5. ОПЕРАЦИОННЫЙ МЕТОД РАСЧЕТА

5.1. Преобразование Лапласа и его основные свойства

Дана функция f(t), которая обладает следующими свойствами (рис. 5.1):

$$f(t) = \begin{cases} 0; \ t < 0, \\ f(t); \ t \ge 0 \end{cases}$$

Функция – ограниченная, т. е. $f(t) < Me^{\alpha}t$, где M, α – некоторые числа. Кроме этого, функция f(t)удовлетворяет условию Дирихле, т. е. имеет на конечном интервале своего изменения конечное число разрывов первого рода и конечное

число максимумов и минимумов. Тогда прямое преобразование Лапласа определяется следующим несобственным интегралом:

$$\mathbf{F}(p) = \int_{0}^{\infty} f(t)e^{-pt}dt, \qquad (5.1)$$

где $p = \sigma + j\omega$ – оператор Лапласа (некоторое комплексное число); f(t) – оригинал; F(p) – изображение функции по Лапласу.

В соответствии с прямым преобразованием Лапласа от временной функции (оригинала) переходим к функции комплексной переменной, т. е. к изображению.

Связь между изображением и оригиналом.

Таблица 5.1

f(t)	Α	$e^{\pm lpha t}$	$e^{-\delta it} \sin(\omega t)$
$\mathrm{F}(p)$	$\frac{A}{p}$	$\frac{1}{p \pm \alpha}$	$\frac{p}{\left(p+\delta\right)^2+\omega^2}$

Таблица соответствий

Выполнив расчет электрической цепи на основе преобразования Лапласа необходимо вернуться обратно в область оригинала. При этом существует три способа:

1. На основе обратного преобразования Лапласа в соответствии с выражением:

$$f(t) = \frac{1}{2\pi j} \int_{\sigma-j\omega}^{\sigma+j\omega} \mathbf{F}(p) e^{pt} dp.$$
(5.2)

2. По таблицам соответствия необходимо изображение привести к табличному виду.

3. На основе теоремы разложения.

Пусть изображение представляет собой правильную рациональную дробь

$$\mathbf{F}(p) = \frac{A(p)}{B(p)},$$

тогда оригинал равен

$$f(t) = \sum_{i=1}^{n} \frac{A(p_i)}{B'(p_i)} e^{p_i(t)},$$
(5.3)

где $p_i - i$ -й корень полинома знаменателя (полюс), т. е. когда B(p) = 0и дробь равна ∞ ; B'(p) – производная от полинома знаменателя по оператору p; $A(p_i)$ – значение полинома числителя при i-м корне; $B'(p_i)$ – значение производной от полинома знаменателя при i-м корне; n – число корней полинома знаменателя, определяется порядком цепи, n может быть на единицу больше порядка цепи, если есть установившаяся составляющая (нулевой корень – источник постоянный).

Рассмотрим основные свойства преобразований Лапласа:

Свойство линейности. Пусть оригинал $f_1(t)$ имеет своим изображением $F_1(p)$, аналогично для функции $f_2(t)$, т. е. $f_1(t) = F_1(p)$; $f_2(t) = F_2(p)$, где = -3 нак соответствия. Тогда изображение от суммы оригиналов равно сумме изображений и математически записывается следующим образом: $f_1(t)+f_2(t) = F_1(p)+F_2(p)$ – свойство линейности.

Следствие из свойства линейности: при умножении оригинала на постоянный множитель k изображение также умножается на этот

множитель, т. е. kf(t) = kF(p).

Изображение производной. Пусть функции соответствует изображение f(t) = F(p). Тогда изображение производной от функции равно

$$\frac{df(t)}{dt} = p \mathbf{F}(p) - f(0),$$

где f(0) – начальное значение функции.

Изображение интеграла. Пусть функции соответствует изображение f(t) = F(p). Тогда изображение интеграла от функции равно

$$\int f(t)dt_{o} = \frac{F(p)}{p} + \frac{\Psi(0)}{p};$$

ψ(**0**) – некоторая постоянная.

Свойство о начальном и конечном значениях

$$\lim_{t \to 0} f(t) = f^+ = \lim_{p \to \infty} p \mathbf{F}(p),$$
$$\lim_{t \to \infty} f(t) = f_{\infty} = \lim_{p \to 0} p \mathbf{F}(p),$$

где f^+ , f_{∞}^- начальное и конечное (установившееся) значения функции соответственно.

Зная начальное и конечное значения функции, можно проверить найденные выражения для изображений.

5.2. Законы Кирхгофа в операционной форме и уравнения элементов

В соответствии со свойством линейности ЗТК относительно мгновенных значений (оригиналов) $\sum_{i=j}^{n} i(t) = 0$ для изображений записывается $\sum_{i=1}^{n} I(p) = 0$ (5.4)

нулю, где i(t) = I(p). Аналогично для ЗНК: для мгновенных значений $\sum_{k=1}^{n} u_k(t) = 0$, для изображений

$$\sum U_k(p) = 0 \tag{5.5}$$

- алгебраическая сумма изображений напряжений в контуре по Лапласу равна нулю, где u(t) = U(p).

