove(sub[avg.index(max(positive))])
divisive(a,indices,splinter,sub)
else:
splinter.append(indices[avg.index(max(avg))])
sub[:] = subtract(indices,splinter)
divisive(a,indices,splinter,sub)

def original_subset(indices):
sp = np.zeros(shape = (len(indices),len(indices)))
for i in range(0,len(indices)):
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for j in range(0,len(indices)):
sp[i][j] = a[indices[i]][indices[j]]
return sp

def original_max(x):
new = original_subset(x)
return new.max()

def diameter(l):
return original_max(l)

def recursive(a,indices,u,v,clusters,g):
clus_s.append(len(indices))
d.append(diameter(indices))
parents[g] = indices
g- = 1
divisive(a,indices,u,v)
clusters.append(u)
clusters.append(v)
new = []
for i in range(len(clusters)):
new.append(clusters[i])
final.append(new)
x = []
y = []
store_list = []
max = -1
f = 0
for list in clusters:
if(diameter(list) > max):
if(len(list)! = 1):
f = 1
max = diameter(list)
store_list = (list)
if(f = =0):
return
else:
clusters.remove(store_list)
recursive(a,store_list,x,y,clusters,g)

def augmented_dendrogram(*args, **kwargs):
data = scipy.cluster.hierarchy.dendrogram(*args, **kwargs)
if not kwargs.get('no_plot', False):
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for i, d in zip(data['icoord'], data['dcoord']):
x = 0.5 * sum(i[1:3])
y = d[1]
plt.plot(x, y, 'ro')
plt.annotate("%.3g" % y, (x, y), xytext = (0,12),textcoords = 'offset 
points',va = 'top', ha = 'center')
return data

# ======================================================================
# Main program
# ======================================================================
a = np.load('distance_matrix.npy')
size = len(a)
g = (size-1)*2
parents = {}
final = []
clusters = []
indices = []
clus_s = []
d = []
Z = np.zeros(shape = (size-1,4))
p = []
q = []
ans = []
for i in range(0,len(a)):
indices.append(i)

for i in range(0,size):
list = []
list.append(i)
parents[i] = list

start = time.time()
recursive(a,indices,p,q,clusters,g)
print("Clustering done\t" + str(time.time()-start))
for i in range(0,len(d)):
Z[size-i-2][2] = d[i]
Z[size-i-2][3] = clus_s[i]

for i in range(len(final)-1,0,-1):
for j in range(0,len(final[i-1])):
if final[i-1][j] not in final[i]:

ans.append(final[i-1][j])
ans.append(indices)
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7.6 The fuzzy c-means clustering algorithm

One of the challenges related to the probabilistic algorithms is the presence of the pdfs, 
for which a suitable model must be assumed. However, when the clusters are not compact 
but shell-shaped, it is not easy to handle instances. Fuzzy clustering algorithms are a family 
of clustering algorithms that release themselves from such constraints. Over the past three 

for i in range(0,len(ans)):
if(len(ans[i]) < = 2):
Z[i][0] = ans[i][0]
Z[i][1] = ans[i][1]
else:
s = 0
add = []
common = []
for j in range(len(ans)-1,-1,-1):
if(set(ans[j]) < set(ans[i])):
common = ans[j]
break;
x = (subtract(ans[i],common))
for key in parents.keys():
if(parents[key] = =common):
Z[i][0] = key
break;
for key in parents.keys():
if(set(parents[key]) = =set(x)):
Z[i][1] = key
s = 1
break;
if(s = =0):
print(Z[i][0],Z[i][1],x)
names = [i for i in range(0,size)]
#%%
# ======================================================================
# Plot dendrogram of divisive clustering
# ======================================================================
plt.figure(figsize = (15, 15))
plt.title('Hierarchical Clustering Dendrogram (Divisive)')
plt.xlabel('Sequence No.')
plt.ylabel('Distance')
augmented_dendrogram(Z,labels = names,show_leaf_
counts = True,p = 25,truncate_mode = 'lastp')
plt.show()
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decades, these methods have been the focus of intensive research. The main point differen-
tiating the two methods is that a vector belongs to more than one cluster simultaneously in 
the fuzzy schemes, whereas each vector belongs exclusively to one cluster in the probabilistic 
schemes. The number of clusters and their shape is presumed to be known a priori. The clus-
ter shape is defined by the set of parameters adopted. The majority of the well-known fuzzy 
clustering algorithms are developed by minimizing a cost function (Theodoridis et al., 2010).

The extensively studied and implemented fuzzy c-means (FCM) clustering algorithm re-
quires a priori knowledge of the number of clusters. If FCM anticipates a desired number of 
clusters, and if it is possible to guess the positions for each cluster center, then the rules of 
output strongly depend on the selection of initial values. The FCM algorithm generates an 
appropriate cluster pattern to minimize by iteration an objective function that is based on 
cluster locations. It is also possible to automatically determine the number and initial position 
of cluster centers through search techniques available in the mountain clustering process. By 
measuring a search measure called the mountain function at each grid point, this approach 
considers each distinct grid point as a possible cluster core. It is a subtractive method of clus-
tering with enhanced computational effort, where data points are viewed as candidates for 
cluster centers rather than grid points. The estimate is strictly proportional to the number of 
data points and irrespective of the dimension of the problem by applying this approach. In 
this process, a high-potential data point that is a function of distance measurement is known 
as a cluster center, and data points close to new cluster centers are penalized to monitor the 
emergence of new cluster centers. Occasionally, a gradual membership of both clusters can 
be considered to be the points between cluster centers. This is compensated, of course, by 
distorting the meanings of “low” and “high.” The fuzzified c-means algorithm enables each 
data point to belong to a cluster to a degree defined by a membership grade, thereby allow-
ing each point to belong to several clusters. The fuzzy c-means algorithm partitions a set of 
K data points identified as m-dimensional vectors into c fuzzy clusters and finds a cluster 
center in each cluster to minimize an objective function. Fuzzy c-means is different from hard 
c-means, mostly as it uses fuzzy partitioning, where a point can belong to numerous clusters 
with membership degrees. The membership matrix M is allowed to have elements in the 
range [0, 1] to satisfy the fuzzy partitioning. Nonetheless, to maintain the properties of the M 
matrix, the total membership of all clusters of a point must always be equal to unity (Sumathi 
& Paneerselvam, 2010).

Example 7.6
The following Python code utilizes fuzzy c-means clustering algorithm to find the center of the 

clusters of Iris dataset. In this example, the Iris dataset that exists in sklearn.datasets is utilized. Scat-
ter plot is presented to show the effectiveness of the algorithm. The cluster centers are plotted in as 
scatter plot. Note that this example is adapted from the web page (https://github.com/omadson/
fuzzy-c-means). In order to call you should use “pip install fuzzy-c-means” or download the library 
from the web page (https://pypi.org/project/fuzzy-c-means/). 
# ======================================================================
# Fuzzy c-means clustering example
# ======================================================================

https://github.com/omadson/fuzzy-c-means
https://github.com/omadson/fuzzy-c-means
https://pypi.org/project/fuzzy-c-means/
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7.7 Density-based clustering algorithms

Clusters are known in this sense as one-dimensional space regions that are “dense” in 
points of X. Many density-based algorithms do not place any restrictions on the form of the 
resulting clusters. Therefore, these algorithms are capable of recovering arbitrarily shaped 

#pip install fuzzy-c-means
from fcmeans import FCM
from sklearn.datasets import make_blobs
from matplotlib import pyplot as plt
from seaborn import scatterplot as scatter
import numpy as np
import pandas as pd
from sklearn import datasets
from sklearn.datasets import load_iris
iris = load_iris()
X = iris['data']
y = iris['target']
# Plot the original data points
 plt.scatter(X[y == 0, 0], X[y == 0, 1], s = 80, c = 'orange',  
label = 'Iris-setosa')
 plt.scatter(X[y == 1, 0], X[y == 1, 1], s = 80, c = 'yellow',  
label = 'Iris-versicolour')
 plt.scatter(X[y == 2, 0], X[y == 2, 1], s = 80, c = 'green',  
label = 'Iris-virginica')
plt.xlabel('Sepal length')
plt.ylabel('Sepal width')
plt.title('Original data points')
plt.legend()
#%%
# fit the fuzzy-c-means
fcm = FCM(n_clusters = 3)
fcm.fit(X)
# outputs
fcm_centers = fcm.centers
fcm_labels = fcm.u.argmax(axis = 1)
# plot result
f, axes = plt.subplots(1, 2, figsize = (11,5))
scatter(X[:,0], X[:,1], ax = axes[0])
scatter(X[:,0], X[:,1], ax = axes[1], hue = fcm_labels)
 scatter(fcm_centers[:,0], fcm_centers[:,1],  
ax = axes[1],marker = "s",s = 200)
plt.show()
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clusters. We can also manage the outliers effectively. In addition, these algorithms’ time com-
plexity is less, making them able to process large datasets. DBSCAN, DBCLASD, DENCLUE, 
and OPTICS are the popular density-based algorithms. While these algorithms share the same 
basic philosophy, they differ in the quantification of the density (Theodoridis et al., 2010).