Так как законы Кирхгофа формально записываются так же, как и для временных функций, то при определении изображений искомой величины, возможно пользоваться всеми ранее рассмотренными методами анализа электрических цепей в установившемся режиме, хотя рассчитывается переходный процесс: а именно МТС, МУН и т. д. Так как при переходе от оригинала к изображению производная и интеграл заменяются алгебраическими выражениями, то интегродифференциальные уравнения относительно временных функций (оригиналов) заменяются алгебраическими уравнениями относительно их изображения по Лапласу. В этом основное достоинство анализа переходных процессов операционным методом.

Для анализа переходных процессов необходимо от реальной схемы перейти к операционной схеме замещения, в которой токам и напряжениям соответствуют их изображения, а элементам цепи – соответствующие схемы замещения.

Рассмотрим схемы замещения элементов цепи:

1. Ветвь с сопротивлением (рис. 5.2).

Мгновенные значения напряжения и тока связаны законом Ома u(t) = Ri(t). Пусть току соответствует изображение i(t) = I(p). Найдем изображение напряжения

$$u(t) = U(p) \Longrightarrow U(p) = RI(p)$$

или

$$U(p) = Z_R(p)I(p),$$
 (5.6)

где $Z_R(p) = R$ – операционное сопротивление ветви с активным сопротивлением

2. Ветвь с индуктивностью (рис. 5.3).

Мгновенные значения напряжения и тока индуктивности связаны $u_L(t) = L \frac{di(t)}{dt}$. Пусть току соответствует изображение i(t) = I(p). Найдем изображение напряжения u(t) = U(p). Оно равно

$$U_L(p) = pLI(p) - Li$$

или

$$U_L = Z_L(p)I(p) - Li^+,$$
 (5.7)

где $Z_L(p) = pL$ – операционное сопротивление индуктивности.

В операционной схеме цепи вместо индуктивности необходимо изобразить ее схему замещения, содержащую, кроме операционного сопротивления $z_L(p)$, еще

и источник ЭДС Li⁺, который учитывает тот факт, что до коммутации

Рис. 5.3

в индуктивности протекал ток $i^- = i^+$.

3. Ветвь с емкостью (рис. 5.4).

Мгновенные значения напряжения и тока емкости связаны

 $u_C(t) = \frac{1}{C} \int i(t) dt$. Пусть току соответствует изображение i(t) = i(p). Найдем изображение напряжения $u_C(t) = U_C(p)$. Оно равно

$$U_C(p) = \frac{1}{pC}I(p) + \frac{U_C^+}{p}$$

или

Рис. 5.4

$$U_C(p) = Z_C(p)I(p) + \frac{U_C^+}{p},$$
 (5.8)

где $Z_C(p) = \frac{1}{pC}$ – операционное сопротивление емкости. В опорационной схомо замощония ноги нообходимо.

В операционной схеме замещения цепи необходимо изобразить ветвь, содержащую, кроме операционного сопротивления емкости источник ЭДС U_C^+/p , учитывающий тот факт, что до коммутации на емкости существовало некоторое напряжение $U_C^+ = U_C^-$.

Таким образом, в операционных схемах индуктивности и емкости в отличие от сопротивления имеются источники ЭДС, учитывающие ненулевые начальные условия. В случае необходимости эти источники ЭДС могут быть преобразованы в эквивалентные источники тока по известным формулам перехода.

5.3. Анализ переходных процессов на основе операционного метода

1. Для анализа переходных процессов необходимо для цепи после коммутации перейти к операционной схеме замещения.

2. Любым методом расчета цепей найти изображение искомой величины.

3. На основе таблиц соответствия (теоремы разложения) вернуться в область оригиналов (временных функций).

Пример

Найти ток индуктивности в цепи (рис. 5.5) во время переходного процесса.

Составляем операционную схему замещения цепи после коммутации (рис. 5.6).

Исходя из ЗНК, для цепи на рис.5.6, получим

Рис. 5.5

Рис. 5.6

$$I(p) = \frac{\frac{E}{p} + Li^{+}}{R_{1} + pL} = \frac{E + pLi^{+}}{p(R_{1} + pL)} = \frac{A(p)}{B(p)},$$

где $i^+ = i^- = \frac{E}{R_0 + R_1}$ – начальное значение тока. Найдем оригинал тока индуктивности в соответствии с теоремой

разложения. Для этого находим корни полинома знаменателя

$$B(p) = 0; \ p(R_1 + Lp) = 0; \ P_1 = 0; \ P_2 = -\frac{R_1}{L}.$$

Определяем значение полинома числителя $A(p_i)$ при двух значениях корней p_1 и p_2

$$A(p_1) = E; A(p_2) = E - \frac{R_1}{L}Li^+ = e - R_1i^+ = \frac{R_0}{R_1 + R_2}E.$$