7.7.1 The DBSCAN algorithm

The “density” as defined in DBSCAN (density-based spatial clustering of applications with 
noise) is calculated around a point x as the number of points in X falling within a certain region 
in the one-dimensional space around x. The algorithm’s results are strongly influenced by the 
choice of both ε and q. Different parameter values can generate completely different results. 
Such parameters should be selected to allow the algorithm to detect the least “dense” cluster. 
In practice, to determine their “best” combination for the dataset at hand, one must test with 
different values for both ε and q. The DBSCAN is not suitable for cases where the clusters in X 
have large density differences and are not suitable for high-dimensional results. The OPTICS 
(ordering points to identify the clustering structure) algorithm is an extension of DBSCAN that 
overcomes the need to carefully pick the parameters ε and q. It produces a density-based cluster 
ordering, which describes the intrinsic hierarchical cluster structure of the dataset in an under-
standable manner. Experiments show that OPTICS’s computational complexity is approximate-
ly 1.6 of the computational complexity needed by DBSCAN. On the other hand, in practice, for 
different values of ε and q, one has to run DBSCAN more than once (Theodoridis et al., 2010).

Example 7.7
The following Python code utilizes DBSCAN clustering algorithm to find the clusters by using 

the scikit-learn library APIs. In this example, the synthetic data is utilized. Scatter plot is presented 
to show the effectiveness of the algorithm. Different measures are also calculated. Note that this 
example is adapted from scikit-learn.

# ======================================================================
# DBSCAN clustering
# ======================================================================
import numpy as np
from sklearn.cluster import DBSCAN
from sklearn import metrics
from sklearn.datasets import make_blobs
from sklearn.preprocessing import StandardScaler

# ######################################################################
# Generate sample data
centers = [[1, 1], [-1, -1], [1, -1]]
 X, labels_true = make_blobs(n_samples = 750, centers = centers, cluster_
std = 0.4,
   random_state = 0)
X = StandardScaler().fit_transform(X)
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# ######################################################################
# Compute DBSCAN
db = DBSCAN(eps = 0.3, min_samples = 10).fit(X)
core_samples_mask = np.zeros_like(db.labels_, dtype = bool)
core_samples_mask[db.core_sample_indices_] = True
labels = db.labels_

# Number of clusters in labels, ignoring noise if present.
n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0)
n_noise_ = list(labels).count(-1)

print('Estimated number of clusters: %d' % n_clusters_)
print('Estimated number of noise points: %d' % n_noise_)
 print("Homogeneity: %0.3f" % metrics.homogeneity_score(labels_true,  
labels))
 print("Completeness: %0.3f" % metrics.completeness_score(labels_true,  
labels))
print("V-measure: %0.3f" % metrics.v_measure_score(labels_true, labels))
print("Adjusted Rand Index: %0.3f"
       % metrics.adjusted_rand_score(labels_true, labels))
print("Adjusted Mutual Information: %0.3f"
       % metrics.adjusted_mutual_info_score(labels_true, labels))
print("Silhouette Coefficient: %0.3f"
        % metrics.silhouette_score(X, labels))
#%%
# ######################################################################
# Plot result
import matplotlib.pyplot as plt

# Black removed and is used for noise instead.
unique_labels = set(labels)
colors = [plt.cm.Spectral(each)
       for each in np.linspace(0, 1, len(unique_labels))]
for k, col in zip(unique_labels, colors):
if k == -1:
          # Black used for noise.
         col = [0, 0, 0, 1]

class_member_mask = (labels == k)

xy = X[class_member_mask & core_samples_mask]
plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor = tuple(col),
markeredgecolor = 'k', markersize = 14)
xy = X[class_member_mask & ∼core_samples_mask]
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7.7.2 OPTICS clustering algorithms

It is possible to extend the DBSCAN algorithm so that many distance parameters are pro-
cessed simultaneously, that is, the density-based clusters are built simultaneously with re-
spect to different densities. Nonetheless, we would need to follow a specific order in which 
objects are processed while extending a cluster to achieve a consistent result. We always have 
to pick an object that can be reached by density with respect to the lowest ε value to ensure 
that clusters are finished first with respect to higher density (i.e., smaller ε values). In theory, 
the OPTICS algorithm operates as such an extended DBSCAN algorithm for an infinite num-
ber of distance parameters that are less than a “generating distance” ε. The only difference 
is that we do not allocate memberships to the unit. Rather we store the order in which the 
objects are processed and the information that an extended DBSCAN algorithm would use to 
assign memberships to the cluster. OPTICS algorithm generates a database order, addition-
ally storing the core distance for each object and an appropriate reachability-distance. We will 
see that this knowledge is sufficient to remove all clustering based on density in relation to 
any distance ε’ that is smaller than the distance ε produced from this order. The runtime of 
the OPTICS algorithm is almost the same as the runtime for DBSCAN due to its conceptual 
equivalence to the DBSCAN algorithm. It just turned out that OPTICS’s run-time was almost 
always 1.6 times DBSCAN’s run-time. That an abstraction is possible only indicates that the 
cluster ordering of a dataset actually contains the information about that dataset’s intrinsic 
clustering structure (Ankerst, Breunig, Kriegel, & Sander, 1999).

plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor = tuple(col),
markeredgecolor = 'k', markersize = 6)
plt.title('Estimated number of clusters: %d' % n_clusters_)
plt.show()

Example 7.8
The following Python code utilizes OPTICS clustering algorithm to find the clusters by using the 

scikit-learn library APIs. This example employs synthetic data, which is generated so that the clus-
ters have different densities. The class sklearn.cluster.OPTICS is first utilized with its Xi cluster de-
tection method and then we set specific thresholds on the reachability that is related to class sklearn.
cluster.DBSCAN. We can see that the different clusters of OPTICS’s Xi method can be recovered 
with different choices of thresholds in DBSCAN. Reachability plot and scatter plot are presented to 
show the effectiveness of the algorithm. Note that this example is adapted from scikit-learn.

# ======================================================================
# Optics clustering example
# ======================================================================
# Authors: Shane Grigsby <refuge@rocktalus.com>
# Adrin Jalali <adrin.jalali@gmail.com>
# License: BSD 3 clause
from sklearn.cluster import OPTICS, cluster_optics_dbscan
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import matplotlib.gridspec as gridspec
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
# Generate synthetic sample data
np.random.seed(0)
n_points_per_cluster = 250
C1 = [-5, -2] + .8 * np.random.randn(n_points_per_cluster, 2)
C2 = [4, -1] + .1 * np.random.randn(n_points_per_cluster, 2)
C3 = [1, -2] + .2 * np.random.randn(n_points_per_cluster, 2)
C4 = [-2, 3] + .3 * np.random.randn(n_points_per_cluster, 2)
C5 = [3, -2] + 1.6 * np.random.randn(n_points_per_cluster, 2)
C6 = [5, 6] + 2 * np.random.randn(n_points_per_cluster, 2)
X = np.vstack((C1, C2, C3, C4, C5, C6))
#Use OPTICS for Clustering
clust = OPTICS(min_samples = 50, xi = .05, min_cluster_size = .05)

# Run the fit
clust.fit(X)

labels_050 = cluster_optics_dbscan(reachability = clust.reachability_,
   core_distances = clust.core_distances_,
   ordering = clust.ordering_, eps = 0.5)
labels_200 = cluster_optics_dbscan(reachability = clust.reachability_,
   core_distances = clust.core_distances_,
   ordering = clust.ordering_, eps = 2)

space = np.arange(len(X))
reachability = clust.reachability_[clust.ordering_]
labels = clust.labels_[clust.ordering_]

plt.figure(figsize = (15, 10))
G = gridspec.GridSpec(2, 3)
ax1 = plt.subplot(G[0, :])
ax2 = plt.subplot(G[1, 0])
ax3 = plt.subplot(G[1, 1])
ax4 = plt.subplot(G[1, 2])