Производная от полинома знаменателя и ее значения при p_1 и p_2

$$B'(p) = R_1 + 2pL, B'(p_1) = R_1, B'(p_2) = R_1 - \frac{2R_1}{L}L = -R_1.$$

В соответствии с формулой разложения оригинал тока

$$i(t) = \sum_{i=1}^{2} \frac{A(p_i)^{ep_i t}}{B'(p_i)} = \frac{A(p_1)^{ep_1 t}}{B'(p_1)} + \frac{A(p_2)^{ep_2 t}}{B'(p_2)} = \frac{E}{R_1} + \frac{R_0 E e^{-R_1/Lt}}{(R_1 + R_0)(-R_1)}.$$

Проверка полученного решения производится обычным способом по начальным установившимся значениям.

6. АНАЛИЗ ПЕРЕХОДНЫХ ПРОЦЕССОВ НА ОСНОВЕ ПРЕОБРАЗОВАНИЯ ФУРЬЕ

6.1. Основные понятия и определения

Под преобразованием Фурье понимают преобразование следующего вида:

$$\mathbf{F}(j\omega) = \int_{-\infty}^{\infty} f(t)e^{-j\,\omega\,t}dt, \qquad (6.1)$$

где f(t) – временная функция (оригинал); ω – круговая частота.

Если интеграл вида (6.1) определен, т. е. функция абсолютно интегрируема, то F(*j*⁽⁰⁾) есть изображение оригинала по Фурье, которое называется спектральной характеристикой или спектральной плотностью.

Сравнивая преобразование Фурье (6.1) и Лапласа

$$\mathbf{F}(p) = \int_{-\infty}^{\infty} f(t) e^{-pt} dt, \qquad (6.2)$$

где *p* = σ+*j*ω – оператор Лапласа, видим, что преобразование Фурье – частный случай преобразования Лапласа. Преобразование Фурье справедливо для более узкого класса функций, только для непериодических функций (одиночного импульса) при нулевых начальных условиях.

Рассмотрим физический смысл спектральных характеристик. Найдем спектральную плотность $F(j\omega)$ для одиночного прямоугольного импульса (рис. 6.1)

Рис. 6.1

$$\begin{split} \mathbf{F}(j\omega) &= \int_{-\infty}^{\infty} U_0 e^{-j\omega t} dt = U_0 \int_{-a}^{a} e^{-j\omega t} = U_0 \frac{1}{(-j\omega)} e^{-j\omega t} \bigg|_{-a}^{a} = \\ &= -U_0 \frac{1}{j\omega} (e^{-ja\omega} - e^{ja\omega}) = \frac{U_0}{j\omega} (e^{ja\omega} - e^{-ja\omega}). \end{split}$$

Используя формулу Эйлера: $e^{\pm j\phi} = \cos\phi \pm j\sin\phi$, умножив и разделив на a, получим спектральную плотность прямоугольного импульса

$$\mathbf{F}(a\omega) = 2aU_0 \frac{\sin a\omega}{a\omega} = \mathbf{F}(\omega)e^{j\omega}, \qquad (6.3)$$

где F(ω) = $2aU_0 \left| \frac{\sin a\omega}{a\omega} \right|$ – амплитудно-частотная характеристика

спектральной плотности. Найдем частоты, при которых спектральная плотность: $F(j\omega) = 0$.

Из (6.3) следует что $\sin(a\omega) = 0$, т. е. $a\omega = 2\pi k$; $\omega = 2\pi k/a$, где k = 1, 2, 3... Откуда частоты, соответствующие условию $F(j\omega) = 0$, равны

$$\omega = \frac{2\pi k}{a}$$

На рис. 6.2 построена амплитудно-частотная характеристика (*АЧХ*) прямоугольного одиночного импульса (сплошной спектр).

Рис. 6.2

Если бы имели периодическую последовательность таких прямоугольных импульсов с периодом T (рис. 6.3), то могли бы разложить функцию f(t) в ряд Фурье.

Запишем его в комплексной форме

$$f(t) = \frac{1}{2} \sum_{n=-\infty}^{\infty} C_n e^{jn\omega t} = \frac{U_m}{N} \sum \frac{\sin \frac{n\pi}{N}}{\frac{n\pi}{N}} e^{jn\omega t} = \frac{U_m}{2} + \frac{U_m}{2} \frac{4}{\pi} \left[\cos \omega t - \frac{\cos 3\omega t}{3} + \frac{\cos 5\omega t}{5} - \frac{\cos 7\omega t}{7} + \dots \right], \quad (6.4)$$

где $\dot{C}_n = \frac{2}{T} \int_{-T/2}^{T/2} f(t) e^{-jn\omega t} dt$ — комплексная амплитуда; N = T/2a скважность импульсов.