# ======================================================================
# Reachability plot
# ======================================================================
colors = ['g.', 'r.', 'b.', 'y.', 'c.']
for klass, color in zip(range(0, 5), colors):
Xk = space[labels == klass]
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Rk = reachability[labels == klass]
ax1.plot(Xk, Rk, color, alpha = 0.3)
ax1.plot(space[labels == -1], reachability[labels == -1], 'k.', alpha = 0.3)
ax1.plot(space, np.full_like(space, 2., dtype = float), 'k-', alpha = 0.5)
ax1.plot(space, np.full_like(space, 0.5, dtype = float), 'k-.', alpha = 0.5)
ax1.set_ylabel('Reachability (epsilon distance)')
ax1.set_title('Reachability Plot')

# ======================================================================
# Plot OPTICS clustering results
# ======================================================================
colors = ['g.', 'r.', 'b.', 'y.', 'm.']
for klass, color in zip(range(0, 5), colors):
Xk = X[clust.labels_ == klass]
ax2.plot(Xk[:, 0], Xk[:, 1], color, alpha = 0.3)
 ax2.plot(X[clust.labels_ == -1, 0], X[clust.labels_ == -1, 1], 'k + ',  
alpha = 0.1)
ax2.set_title('Automatic Clustering\nOPTICS')

# ======================================================================
# Plot DBSCAN at 0.5 clustering results
# ======================================================================
colors = ['r', 'greenyellow', 'olive', 'g', 'b', 'c']
for klass, color in zip(range(0, 6), colors):
Xk = X[labels_050 == klass]
ax3.plot(Xk[:, 0], Xk[:, 1], color, alpha = 0.3, marker = '.')
 ax3.plot(X[labels_050 == -1, 0], X[labels_050 == -1, 1], 'k + ',  
alpha = 0.1)
ax3.set_title('Clustering at 0.5 epsilon cut\nDBSCAN')

# ======================================================================
# Plot DBSCAN at 2. clustering results
# ======================================================================
colors = ['r.', 'm.', 'y.', 'c.']
for klass, color in zip(range(0, 4), colors):
Xk = X[labels_200 == klass]
ax4.plot(Xk[:, 0], Xk[:, 1], color, alpha = 0.3)
 ax4.plot(X[labels_200 == -1, 0], X[labels_200 == -1, 1], 'k + ',  
alpha = 0.1)
ax4.set_title('Clustering at 2.0 epsilon cut\nDBSCAN')

plt.tight_layout()
plt.show()
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7.8 The expectation of maximization for Gaussian mixture model clustering

The problem is that we do not know either of the following: the distribution from which 
each training instance came or the five parameters of the mixture model. We are therefore 
adopting and iterating the technique used for the k-means clustering algorithm. Beginning 
with initial assumptions for the five parameters, we utilize them to measure each instance’s 
cluster probabilities, we utilize these probabilities to reestimate the parameters, and then we 
repeat them. This is called the EM algorithm to maximize expectations. The first step—calcu-
lating the probabilities of the cluster, which are the “expected” class values—is “expectation"; 
the second step, calculating the distribution parameters, is “maximizing” the probability of 
the distributions given the available data (Witten et al., 2016).

Now that we saw the Gaussian mixture model for two distributions, let us consider how 
to apply it to conditions that are more concrete. It is quite straightforward to adjust the al-
gorithm from two-class problems to multiclass problems as long as the number k of normal 
distributions is given in advance. The model can easily be extended to multiple attributes 
from a single numeric attribute per instance as long as it is assumed that attributes are inde-
pendent. The probabilities are multiplied for each attribute to obtain the joint probability for 
the instance. The independence assumption no longer holds when the dataset is understood 
to contain correlated attributes in advance. Instead, a normal bivariate distribution can model 
two attributes together, each having its own mean value, but the two standard deviations are 
replaced by a “covariance matrix” with four numeric parameters. Standard statistical tech-
niques are available to estimate instance class probabilities and to estimate the mean and 
covariance matrix, provided the instances and their class probabilities. A multivariate distri-
bution can accommodate multiple correlated attributes. The number of parameters increases 
with the square of the number of jointly varying attributes. Expectation—calculating the clus-
ter to which each instance belongs, provided the parameters of the distribution—is just like 
evaluating an unknown instance’s class. Maximization—estimating the parameters from the 
classified instances—is just like evaluating the probabilities of the attribute-value from the 
training instances, with the minor distinction being allocated probabilistically rather than 
categorically to classes in the EM algorithm instances (Witten et al., 2016).

Example 7.9
The following Python code utilizes Gaussian mixture models (GMM) clustering algorithm to 

find the clusters by using the scikit-learn library APIs. This example employs Iris dataset. Although 
GMM are generally employed for clustering, we can compare the found clusters with the actual 
classes from the dataset. Predicted labels are plotted on both training and held-out test data using 
a variety of GMM covariance types on the Iris dataset. GMMs with spherical, diagonal, full, and 
tied covariance matrices are compared in increasing order of performance. Although it is expected 
the full covariance will achieve the best performance in general, it is prone to overfitting on small 
datasets and does not generalize well to held-out test data. On the plots, training data is shown as 
dots, while test data is shown as crosses. Although the Iris dataset is four-dimensional, just the first 
two dimensions are shown here. Note that this example is adapted from scikit-learn.
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# ======================================================================
# GMM clustering
# ======================================================================
# Author: Ron Weiss <ronweiss@gmail.com > , Gael Varoquaux
# Modified by Thierry Guillemot <thierry.guillemot.work@gmail.com>
# License: BSD 3 clause

import matplotlib as mpl
import matplotlib.pyplot as plt

import numpy as np

from sklearn import datasets
from sklearn.mixture import GaussianMixture
from sklearn.model_selection import StratifiedKFold

colors = ['navy', 'red', 'green']

def make_ellipses(gmm, ax):
for n, color in enumerate(colors):
if gmm.covariance_type == 'full':
covariances = gmm.covariances_[n][:2, :2]
elif gmm.covariance_type == 'tied':
covariances = gmm.covariances_[:2, :2]
elif gmm.covariance_type == 'diag':
covariances = np.diag(gmm.covariances_[n][:2])
elif gmm.covariance_type == 'spherical':
 covariances = np.eye(gmm.means_.shape[1]) * gmm.covariances_[n]
v, w = np.linalg.eigh(covariances)
u = w[0] / np.linalg.norm(w[0])
angle = np.arctan2(u[1], u[0])
angle = 180 * angle / np.pi # convert to degrees
v = 2. * np.sqrt(2.) * np.sqrt(v)
ell = mpl.patches.Ellipse(gmm.means_[n, :2], v[0], v[1],
180 + angle, color = color)
ell.set_clip_box(ax.bbox)
ell.set_alpha(0.5)
ax.add_artist(ell)
ax.set_aspect('equal', 'datalim')

iris = datasets.load_iris()
# Break up the dataset into non-overlapping training (75%) and testing
# (25%) sets.
skf = StratifiedKFold(n_splits = 4)
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# Only take the first fold.
train_index, test_index = next(iter(skf.split(iris.data, iris.target)))

X_train = iris.data[train_index]
y_train = iris.target[train_index]
X_test = iris.data[test_index]
y_test = iris.target[test_index]

n_classes = len(np.unique(y_train))

# Try GMMs using different types of covariances.
estimators = {cov_type: GaussianMixture(n_components = n_classes,
         covariance_type = cov_type, max_iter = 20, random_state = 0)
         for cov_type in ['spherical', 'diag', 'tied', 'full']}
n_estimators = len(estimators)

plt.figure(figsize = (3 * n_estimators // 2, 6))
 plt.subplots_adjust(bottom = .01, top = 0.95, hspace = .15,  
wspace = .05,
left = .01, right = .99)
for index, (name, estimator) in enumerate(estimators.items()):

# Since we have class labels for the training data, we can
# initialize the GMM parameters in a supervised manner.
 estimator.means_init = np.array([X_train[y_train ==  
i].mean(axis = 0)
for i in range(n_classes)])

# Train the other parameters using the EM algorithm.
estimator.fit(X_train)

h = plt.subplot(2, n_estimators // 2, index + 1)
make_ellipses(estimator, h)

for n, color in enumerate(colors):
data = iris.data[iris.target == n]
plt.scatter(data[:, 0], data[:, 1], s = 0.8, color = color,
label = iris.target_names[n])
# Plot the test data with crosses
for n, color in enumerate(colors):
data = X_test[y_test == n]
plt.scatter(data[:, 0], data[:, 1], marker = 'x', color = color)
y_train_pred = estimator.predict(X_train)
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7.9 Bayesian clustering