Чтобы перейти от периодической функции к непериодической, надо устремить период $T \to \infty$. При этом угловая частота $\omega = \frac{2\pi}{T}$ устремится к нулю и ее следует обозначать бесконечно малой величиной $d\omega$. Произведение n_{0} , которое в пределе может принимать любые значения и является непрерывной функцией параметра n, обозначим ω . С учетом предельных соотношений для комплексной амплитуды получим

$$\lim_{T\to\infty}C_n=\frac{1}{\pi}d\omega\int_{-\infty}^{\infty}f(t)e^{-j\omega t}dt=\frac{1}{\pi}\mathbf{F}(j\omega)d\omega,$$
(6.5)

где $\mathbf{F}(j\omega) = \int_{0}^{\infty} f(t)e^{-j\omega t}dt$ – спектральная плотность функции f(t). Комплексная спектральная плотность может быть представлена в виде

$$\mathbf{F}(j\omega) = \mathbf{F}(\omega) e^{j\varphi(\omega)}$$

Здесь F(@) характеризует только относительную величину (вес) амплитуды гармоники частоты (0, так как сама амплитуда является бесконечно малой величиной из-за сомножителя $d\omega$ в формуле (6.5). Аргумент $\phi(\omega)$ определяет начальную фазу этой же гармоники.

Формула (6.4), выражающая функцию f(t) через сумму ряда, в пределе преобразуется в выражение

$$f(t) = \lim \frac{1}{2} \sum_{n=-\infty}^{\infty} C_n e^{j n \otimes t} = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(j \omega) e^{j \otimes t} d\omega.$$
(6.6)

Это выражение соответствует обратному преобразованию Фурье и позволяет выразить функцию f(t) через интеграл (предел суммы) гармоник непрерывного спектра частот (спектральную плотность).

Следовательно, одиночную, непериодическую функцию можно представить в виде суммы бесконечно большого числа, бесконечно малых по амплитуде, бесконечно близко расположенных гармоник. Тогда от ряда Фурье (суммы конкретных гармоник) перейдем к интегралу Фурье.

С точки зрения спектров для периодической функции имеем дискретный спектр, а для непериодической функции его спектральная характеристика есть огибающая этих дискретных спектров.

Преобразование Фурье – частный случай преобразования Лапласа, поэтому основные свойства преобразования Лапласа применимы к преобразованию Фурье. Кроме этого, у преобразования Фурье есть особые свойства, например равенство Парсеваля (теорема Рэлея)

$$\int_{-\infty}^{\infty} f^2(t) dt = \frac{1}{\pi} \int_{-\infty}^{\infty} \mathbf{F}^2(j\omega) d\omega.$$

Это равенство можно применить при определении энергии: можно интегрировать временную характеристику (оригинал), либо спектральную характеристику (изображение). Чем уже сигнал (длительность сигнала $2a \rightarrow 0$), тем шире должна быть полоса пропускания, чтобы сигнал проходил без амплитудных и фазовых искажений.

Анализ переходных процессов на основе преобразования Фурье выполним на примере интегрирующих и дифференцирующих цепей.

6.2. Дифференцирующие электрические цепи

Пусть имеется электрическая цепь. Изобразим ее в виде четырехполюсника (рис. 6.4).

Найдем условия, при которых электрическая цепь будет осуществлять дифференцирование электрического сигнала

$$u_2(t) = a \frac{du_1(t)}{dt}.$$
 (6.7)

Рис. 6.4

Воспользовавшись преобразованием Лапласа, перейдем от мгновенных значений к изображениям по Лапласу

$$u_1(t) = U_1(p),$$

 $u_2(t) = U_2(p).$

Будем рассматривать случай, когда начальное условие нулевое, т. е. $U_1^+ = 0$. Тогда из (6.7) для изображений по Лапласу имеем

$$U_2(p) = apU_1(p) . (6.8)$$

Отношение выходных величин к входной в установившемся режиме – коэффициент усиления по напряжению или по току, а в переходном режиме – передаточная функция. Найдем передаточную функцию нашего четырехполюсника по напряжению

$$H_U(p) = \frac{U_2(p)}{U_1(p)} = ap.$$
(6.9)

Перейдем от преобразования Лапласа к преобразованию Фурье. Для этого заменим оператор *p* = *j*⁽ⁱ⁾ и получим

$$H_U(j\omega) = H_U(p)\Big|_{p=jw} = aj\omega = a\omega e^{j90}$$

или

$$H_U(\omega) = a\omega,$$

$$\varphi(\omega) = 90^{\circ}.$$
(6.10)

Равенство (6.10) означает, чтобы наша цепь была бы идеальным дифференцирующим звеном, необходимо, чтобы АЧХ цепи была бы прямо пропорционально частоте, а ФЧХ была неизменна и равна 90° (рис. 6.5).

К сожалению, для реальных цепей это невозможно. Поэтому имеются амплитудные и фазовые погрешности.

Пример

Возьмем цепь *RC* и определим, при каком сочетании параметров *R*, *C*, ω наша цепь будет дифференцирующей (рис. 6.6).