There’s a problem, though, in GMM—overfitting. If we are not sure which attributes de-
pend on each other, why not be on the safe side and decide that all the attributes are covari-
ant? The reason is that the more parameters there are, the greater the probability of overfitting 
the resulting structure to the training data, and covariance significantly increases the number 
of parameters. Throughout machine learning, the problem of overfitting arises, and probabi-
listic clustering is no exception. There are two ways it can occur: by defining too many clus-
ters and by specifying too many parameters for distributions. The extreme case of too many 
clusters happens when there is one for each data point—then it is clear that the training data 
will be overfitted. In addition, when any of the normal distributions becomes so small that 
the cluster is based on just one data point, problems will arise in the GMM with EM model. 
Implementations also usually insist that there are at least two different data values in clusters. 
The problem of overfitting occurs when there are too many parameters. If you are not sure 
which attributes are covariant, you may try out different possibilities and select the one that 
maximizes the overall data likelihood due to the clustering that is found. However, the more 
parameters, the greater the average likelihood of results—not necessarily due to better clus-
tering but due to overfitting—would appear. The more parameters to play with, the simpler it 
is to find a seemingly good clustering. It would be good to penalize the model for introducing 
new parameters. Recently, complete Bayesian hierarchical clustering techniques have been 
developed that generate a distribution of probability over possible hierarchical structures 
representing a dataset as output. One of the main ways to do this is to follow a Bayesian 
approach where each parameter has a prior distribution of probability. Therefore whenever 
a new parameter is added, it is important to integrate its prior probability into the overall 
probability figure. Since this includes multiplying the total likelihood by a number less than 
1 (the previous likelihood), it will penalize the addition of new parameters automatically. 
The updated criteria will have to yield a gain that outweighs the cost in order to enhance 
the overall probability. AutoClass is an exhaustive Bayesian clustering strategy that utilizes 
all parameters of the finite-mixing model with prior distributions. It enables both numeric 

 train_accuracy = np.mean(y_train_pred.ravel() == y_train.ravel()) * 100
plt.text(0.05, 0.9, 'Train accuracy: %.1f' % train_accuracy,
transform = h.transAxes)
y_test_pred = estimator.predict(X_test)
 test_accuracy = np.mean(y_test_pred.ravel() == y_test.ravel()) * 100
plt.text(0.05, 0.8, 'Test accuracy: %.1f' % test_accuracy,
 transform = h.transAxes)
plt.xticks(())
plt.yticks(())
plt.title(name)

 plt.legend(scatterpoints = 1, loc = 'lower right', prop = dict(size = 12))
plt.show()
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and nominal attributes and uses the EM algorithm to estimate the probability distribution 
parameters in order to best fit the data. Since there is no guarantee that the EM algorithm will 
converge to the optimum global, the process will be repeated for several different initial value 
sets. AutoClass considers various cluster numbers and can consider the various covariance 
quantities and different types of underlying distribution of probability for numeric attributes 
(Witten et al., 2016).

Example 7.10
The following Python code compares two Gaussian mixture model (GMM) clustering algo-

rithms. It plots the confidence ellipsoids of a mixture of two Gaussians generated by expectation 
maximization (“GaussianMixture”) and variational inference (“BayesianGaussianMixture” with a 
Dirichlet process prior). This example employs synthetic data, which is generated so that the clus-
ters have different densities. Both models have access to five components with which to fit the data. 
Note that the expectation maximization model needs to employ all five components; on the other 
hand, the variational inference model efficiently only employs as many as are required for a good 
fit. It can be also seen that the expectation maximization model divides some components randomly 
since it is trying to fit too numerous components, but the Dirichlet process model adjusts the num-
ber of states automatically. Note that this example is adapted from scikit-learn.

=============================================
Comparison of Gaussian mixture models with EM and Bayesian
=============================================
import itertools
import numpy as np
from scipy import linalg
import matplotlib.pyplot as plt
import matplotlib as mpl
from sklearn import mixture

color_iter = itertools.cycle(['navy', 'c', 'cornflowerblue', 'gold',
'  darkorange'])

def plot_results(X, Y_, means, covariances, index, title):
splot = plt.subplot(2, 1, 1 + index)
for i, (mean, covar, color) in enumerate(zip(
means, covariances, color_iter)):
v, w = linalg.eigh(covar)
v = 2. * np.sqrt(2.) * np.sqrt(v)
u = w[0] / linalg.norm(w[0])
# as the DP will not use every component it has access to
# unless it needs it, we shouldn't plot the redundant
# components.
if not np.any(Y_ == i):
continue
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plt.scatter(X[Y_ == i, 0], X[Y_ == i, 1], .8, color = color)

# Plot an ellipse to show the Gaussian component
angle = np.arctan(u[1] / u[0])
angle = 180. * angle / np.pi # convert to degrees
ell = mpl.patches.Ellipse(mean, v[0], v[1], 180. + angle,  
color = color)
ell.set_clip_box(splot.bbox)
ell.set_alpha(0.5)
splot.add_artist(ell)

plt.xlim(-9., 5.)
plt.ylim(-3., 6.)
plt.xticks(())
plt.yticks(())
plt.title(title)

# Number of samples per component
n_samples = 500

# Generate random sample, two components
np.random.seed(0)
C = np.array([[0., -0.1], [1.7, .4]])
X = np.r_[np.dot(np.random.randn(n_samples, 2), C),
     .7 * np.random.randn(n_samples, 2) + np.array([-6, 3])]
# Fit a Gaussian mixture with EM using five components
 gmm = mixture.GaussianMixture(n_components = 5, covariance_ 
type = 'full').fit(X)
plot_results(X, gmm.predict(X), gmm.means_, gmm.covariances_, 0,
     'Gaussian Mixture')

# Fit a Dirichlet process Gaussian mixture using five components
dpgmm = mixture.BayesianGaussianMixture(n_components = 5,
     covariance_type = 'full').fit(X)
plot_results(X, dpgmm.predict(X), dpgmm.means_, dpgmm.covariances_, 1,
     'Bayesian Gaussian Mixture with a Dirichlet process prior')
plt.show()

7.10 Silhouette analysis

How can we detect the poor quality of the clustering algorithm? Silhouette is a useful 
technique. For each example that is grouped by cluster, a silhouette sorts and plots s(x). In 
this particular situation, in the construction of the silhouette, squared Euclidean distance is 
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utilized, but the approach can be extended to other distance metrics. It can be clearly seen that 
the first clustering is much stronger than the second. We can estimate the average silhouette 
values per cluster and over the entire data set in addition to the graphical representation 
(Flach, 2012). Silhouette analysis can be utilized to examine the amount of separation be-
tween the clusters. The silhouette plot shows how close each point in a cluster is to points in 
the neighboring clusters and thus provides a way to visually determine parameters such as 
the number of clusters. This measure has a range of [-1, 1]. Silhouette coefficients close to + 1 
imply that the sample is far from neighboring clusters. A value of 0 means that the sample is 
on or very close to the decision boundary between two neighboring clusters, and negative 
values suggest that the samples may have been allocated to the wrong cluster.

Example 7.11
The following Python code utilizes k-means clustering to find the silhouettes of marketing data 

by using the scikit-learn library APIs. This example employs marketing data to see the silhouettes 
and cluster centers. The silhouettes and cluster centers are plotted for different cases. Note that this 
example is taken from scikit-learn.

In this example the silhouette analysis is utilized to select an optimal value for “n_clusters.” The sil-
houette plot shows that the “n_clusters” value of 2, 3, and 6 are a bad pick for the given data due to the 
presence of clusters with below average silhouette scores and also due to wide fluctuations in the size 
of the silhouette plots. Silhouette analysis is more ambivalent in deciding between 4 and 5. Also from 
the thickness of the silhouette plot the cluster size can be visualized. The silhouette plot for cluster 0 
when “n_clusters” is equal to 2 is bigger in size due to the grouping of the 3 subclusters into one big 
cluster. Nevertheless, when the “n_clusters” are equal to 4 or 5, all the plots are more or less of similar 
thickness and hence are of similar sizes as can be confirmed from the labeled scatter plot on the right.
========================================================================
 Selecting the number of clusters with silhouette analysis on k-means 
clustering
========================================================================
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_samples, silhouette_score
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import numpy as np
import pandas as pd
# Import the Mall Customers dataset by pandas
dataset = pd.read_csv('Mall_Customers.csv')
X = dataset.iloc[:, [3,4]].values
range_n_clusters = [2, 3, 4, 5, 6]
for n_clusters in range_n_clusters:

# Create a subplot with 1 row and 2 columns
fig, (ax1, ax2) = plt.subplots(1, 2)
fig.set_size_inches(18, 7)
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# The 1st subplot is the silhouette plot
# The silhouette coefficient can range from -1, 1 but in this example 
all
# lie within [-0.1, 1]
ax1.set_xlim([-0.1, 1])
 # The (n_clusters + 1)*10 is for inserting blank space between silhou-
ette
# plots of individual clusters, to demarcate them clearly.
ax1.set_ylim([0, len(X) + (n_clusters + 1) * 10])

# Initialize the clusterer with n_clusters value and a random gen-
erator
# seed of 10 for reproducibility.
clusterer = KMeans(n_clusters = n_clusters, random_state = 10)
cluster_labels = clusterer.fit_predict(X)

# The silhouette_score gives the average value for all the sam-
ples.
# This gives a perspective into the density and separation of the 
formed
# clusters
silhouette_avg = silhouette_score(X, cluster_labels)
print("For n_clusters =", n_clusters,
"The average silhouette_score is :", silhouette_avg)

# Compute the silhouette scores for each sample
sample_silhouette_values = silhouette_samples(X, cluster_labels)
y_lower = 10
for i in range(n_clusters):
# Aggregate the silhouette scores for samples belonging to
# cluster i, and sort them
ith_cluster_silhouette_values = \
sample_silhouette_values[cluster_labels == i]
ith_cluster_silhouette_values.sort()
size_cluster_i = ith_cluster_silhouette_values.shape[0]
y_upper = y_lower + size_cluster_i
color = cm.nipy_spectral(float(i) / n_clusters)
ax1.fill_betweenx(np.arange(y_lower, y_upper),
0, ith_cluster_silhouette_values,
facecolor = color, edgecolor = color, alpha = 0.7)

# Label the silhouette plots with their cluster numbers at the middle
ax1.text(-0.05, y_lower + 0.5 * size_cluster_i, str(i))
# Compute the new y_lower for next plot
y_lower = y_upper + 10 # 10 for the 0 samples
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7.11 Image segmentation with clustering

Images are known as one of the most significant ways of transmitting information. A cru-
cial aspect of machine learning is to understand images and extract the information from 
them so that the knowledge can be used for certain tasks. The use of images for robotic navi-
gation would be an example. Other applications such as extracting malignant tissues from 
body scans and so on are an integral part of medical diagnosis. One of the first steps toward 
recognizing images is to segment them and find various objects in them. Features such as 

ax1.set_title("The silhouette plot for the various clusters.")
ax1.set_xlabel("The silhouette coefficient values")
ax1.set_ylabel("Cluster label")

# The vertical line for average silhouette score of all the values
ax1.axvline(x = silhouette_avg, color = "red", linestyle = "--")

ax1.set_yticks([]) # Clear the yaxis labels / ticks
ax1.set_xticks([-0.1, 0, 0.2, 0.4, 0.6, 0.8, 1])

# 2nd Plot showing the actual clusters formed
colors = cm.nipy_spectral(cluster_labels.astype(float) / n_clus-
ters)
ax2.scatter(X[:, 0], X[:, 1], marker = '.', s = 30, lw = 0, al-
pha = 0.7,
c = colors, edgecolor = 'k')
# Labeling the clusters
centers = clusterer.cluster_centers_
# Draw white circles at cluster centers
ax2.scatter(centers[:, 0], centers[:, 1], marker = 'o',
c = "white", alpha = 1, s = 200, edgecolor = 'k')
for i, c in enumerate(centers):
ax2.scatter(c[0], c[1], marker = '$%d$' % i, alpha = 1,
s = 50, edgecolor = 'k')

ax2.set_title("The visualization of the clustered data.")
ax2.set_xlabel("Feature space for the 1st feature")
ax2.set_ylabel("Feature space for the 2nd feature")

 plt.suptitle(("Silhouette analysis for KMeans clustering on 
sample  
  data "
"with n_clusters = %d" % n_clusters),
fontsize = 14, fontweight = 'bold')

plt.show()
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the histogram plots and the transformation of the frequency domain can be used to do this 
(Tatiraju & Mehta, 2008).

In image recognition and computer vision, image segmentation is an important prepro-
cessing procedure. Image segmentation corresponds to the decomposition of an image with 
the same attributes in a number of nonoverlapping relevant areas. Image segmentation is 
a crucial technique in digital image processing, and segmentation accuracy directly affects 
follow-up tasks’ effectiveness. The current segmentation techniques have achieved many 
successes to varying degrees, considering their complexity and difficulty, but research on 
this dimension still faces many problems. Clustering analysis algorithm splits the datasets 
according to a certain standard into different groups, so it has a broad implementation in the 
segmentation of images. Image segmentation as one of the main digital image processing 
techniques, coupled with relevant professional skills, is commonly used for machine vision, 
facial recognition, fingerprint recognition, traffic control systems, satellite image tracking ob-
jects (roads, woods, etc.), pedestrian detection, medical imaging, and many other areas and is 
worth exploring in-depth (Zheng, Lei, Yao, Gong, & Yin, 2018).

Since the image segmentation plays a crucial role in many applications for image process-
ing, several algorithms for image segmentation have been developed in the last decades. But 
these algorithms are continuously being pursued, as image segmentation is a challenging 
problem that requires a good solution for the subsequent image-processing steps. Cluster-
ing algorithm was not originally developed exclusively for image processing; the computer 
vision community adopted it for image segmentation. For example, the k-means algorithm 
needs a priori knowledge of the number of clusters (k) to be grouped into. Every pixel of the 
image is allocated to the cluster whose centroid is nearest to the pixel repeatedly and itera-
tively. Based on the pixels allocated to that cluster, the centroid of each cluster is decided. Both 
the choice of pixel membership in the clusters and the computation of the centroids are based 
on calculating distances. The Euclidean distance is most commonly utilized since it is simple 
to calculate. The problem is that using Euclidean distance will lead to errors in the final seg-
mentation of the image (Gaura, Sojka, & Krumnikl, 2011).

Example 7.12
The following Python code is utilized for segmenting the images of Greek coins in regions by 

using the scikit-learn library APIs. In this example the coins dataset, which exists in skimage.data, 
is utilized. This example utilizes “spectral_clustering” on a graph created from voxel-to-voxel dif-
ference on an image to divide this image into multiple, partly homogeneous regions. This process 
(spectral clustering on an image) is an effective approximate solution for finding normalized graph 
cuts. There are two options to assign labels:

•“K-means” spectral clustering will cluster samples in the embedding space employing a k-means 
algorithm.

•“Discrete” will iteratively search for the closest partition space to the embedding space.

Note that this example is adapted from scikit-learn.
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# ======================================================================
# Image segmentation with clustering
# ======================================================================
# Author: Gael Varoquaux <gael.varoquaux@normalesup.org > , Brian Cheung
# License: BSD 3 clause
import time
import numpy as np
from distutils.version import LooseVersion
from scipy.ndimage.filters import gaussian_filter
import matplotlib.pyplot as plt
import skimage
from skimage.data import coins
from skimage.transform import rescale
from sklearn.feature_extraction import image
from sklearn.cluster import spectral_clustering

# these were introduced in skimage-0.14
if LooseVersion(skimage.__version__) >= '0.14':
     rescale_params = {'anti_aliasing': False, 'multichannel': False}
else:
     rescale_params = {}
# load the coins as a numpy array
orig_coins = coins()

# Resize it to 20% of the original size to speed up the processing
# Applying a Gaussian filter for smoothing prior to down-scaling
# reduces aliasing artifacts.
smoothened_coins = gaussian_filter(orig_coins, sigma = 2)
rescaled_coins = rescale(smoothened_coins, 0.2, mode = "reflect",
     **rescale_params)

# Convert the image into a graph with the value of the gradient on the
# edges.
graph = image.img_to_graph(rescaled_coins)

# Take a decreasing function of the gradient: an exponential
# The smaller beta is, the more independent the segmentation is of the
# actual image. For beta = 1, the segmentation is close to a voronoi
beta = 10
eps = 1e-6
graph.data = np.exp(-beta * graph.data / graph.data.std()) + eps

 # Apply spectral clustering (this step goes much faster if you have  
pyamg
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7.12 Feature extraction with clustering

K-means clustering reduces the data dimension by finding appropriate representatives or 
centroids for clusters, or groups, of data points. All elements of every cluster are then char-
acterized by their cluster’s corresponding centroid. Thus the problem of clustering is parti-
tioning data into clusters with similar characteristics, and with k-means this characteristic 
especially has geometric closeness in the feature space. When this is represented clearly, it 
can be employed to create a learning problem for an accurate recovery of cluster centroids, 
dropping the impractical notion. If we denote the centroid of the kth cluster by ck and the set 
of indices of the subset of those P data points by Sk, and x1 . . . xP, belongs to this cluster, then 
the points in the kth cluster must lie close to its centroid for all k = 1 . . . K. These necessary 
relations can be represented more appropriately by first stacking the centroids column-wise 
into the centroid matrix.