Рис. 6.5

Найдем передаточную функцию цепи на основе преобразования Фурье. Запишем спектральные плотности входного и выходного напряжения $u_1(t) = U_1(j\omega)$, $u_2(t) = U_2(j\omega)$ соответственно. Затем на основе закона Ома найдем спектральную характеристику тока

$$I(j\omega) = \frac{U_1(j\omega)}{Z(j\omega)},$$

где Z(jω) – изображение сопротивления цепи по Фурье. Формально оно совпадает с комплексным сопротивлением цепи в силу того, что спектральная характеристика представлена в виде суммы бесконечного ряда гармоник.

Итак, спектральные характеристики тока и выходного напряжения равны соответственно

$$I(j\omega) = \frac{U_1(j\omega)}{R + \frac{1}{j\omega C}}, U_2(j\omega) = RI(j\omega) = \frac{U_1(j\omega)R}{R + \frac{1}{j\omega C}} = \frac{j\omega CRU_1(j\omega)}{j\omega CR + 1}$$

Находим передаточную функцию цепи

$$H_U(j\omega) = \frac{U_2(j\omega)}{U_1(j\omega)} = \frac{j\omega CR}{j\omega CR + 1}$$
(6.11)

и сравниваем с передаточной функцией идеального дифференцирующего звена (6.9). Нетрудно установить, что если

$$\omega CR = \omega \tau \ll 1, \tag{6.12}$$

где $\tau = CR$, то передаточная функция (6.11) принимает вид $H_U(j\omega) \approx j\omega CR = \omega CRe^{j90^0}$, т. е. наша реальная электрическая цепь является дифференцирующим звеном.

Если условие (6.12) выполняется недостаточно, то имеются амплитудные и фазовые искажения.

Если $\omega \to \infty$, то передаточная функция $H_U(j\omega) = 1$, т.е. сигнал на входе и на выходе одинаковый.

6.3. Интегрирующие электрические цепи

Пусть имеется некоторая электрическая цепь (рис. 6.7.).

Рис. 6.7

При каком условии она будет интегрирующей, т.е. выходное напряжение будет равно

$$u_2(t) = a \int u_1(t) dt$$
 (6.13)

Пусть входному и выходному напряжениям соответствуют следующие изображения:

$$u_{1}(t) = U_{1}(p),$$

 $u_{2}(t) = U_{2}(p).$ (6.14)

Подвергая (6.13) прямому преобразованию Лапласа и учитывая (6.14), получим

$$U_2(p) = a \frac{U_1(p)}{p}$$

Откуда передаточная функция по напряжению

$$H_U(p) = \frac{U_2(p)}{U_1(p)} = \frac{a}{p}.$$
(6.15)

Перейдем от преобразования Лапласа к преобразованию Фурье

$$H_U(j\omega) = H_U(p)\Big|_{p=j\omega} = \frac{a}{j\omega} = \frac{a}{\omega} e^{-j90^0} = H_U(\omega)e^{j\varphi}.$$
 (6.16)

63

$$\varphi(\omega) = -90^{0},$$

$$H_{U}(\omega) = \frac{a}{\omega}.$$
(6.17)

Таким образом, чтобы электрическая цепь была интегрирующей необходимо, чтобы АЧХ передаточной функции была обратно пропорциональна частоте, а ФЧХ была неизменная, и угол равнялся -90°. На рис. 6.8 приведены АЧХ и ФЧХ передаточной функции по напряжению идеальной интегрирующей цепи.

Рис. 6.8

Пример

Возьмем цепь *RC* и определим, в каком случае она будет интегрирующей.

Спектральные характеристики тока, напряжения и передаточная функции цепи равны, соответственно

$$I(j\omega) = \frac{U_1(j\omega)}{R+1/j\omega C}, U_2(j\omega) = \frac{U_1(j\omega)}{R+\frac{1}{j\omega C}} \frac{1}{j\omega C} = \frac{U_1(j\omega)}{j\omega CR+1};$$

$$H_U(j\omega) = \frac{U_2(j\omega)}{U_1(j\omega)} = \frac{1}{j\omega \ CR + 1} \cong \frac{1}{j\omega \ CR} = \frac{a}{j\omega} = \frac{a}{\omega} e^{-j90^\circ}.$$

Если $j\omega CR >> 1$, то имеем идеальное интегрирующее звено. При частоте $\omega = 0$ – одинаковые сигналы на входе на выходе $H_U(j\omega)|_{\omega=0} = 1$.

Вместо интегрирующих и дифференцирующих цепей, содержащих сопротивления и емкости, в технике используется интегрирующие и дифференцирующие цепи на основе операционных усилителей, которые позволяют получать значительные сигналы на выходе.

Рассмотрим схему операционного усилителя и определим, какими должны быть сопротивления Z_1 и Z_0 , чтобы цепь была инвертором, интегратором и дифференцирующим звеном.

Усилитель-инвертор (рис. 6.10).

Рис. 6.10

Выходное и входное напряжения связаны для операционного усилителя выражением

$$U_2(p) = -\frac{Z_0}{Z_1}U_1(p).$$

Учитывая, что $Z_1 = R_1, Z_0 = R_0,$ найдем передаточную функцию цепи

$$H_U(p) = \frac{U_2(p)}{U_1(p)} = -\frac{R_0}{R_1} = -K.$$

Таким образом, данная цепь – инвертирующий усилитель. Интегрирующее звено (рис. 6.11).

Рис. 6.11

В цепи обратной связи операционного усилителя включается емкость, на входе сопротивление, т. е.

$$Z_0 = \frac{1}{pC}, \ Z_1 = R_1$$

Передаточная функция такого звена соответствует интегрирующей цепи

$$H_U(p) = \frac{1}{pCR_1}$$

Дифференцирующее звено (рис. 6.12).

В цепи обратной связи операционного усилителя включается сопротивление, а на вход – емкость, т. е. все наоборот по сравнению с интегрирующим звеном. При этом

$$Z_0 = R_0, Z_1 = \frac{1}{pC}$$

и передаточная функция звена соответствует дифференцирующей цепи $H_{II}(p) = R_0 pC$

Возможно построить интегрирующие и дифференцирующие цепи на основе *RL*-цепи. Однако с точки зрения схем все «наоборот» по сравнению с *RC*-цепью:

> Дифференцирующая RL-цепь (сигнал снимается L) Интегрирующая RL-цепь (сигнал снимается с R)

Цепи *RC* применяются более широко, так как проще подобрать конденсатор необходимой емкости, чем дроссель с заданной индуктивностью.

7. АНАЛИЗ ЦЕПЕЙ НА ОСНОВЕ ДИСКРЕТНЫХ МОДЕЛЕЙ

7.1. Элементы цепи и их дискретные модели

В технике находят широкое применение цепи, параметры которых изменяются во времени дискретно (ЦАП, АЦП, цифровые фильтры и т. д.). Кроме этого, при расчете электрической цепи, параметры который неизменны, необходимо поставить ей в соответствие некоторую дискретную модель, значение токов и напряжение в которой в эти дискретные моменты времени соответствуют с некоторой погрешностью токам и напряжению в реальной цепи.

При интегрировании дифференциальных уравнений на ЦВМ значение токов и напряжений для n+1-го интервала времени находится на основе предыдущего n-го интервала времени. Интервал времени $t_{n+1}-t_n = \Delta t - \max$ интегрирования. При этом каждому элементу цепи можно поставить в соответствие ее дискретную модель (табл. 7.1).

Дискретные модели активного сопротивления и источника совпадают с их моделями для непрерывного отрезка времени, а дискретные модели L, C представляют собой активный двухполюсник либо с источником ЭДС, либо с источником тока. Причем значение источника в дискретных моделях учитывает значение напряжения u или тока i в реактивном элементе для предыдущего n-го интервала времени (см. операционные схемы замещения индуктивности и емкости). Элементы R_L, R_C, G_L, G_C -дискретных моделей – не активные сопротивления и проводимости, а величины, пропорциональные индуктивности и емкости. Их значения зависят от шага интегрирования и метода численного интегрирования, т. е. зависит от того, каким образом численно рассчитывается производная от функции. Поэтому значения этих сопротивлений различны для явного и неявного методов Эйлера, метода трапеций, метода Гира. Рассмотрим дифференциальное уравнение вида

$$x(t) = \lambda \frac{dy(t)}{dt},\tag{7.1}$$

где $\lambda = \text{const.}$

Заменим на участке $t_{n+1}-t_n$ зависимость y(t) прямой линией, т. е. линеаризируем ее (рис. 7.1). Тангенс угла наклона этой прямой

Элементы цепи и его уравнение	Дискретная модель и ее уравнение		
i(t) R	i_{n+1} R	i_{n+1} G	
U(t) > u(t) = i(t)R	$U_{n+1} = Ri_{n+1}$	$U_{n+1} >$ $i_{n+1} = GU_{n+1}$	
$\begin{array}{c c} i(t) \\ \bullet \end{array} & \\ \hline \\ U(t) \\ i(t) = C \frac{du_C(t)}{t}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	i_{n+1} G_c	
dt $u_C(t) = \frac{1}{C} \int i(t) dt$	$U_{n+1} = R_C i_{n+1} + E_n$	$i_{n+1} = G_c U_{n+1} - I_n$	
$u_{L}(t) = L \frac{di(t)}{dt}$ $i(t) = \frac{1}{L} \int u_{L}(t) dt$	G_L $i(t)$ J_n U_{n+1} $i_{n+1} = G_L U_{n+1} + I_n$	R_{L} E_{n} U_{n+1} $U_{n+1} = R_{L}i_{n+1} - E_{n}$	
	$\frac{dy(t)}{dt} = \frac{y_{n+1} - y_n}{t_{n+1} - t_n} = \frac{y_{n+1} - y_n}{\Delta t}$	$\frac{n}{2}$, (7.2)	

Уравнения и модели элементов

где Δt – шаг интегрирования.