=C c c · cK1 2 (7.1)C=c1 c2 ··cK

# installed)
N_REGIONS = 25

######################################################################
# Visualize the resulting regions

for assign_labels in ('kmeans', 'discretize'):
t0 = time.time()
labels = spectral_clustering(graph, n_clusters = N_REGIONS,
assign_labels = assign_labels, random_state = 42)
t1 = time.time()
labels = labels.reshape(rescaled_coins.shape)

plt.figure(figsize = (5, 5))
plt.imshow(rescaled_coins, cmap = plt.cm.gray)
for l in range(N_REGIONS):
plt.contour(labels == l,
 colors = [plt.cm.nipy_spectral(l / float(N_REGIONS))])
plt.xticks(())
plt.yticks(())
title = 'Spectral clustering: %s, %.2fs' % (assign_labels, (t1 - t0))
print(title)
plt.title(title)

plt.show()
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Then designating by ek the kth standard basis vector (that is a K × 1 vector with a 1 in the 
kth slot and zeros elsewhere), we may represent Cek = ck, and hence the relations in Eq. (7.1) 
can be represented for each k as

≈ ∈p SC x for allek p k (7.2)

Next, to write these equations even more appropriately we stack the data column-wise 
into the data matrix X =x1, x2   · · xP and produce a K × P assignment matrix W. The pth column 
of this matrix, represented as wp, is the standard basis vector related to the cluster to which 
the pth point belongs, that is, wp = ek if p ∈ Sk. With this wp notation we can represent each 
equation in Eq. (7.2) as Cwp ≈ xp for all p ∈ Sk, or using matrix notation all K such relations 
simultaneously as

≈CW X. (7.3)

We can forget the assumption that we know the locations of cluster centroids and have 
knowledge of which points are assigned to them—that is, the accurate depiction of the cen-
troid matrix C and assignment matrix W. We want to learn the correct values for these two 
matrices. In particular, we know that the ideal C and W fulfill the compact relationships 
depicted in Eq. (7.3), that is, that CW ≈ X or in other words that CW − X2F is small, while W 
is composed of appropriately selected standard basis vectors associated with the data points 
to their respective centroids. Note that the aim is nonconvex, and since we cannot minimize 
over both C and W at the same time, it is solved via alternating minimization, that is, by alter-
nately minimizing the objective function over one of the variables (C or W) while keeping the 
other variable fixed (Watt, Borhani, & Katsaggelos, 2016).

Cek≍xp for all p ∈ Sk

CW≍X.

Example 7.13
The following Python code presents the usage of k-means and GMM clustering algorithms as 

a feature extractor. We will utilize the Iris dataset, which includes three types (class) of Iris flowers 
(Setosa, Versicolour, and Virginica) with four attributes: sepal length, sepal width, petal length, and 
petal width. In this example we utilize the sklearn.cluster.KMeans and sklearn.mixture.Gaussian-
Mixture to extract the features of the Iris dataset. In scikit-learn, k-means and GMM are implement-
ed as a cluster object that are sklearn.cluster.KMeans and sklearn.mixture.GaussianMixture and are 
employed to extract the features. Note that this example is adapted from Python–scikit-learn.

# ======================================================================
# Feature extraction with k-means and GMM clustering
# ======================================================================
" " "
Created on Mon Dec 23 11:35:28 2019
@author: absubasi
" " "
from sklearn import metrics
from sklearn.metrics import confusion_matrix
import seaborn as sns
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import matplotlib.pyplot as plt
from io import BytesIO #needed for plot
# ======================================================================
# Define utility functions
# ======================================================================
def print_confusion_matrix_and_save(y_test, y_pred):
#Print the Confusion Matrix
matrix = confusion_matrix(y_test, y_pred)
plt.figure(figsize = (6, 4))
sns.heatmap(matrix, square = True, annot = True, fmt = 'd',  

  cbar = False)
plt.title('Confusion Matrix')
plt.ylabel('True Label')
plt.xlabel('Predicted Label')
plt.show()
#Save The Confusion Matrix
plt.savefig("Confusion.jpg")
# Save SVG in a fake file object.
f = BytesIO()
plt.savefig(f, format = "svg")

def Performance_Metrics(y_test,y_pred):
print('Test Accuracy:', np.round(metrics.accuracy_score(y_test,y_ 

  pred),4))
print('Precision:', np.round(metrics.precision_score(y_test,
y_pred,average = 'weighted'),4))
print('Recall:', np.round(metrics.recall_score(y_test,y_pred,
average = 'weighted'),4))
print('F1 Score:', np.round(metrics.f1_score(y_test,y_pred,
average = 'weighted'),4))
print('Cohen Kappa Score:', np.round(metrics.cohen_kappa_score(y_ 

  test,y_pred),4))
print('Matthews Corrcoef:', np.round(metrics.matthews_corrcoef(y_ 

  test,y_ pred),4))
print('\t\tClassification Report:\n', metrics.classification_report(y_ 

  test,y_pred))
print("Confusion Matrix:\n",confusion_matrix(y_test,y_pred))

# ======================================================================
# Random forest classifier with k-means for feature extraction
# ======================================================================
#load Data
from sklearn.datasets import load_iris
import numpy as np
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iris = load_iris()
X = iris['data']
y = iris['target']
#Extract Features
from sklearn.cluster import KMeans
kmeans = KMeans(n_clusters = 6).fit(X)
 distances = np.column_stack([np.sum((X - center)**2, axis = 1)**0.5 for 
center in kmeans.cluster_centers_])

from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
# Split dataset into training set and test set
# 70% training and 30% test
Xtrain, Xtest, ytrain, ytest = train_test_split(distances, y,test_ 

  size = 0.3, random_state = 0)
#In order to change to accuracy increase n_estimators
#Classify Data
" " "RandomForestClassifier(n_estimators = 'warn', criterion = 'gini',  

  max_depth = None,
min_samples_split = 2, min_samples_leaf = 1, min_weight_fraction_ 

  leaf = 0.0,
max_features = 'auto', max_leaf_nodes = None, min_impurity_ 

  decrease = 0.0,
min_impurity_split = None, bootstrap = True, oob_score = False, n_ 

  jobs = None,
random_state = None, verbose = 0, warm_start = False, class_ 

  weight = None)" " "
clf = RandomForestClassifier(n_estimators = 200)
#Create the Model
#Train the model with Training Dataset
clf.fit(Xtrain,ytrain)
#Test the model with Testset
ypred = clf.predict(Xtest)

#Evaluate the Model and Print Performance Metrics
Performance_Metrics(ytest,ypred)
print_confusion_matrix_and_save(ytest, ypred)
#%%
# ======================================================================
# Random forest classifier with GMM for feature extraction
# ======================================================================
#load Data
from sklearn.datasets import load_iris
import numpy as np
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iris = load_iris()
X = iris['data']
y = iris['target']
#Extract Features
from sklearn.mixture import GaussianMixture
gmm = GaussianMixture(n_components = 8).fit(X)
proba = gmm.predict_proba(X)

from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
# Split dataset into training set and test set
# 70% training and 30% test
Xtrain, Xtest, ytrain, ytest = train_test_split(proba, y,test_ 

  size = 0.3, random_state = 0)
#In order to change to accuracy increase n_estimators
" " "RandomForestClassifier(n_estimators = 'warn', criterion = 'gini',  

  max_depth = None,
min_samples_split = 2, min_samples_leaf = 1, min_weight_fraction_ 

  leaf = 0.0,
max_features = 'auto', max_leaf_nodes = None, min_impurity_ 

  decrease = 0.0,
min_impurity_split = None, bootstrap = True, oob_score = False, n_ 

  jobs = None,
 random_state = None, verbose = 0, warm_start = False, class_
weight = None)" " "
clf = RandomForestClassifier(n_estimators = 200)
#Create the Model
#Train the model with Training Dataset
clf.fit(Xtrain,ytrain)
#Test the model with Testset
ypred = clf.predict(Xtest)

#Evaluate the Model and Print Performance Metrics
Performance_Metrics(ytest,ypred)
print_confusion_matrix_and_save(ytest, ypred)
#%%
# ======================================================================
# k-NN classifier with k-means for feature extraction
# ======================================================================
#load Data
from sklearn.datasets import load_iris
import numpy as np
iris = load_iris()
X = iris['data']
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y = iris['target']
#Extract Features
from sklearn.cluster import KMeans
kmeans = KMeans(n_clusters = 6).fit(X)
 distances = np.column_stack([np.sum((X - center)**2, axis = 1)**0.5 for 
center in kmeans.cluster_centers_])

from sklearn.model_selection import train_test_split
# Split dataset into training set and test set
# 70% training and 30% test
 Xtrain, Xtest, ytrain, ytest = train_test_split(distances, y,test_
size = 0.3, random_state = 0)
from sklearn.neighbors import KNeighborsClassifier
clf = KNeighborsClassifier(n_neighbors = 1)
#Create the Model
#Train the model with Training Dataset
clf.fit(Xtrain,ytrain)
#Test the model with Testset
ypred = clf.predict(Xtest)