Уравнение (7.2) описывает производную как в момент $t_{n+1},$ так и в момент t_n

$$x(t_{n+1}) = \lambda \frac{y_{n+1} - y_n}{\Delta t}$$
(7.3)

$$x(t_n) = \lambda \frac{y_{n+1} - y_n}{\Delta t} \tag{7.4}$$

Как известно из математики, если неизвестные находятся в обеих частях уравнения, то уравнение называется неявным, в противном случае – явным. Выражение (7.3) – неявный метод Эйлера численного определения производной. Уравнение (7.4) – явный метод Эйлера численного определения производной. С точки зрения числовой устойчивости более удобен неявный метод.

Обозначив $x(t_{n+1}) = x_{n+1}$ и $x(t_n) = x_n$, получим

$$x_{n+1} = \frac{\lambda}{\Delta t} y_{n+1} - \frac{\lambda}{\Delta t} y, \qquad (7.5)$$

$$y_{n+1} = \frac{\Delta t}{\lambda} x_{n+1} + y_n, \qquad (7.6)$$

$$y_{n+1} = \frac{\Delta t}{\lambda} x_n + y_n.$$

– явный метод Эйлера

Зная x_{n+1} и y_n , можно найти значение функции на n+1-шаге.

7.2. Расчет цепей на основе дискретных моделей

При анализе переходных процессов на основе дискретных моделей необходимо от цепи для непрерывного времени перейти к ее дискретной модели на основе схем замещения (см. табл. 7.1). При этом параметры активного двухполюсника для L и C зависят от метода численного интегрирования, поэтому, сравнивая уравнения элементов с выражениями числового интегрирования (7.5), (7.6), определяют эти параметры. Затем в исходной схеме индуктивности и емкости заменяют активными двухполюсниками. В результате получают резистивную цепь. Расчет полученной цепи производится любым методом расчета цепей постоянного тока в установившемся режиме. Так как от цепей непрерывного времени, которые описываются интегрально-дифференциальными уравнениями, перейдем к цепи постоянного тока в установившемся режиме и получим алгебраические уравнения, которые описывают процессы в такой цепи. Достоинство данного метода в том, что он хорошо программируется.

Пример

Составить дискретную модель цепи, используя неявный метод Эйлера, и определить напряжение на емкости в дискретные моменты времени (рис. 7.2).

$$E = 1B;$$

 $R_0 = R_1 = R_2 = 100 \text{ Ом};$
 $C = 1 \text{ мк} \Phi,$

$$i(t) = C \frac{du_C(t)}{dt}; x(t) = \lambda \frac{dy(t)}{dt}.$$
(7.7)

Сравним уравнение элемента емкости с уравнением (7.7):

$$x(t) \rightarrow i(t),$$

 $\lambda \rightarrow C,$
 $y(t) \rightarrow u_C(t).$

Возьмем последовательную схему замещения емкости и составим дискретную модель цепи, она имеет вид, показаний на рис. 7.3.

Возьмем выражение (7.6) с учетом ранее полученных соотношений, имеем

$$U_{C(n+1)} = \frac{\Delta t}{C} i_{n+1} + U_n.$$
(7.8)

Рис. 7.3

Сравнивая (7.8) с уравнением дискретной модел
и $U_{n+1}\!=\!R_{\!C}\!i_{n+1}\!+\!E_n$, получим

$$R_c = R = \frac{\Delta t}{C},$$
$$U_n = E_n,$$

где R_{C} и E_{n} – величины сопротивления и ЭДС источника в расчетной модели емкости.

Примем шаг интегрирования, равным постоянной времени т, и определим сопротивление активного двухполюсника, эквивалентирующего емкость

$$\begin{split} \tau &= \left| \frac{1}{\alpha} \right| = \frac{R_1 R_2 C}{R_1 + R_2} = \frac{(100)^2 10^{-6}}{200} = 50 \cdot 10^{-6},\\ R_C &= \frac{\tau}{C} = \frac{50 \cdot 10^{-6}}{10^{-6}} = 5 \text{ Om}, \end{split}$$

где а – корень характеристического уравнения.

Найдем напряжение на емкости для начального момента времени. По закону коммутации имеем

$$U_C^+ = U_C^- = \frac{ER_2}{R_0 + R_1 + R_2} = \frac{100}{300} = \frac{1}{3}$$
B.