#Evaluate the Model and Print Performance Metrics
Performance_Metrics(ytest,ypred)
print_confusion_matrix_and_save(ytest, ypred)

#%%
# ======================================================================
# k-NN classifier with GMM for feature extraction
# ======================================================================
#load Data
from sklearn.datasets import load_iris
import numpy as np
iris = load_iris()
X = iris['data']
y = iris['target']
#Extract Features
from sklearn.mixture import GaussianMixture
gmm = GaussianMixture(n_components = 4).fit(X)
proba = gmm.predict_proba(X)

from sklearn.model_selection import train_test_split
# Split dataset into training set and test set
# 70% training and 30% test
 Xtrain, Xtest, ytrain, ytest = train_test_split(proba, y,test_
size = 0.3, random_state = 0)
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from sklearn.neighbors import KNeighborsClassifier
clf = KNeighborsClassifier(n_neighbors = 1)
#Create the Model
#Train the model with Training Dataset
clf.fit(Xtrain,ytrain)
#Test the model with Testset
ypred = clf.predict(Xtest)

#Evaluate the Model and Print Performance Metrics
Performance_Metrics(ytest,ypred)
print_confusion_matrix_and_save(ytest, ypred)

#%%
# ======================================================================
# MLP classifier with k-means for feature extraction
# ======================================================================
#load Data
from sklearn.datasets import load_iris
import numpy as np
iris = load_iris()
X = iris['data']
y = iris['target']
#Extract Features
from sklearn.cluster import KMeans
kmeans = KMeans(n_clusters = 6).fit(X)
 distances = np.column_stack([np.sum((X - center)**2, axis = 1)**0.5 for 
center in kmeans.cluster_centers_])

from sklearn.model_selection import train_test_split
# Split dataset into training set and test set
# 70% training and 30% test
 Xtrain, Xtest, ytrain, ytest = train_test_split(distances, y,test_
size = 0.3, random_state = 0)
from sklearn.neural_network import MLPClassifier
 clf = MLPClassifier(hidden_layer_sizes = (100, ), learning_rate_
init = 0.001,
alpha = 1, momentum = 0.9,max_iter = 1000)
#Create the Model
#Train the model with Training Dataset
clf.fit(Xtrain,ytrain)
#Test the model with Testset
ypred = clf.predict(Xtest)
#Evaluate the Model and Print Performance Metrics
Performance_Metrics(ytest,ypred)
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7.13 Clustering for classification

How can unlabeled data be utilized for classification? The idea is to employ naïve Bayes 
to utilize the EM iterative clustering algorithm to learn classes from a small, labeled dataset 
and then extend it to a large, unlabeled dataset. Hence in the first step, use the labeled data 
to train a classifier. In the second step, apply it to the unlabeled data for class probabilities 
labeling (the “expectation” step). In the third step, use all data labels to train a new classifier 
(the “maximization” step). In the last step, iterate until convergence. The EM method ensures 

print_confusion_matrix_and_save(ytest, ypred)
#%%
# ======================================================================
# MLP classifier with GMM for feature extraction
# ======================================================================
#load Data
from sklearn.datasets import load_iris
import numpy as np
iris = load_iris()
X = iris['data']
y = iris['target']
#Extract Features
from sklearn.mixture import GaussianMixture
gmm = GaussianMixture(n_components = 8).fit(X)
proba = gmm.predict_proba(X)

from sklearn.model_selection import train_test_split
# Split dataset into training set and test set
# 70% training and 30% test
  Xtrain, Xtest, ytrain, ytest = train_test_split(proba, y,test_ 
size = 0.3, random_state = 0)
from sklearn.neural_network import MLPClassifier
 clf = MLPClassifier(hidden_layer_sizes = (100, ), learning_rate_
init = 0.001,
alpha = 1, momentum = 0.9,max_iter = 1000)
#Create the Model
#Train the model with Training Dataset
clf.fit(Xtrain,ytrain)
#Test the model with Testset
ypred = clf.predict(Xtest)

#Evaluate the Model and Print Performance Metrics
Performance_Metrics(ytest,ypred)
print_confusion_matrix_and_save(ytest, ypred)
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that parameters of the model are found that have equal or greater likelihood for each itera-
tion. The key question that can only be answered empirically is whether these calculations of 
higher probability parameters can improve the performance of classification. This could work 
well intuitively. Those are used by the EM method to generalize the learned model in order 
to use data that do not appear in the labeled dataset. EM generalizes the model iteratively 
to classify data correctly. This could work with any algorithm for classification and iterative 
clustering. But it’s essentially a bootstrapping technique, and you need to be careful to make 
sure the feedback loop is positive. It seems better to use probabilities rather than hard deci-
sions since it helps the process converge slowly instead of jumping to incorrect conclusions. 
Together with the standard probabilistic EM technique, naïve Bayes is a particularly suitable 
alternative since both share the same basic assumption: independence between attributes or, 
more specifically, conditional independence between class attributes. However, in this way, 
coupling naïve Bayes and EM works well in the classification of documents. Employing less 
than one-third of the labeled training instances as well as five times as many unlabeled ones, 
it can achieve the performance of a traditional learner in a particular classification task. If la-
beled instances are costly but unlabeled ones are essentially free, this is a good tradeoff. With 
a small number of labeled documents, by adding other unlabeled documents, classification 
accuracy can be dramatically improved (Witten et al., 2016).

Two methodological refinements have been shown to enhance the performance. The first 
is inspired by experimental evidence showing that the inclusion of unlabeled data will de-
crease rather than improve the performance when there are many labeled data. Inherently, 
hand-labeled data must be less noisy than automatically labeled data. The remedy is to add a 
weighting parameter, which decreases the contribution of the unlabeled data. By maximizing 
the weighted probability of labeled and unlabeled instances, this can be integrated into EM’s 
maximization stage. The second improvement is to allow multiple clusters for each class. The 
EM clustering algorithm assumes that a mixture of various probability distributions, one per 
cluster, produces the data randomly. Initially, each labeled document is assigned randomly to 
each of its components in a probabilistic fashion with several clusters per class. The EM algo-
rithm’s maximization step remains as it was before, but the expectation step is adjusted not 
only to probabilistically label each example with the classes but to assign it to the components 
within the class (Witten et al., 2016).

Example 7.14
The following Python code utilizes k-means clustering for classification of handwritten digits 

by using the scikit-learn library APIs. In this example, the handwritten digits dataset that exists 
in sklearn.datasets is utilized. The classification accuracy, precision, recall, F1 score, Cohen kappa 
score, and Matthews correlation coefficient are calculated. The classification report and confusion 
matrix are also given. Note that this example is adapted from scikit-learn.

# ======================================================================
# Clustering as a classifier
# ======================================================================
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#k-means on digits
import seaborn as sns
import matplotlib.pyplot as plt
from io import BytesIO #needed for plot
from sklearn.metrics import confusion_matrix
from sklearn import metrics
import numpy as np
# ======================================================================
# Define utility functions
# ======================================================================
def print_confusion_matrix_and_save(y_test, y_pred):
#Print the Confusion Matrix
matrix = confusion_matrix(y_test, y_pred)
plt.figure(figsize = (6, 4))
sns.heatmap(matrix, square = True, annot = True, fmt = 'd',  

  cbar = False)
plt.title('Confusion Matrix')
plt.ylabel('True Label')
plt.xlabel('Predicted Label')
plt.show()
#Save The Confusion Matrix
plt.savefig("Confusion.jpg")
# Save SVG in a fake file object.
f = BytesIO()
plt.savefig(f, format = "svg")

def Performance_Metrics(y_test,y_pred):
print('Test Accuracy:', np.round(metrics.accuracy_score(y_test,y_ 

  pred),4))
print('Precision:', np.round(metrics.precision_score(y_test,
y_pred,average = 'weighted'),4))
print('Recall:', np.round(metrics.recall_score(y_test,y_pred,
 average = 'weighted'),4))
print('F1 Score:', np.round(metrics.f1_score(y_test,y_pred,
 average = 'weighted'),4))
print('Cohen Kappa Score:', np.round(metrics.cohen_kappa_score(y_ 

  test,y_pred),4))
print('Matthews Corrcoef:', np.round(metrics.matthews_corrcoef(y_ 

  test,y_pred),4))
print('\t\tClassification Report:\n', metrics.classification_report(y_ 

  test,y_pred))
print("Confusion Matrix:\n",confusion_matrix(y_test,y_pred))
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# ======================================================================
from sklearn.cluster import KMeans
from sklearn.datasets import load_digits
digits = load_digits()
digits.data.shape

kmeans = KMeans(n_clusters = 10, random_state = 0)
clusters = kmeans.fit_predict(digits.data)
kmeans.cluster_centers_.shape

fig, ax = plt.subplots(2, 5, figsize = (8, 3))
centers = kmeans.cluster_centers_.reshape(10, 8, 8)
for axi, center in zip(ax.flat, centers):
axi.set(xticks = [], yticks = [])
axi.imshow(center, interpolation = 'nearest', cmap = plt.cm.binary)

#%%
from scipy.stats import mode
labels = np.zeros_like(clusters)
for i in range(10):
mask = (clusters == i)
labels[mask] = mode(digits.target[mask])[0]

# Evaluate and Print the Performance Metrics
Performance_Metrics(digits.target, labels)
#Print and Save Confusion Matrix
print_confusion_matrix_and_save(digits.target, labels)

#%%
from sklearn.manifold import TSNE

# Project the data: this step will take several seconds
tsne = TSNE(n_components = 2, init = 'random', random_state = 0)
digits_proj = tsne.fit_transform(digits.data)

# Compute the clusters
kmeans = KMeans(n_clusters = 10, random_state = 0)
clusters = kmeans.fit_predict(digits_proj)

# Permute the labels
labels = np.zeros_like(clusters)
for i in range(10):
mask = (clusters == i)
labels[mask] = mode(digits.target[mask])[0]
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# Evaluate and Print the Perfromance Metrics
Performance_Metrics(digits.target, labels)
#Print and Save Confusion Matrix
print_confusion_matrix_and_save(digits.target, labels)

7.14 Summary

In this chapter we present many examples related to clustering problems, which contain 
unsupervised learning techniques. Since clustering is a popular task with different applica-
tions in machine learning, this particular chapter is dedicated to explaining and studying 
it. Clustering is the process of automatically grouping a collection of objects in such a way 
that identical objects end up in the same category and divide dissimilar objects in different 
groups. For instance, retailers cluster customers, on the basis of their customer profiles, for 
the purpose of targeted marketing; computational biologists cluster genes on the basis of 
similarities in their expression in diverse researches; and astronomers cluster stars on the 
basis of their distinct closeness. In the previous chapters the learning tasks focused primarily 
on supervised learning problems. In this chapter we present several unsupervised machine 
learning algorithms for clustering. Besides the utilization of clustering in grouping unlabeled 
data, they can be used for image segmentation, feature extraction, and classification as well. 
We discussed in detail the application of these algorithms in different fields.
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Nonlinear transformation, 36
Nonparametric model, 138
Non-probability-based success indicators, 467
Normalization, 39
NumPy library, 24

O
Online learning, 7, 104
Optical character recognition, 105
OPTICS clustering algorithms, 486

P
PAM. See Partitioning around medoids (PAM) 
Pandas, 24
Parametric linear models, 107
Partition clustering, 466
Partitioning around medoids (PAM), 471
PCA. See Principle component analysis (PCA) 
PDF. See Probability density function (PDF) 
Percentiles, 56
Perceptron, 116, 118
Performance evaluation 

choose right algorithm, 22
confusion matrix, 16
F-measure analysis, 18
Kappa statistic, 19
k-Fold cross-validation in scikit-learn, 21
ROC analysis, 18

Performance measures, 20
Phishing website detection, 326
PID dataset. See Pima Indians diabetes (PID) dataset 
Pima Indians diabetes (PID) dataset, 306
Pitfalls, 23
Pooling layer, 189
Possibilistic clustering algorithms, 469
Power spectral density (PSD), 43
Power transforms, 36
Prediction performance metrics for regression, 15t
Principle component analysis (PCA), 62
Probabilistic clustering algorithms, 469
Probability density function (PDF), 78
Prosthesis control, electromyogram signal analysis in, 

262, 264f
PSD. See Power spectral density (PSD) 
Python 

libraries 
Keras, 99
Scikit-learn, 96
TensorFlow, 99

machine learning environment 
drawback, 24
NumPy library, 24
Pandas, 24
pitfalls, 23
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Q
Quantiles, 31

transforms, 31

R
RAE. See Relative absolute error (RAE) 
Random forest, 154
Ranking concept, 2
RBM. See Restricted Boltzmann machines (RBM) 
Receiver operating characteristic (ROC) area, 15
Recognition of people, 105
Recurrent neural network (RNN), 182
Recursive feature elimination (RFE), 60
Regression, 2, 93, 106, 391

examples 
bike usage prediction, 457
electrical load forecasting, 415
house prices prediction, 441
inflation forecasting, 413
stock market price index return forecasting, 392
tourism demand forecasting, 429
wind speed forecasting, 424

Lasso, 106
linear model, 106
logistic, 118
ridge model, 106
simple model, 106
techniques, 106

Rehabilitation robotics, electromyogram signal analysis 
in, 271

Reinforcement learning, 104, 199
Relative absolute error (RAE), 15
Restricted Boltzmann machines (RBM), 184
RFE. See Recursive feature elimination (RFE) 
Ridge regression model, 106
RMSE. See Root mean-squared error (RMSE) 
RNN. See Recurrent neural network (RNN) 
ROC analysis, 18
ROC area. See Receiver operating characteristic (ROC) 

area 
Root mean-squared error (RMSE), 15
Root relative squared error (RRSE), 15
RRSE. See Root relative squared error (RRSE) 

S
Sample complexity concept, 1
Scikit-learn application, 96
Secondary mortgage markets, 441
SelectFromModel, meta-transformer, 61
Selecting modeling techniques, 11
Semantics of words, 372
SEMG. See Surface electromyogram (sEMG) 
Semisupervised learning, 104
Sensor-based human activity recognition, 289

Sentiment analysis, 103
Sequential algorithms, 468
Short-term load forecasting (STLF), 415
Silhouette, 193

analysis, 494
Similarity-based clustering, 466
Simple linear regression model, 106
Simple regression, 106
Singular value decomposition (SVD) algorithm, 64
Sklearn.preprocessing package, 33
Smart grids, 416
Smart healthcare monitoring systems (SHMS), 

experimental setup for, 289f
Smartphone-based recognition of human activities, 292, 

293f
Spam e-mail detection, 330
Spam filtering, 105

approaches, 330
Speech recognition, 105
Standard artificial neural networks, 124
Standardization, 33, 34
StandardScaler, 34, 35
Stationary wavelet transform (SWT), 49
Statistical features, 29
STLF. See Short-term load forecasting (STLF) 
Stochastic learning, 5
Stock market price index return forecasting, 392
Stock market, technical indicators for, 393t
Structured annotation, 93
Structured features, 32
Supervised learning, 12, 103

algorithms, 104
artificial neural networks, 124
autoencoders, 184
bagging, 149
boosting 

adaptive boosting, 161
gradient boosting, 167

classification, 105
convolutional neural network (CNN) 

convolution layer, 188
pooling layer, 189

decision tree classifiers, 138
deep learning, 177
deep neural networks, 179
ensemble methods, 148, 171
forecasting, prediction, and regression, 106
k-Nearest neighbors, 128
linear models, 107
long short-term memory (LSTM) networks, 184
naive Bayes, 145
perceptron, 116
random forest, 154
recurrent neural network, 182
support vector machines, 133
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Support vector machines (SVMs), 105, 133
Surface electromyogram (sEMG), 269
SVD algorithm. See Singular value decomposition 

(SVD) algorithm 
SVMs. See Support vector machines (SVMs) 
SWT. See Stationary wavelet transform (SWT) 
Syntax of Python, 22

T
Tagging method, 103
Target variable, 5
TensorFlow application, 99
Test set, 5
Text classification, 372
Text documents, classification of, 103
Text file, definition, 103
Thresholding, 33, 34
Time series models, 441
Tokenization, 102
Tourism demand forecasting, 429
Training set, 5
Transductive inference, 104
Tree-organized classifiers, 154
Tuned models, 11

U
Uniform resource locators (URLs), 326
Univariate feature selection, 56
Unsupervised learning, 13, 104

anomaly detection technique, 196
association rule-mining, 199
K-means algorithm, 191
Silhouettes, 193
thresholding, 34

Upper-limb exoskeleton robots, 271
URLs. See Uniform resource locators (URLs) 

V
Variance scaling, 64
Visualization, 27

W
Wavelet packet decomposition (WPD), 51
Wavelet transformation, 44
Weak learnability, 148
Wind speed forecasting, 424
Wind turbine’s capacity, 424
Word/character sequence-enhanced methods, 373
WPD. See Wavelet packet decomposition (WPD) 
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