Для расчета искомой величины напряжения на емкости в дискретной модели можно воспользоваться любым методом расчета цепей в установившемся режиме. В соответствии с методом узловых напряжений (МУН)

$$U_{10(n+1)} = U_{C(n-1)},$$

$$U_{c(n-1)} \left(\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}\right) = \frac{E}{R_1} + \frac{E_n}{R_3}$$

71

$$U_{c(n+1)} = \frac{\frac{E}{R_1} + \frac{E_n}{R}}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}} = \frac{0,01 \cdot E + 0,02 \cdot E_n}{\frac{4}{100}} = \frac{1}{4} (E + 2E_n).$$
(7.9)

Рассматриваем последовательно интервалы времени, начиная с нулевого. Будем иметь

$$n = 0; \qquad U_C^+ = U_C^- = \frac{1}{3}e,$$

$$U_{C(n+1)}\Big|_{n=0} = U_{C1} = \frac{1}{4} \cdot \left(1 + 2\frac{1}{3}\right) = \frac{5}{12}e,$$

$$n = 1; \qquad U_{C2} = \frac{1}{4}\left(1 + 2\frac{5}{12}\right) = \frac{11}{24}e,$$

$$n = 2; \qquad U_{C3} = \frac{1}{4}\left(1 + 2\frac{11}{24}\right) = \frac{23}{48}B \text{ M T.g.}$$

На рис 7.4 показано изменение напряжения на емкости в дискретные моменты времени.

Рис. 7.4

Из расчета цепи в установившемся режиме находим установившееся значение напряжения на емкости, оно равно

$$U_{C_{\text{yer}}} = \frac{ER_2}{R_1 + R_2}, U_{C_{\text{yer}}} = \frac{1}{2}B.$$

Установившееся значение может быть получено из расчета на основе дискретной модели, если $n \to \infty$.

8. АНАЛИЗ ПЕРЕХОДНЫХ ПРОЦЕССОВ НА ОСНОВЕ ПРИНЦИПА НАЛОЖЕНИЯ

8.1. Определение реакции цепи на произвольное внешнее воздействие. Единичная и импульсная функции

Наиболее общий подход к анализу переходных процессов в линейных цепях основан на использовании принципа наложения. Внешнее воздействие на цепь x = x(t) в этом случае представляют в виде линейной комбинации однотипных элементарных составляющих $x_b(t)$

$$x(t) = \sum_{k} a_k x_k(t),$$

а реакцию цепи на такое воздействие ищут в виде линейной комбинации частичных реакций $y_k(t)$ на воздействие каждой из элементарных составляющих внешнего воздействия в отдельности

$$y(t) = \sum_{k} a_k y_k(t).$$

В качестве элементарных составляющих $x_k(t)$ можно выбирать внешние воздействия, описываемые различными классами функций, реакция цепи на которые может быть найдена с помощью рассмотренных ранее методов. Наиболее широкое распространение получили элементарные (пробные) воздействия в виде единичного скачка (единичной функции), единичного импульса (импульсной функции) и в виде гармонической функции времени. Метод анализа переходных процессов в линейных цепях, основанный на представлении внешнего воздействия в виде конечной или бесконечной суммы гармонических функций времени, получил название спектрального метода. Рассмотрим более подробно понятия о единичной и импульсной функциях.

Единичной функцией (функцией Хевисайда) называется функция вида (рис. 8.1)

$$1(t) = \begin{cases} 0 \text{ при } t < 0, \\ 1 \text{ при } t \ge 0. \end{cases}$$
(8.1)

Различают смещенную единичную функцию (рис. 8.2) или функцию с запаздыванием

Внешнее неединичное воздействие всегда можно выразить через единичную функцию. Например, пусть некоторая цепь подключена в момент времени $t = 0^+$ к источнику постоянного напряжения величиной X. Тогда функция воздействия может быть записана (рис. 8.3)

$$x(t) = \begin{cases} 0 & \text{при } t < 0, \\ X1(t) & \text{при } t \ge 0. \end{cases}$$
 (8.3)

Рис. 8.3

Внешнее воздействие, имеющее вид прямоугольного импульса $X = U_0$ и длительностью t_1 (см. рис. 8.3), может быть представлено в виде разности двух неединичных функций, одна из которых смещена на t_1 (рис. 8.4).

В самом деле, складывая два неединичных скачка, один из которых запаздывает на время t_1 , получим исходную функцию.

Рассмотрим прямоугольный импульс длительностью Δt и высотой $1/\Delta t$ (рис.8.5).

Очевидно, что площадь этого импульса $S = \Delta t(1/\Delta t) = 1$ и не зависит от его длительности Δt . При уменьшении длительности импульса его высота возрастает, причем при $\Delta t \rightarrow 0$ она стремится к бесконечности, но площадь остается равной единице.

Под импульсной функцией понимают функцию, длительность которой бесконечно мала $\Delta t \rightarrow 0$, а амплитуда – бесконечно большая $1/\Delta t \rightarrow \infty$ (рис. 8.6).

Будем изображать импульсную функцию в виде стрелки (рис. 8.6). Для установления связи между $\delta(t)$ -функцией и единичной функцией представим нашу импульсную функцию в виде двух неединичных функций (аналогично рис. 8.4). Рассмотрим прямоугольный импульс длительностью $\Delta(t)$ и высотой $1/\Delta(t)$, очевидно, что площадь этого импульса равна единице и она не зависит от $\Delta(t)$. Устремляя $\Delta t \rightarrow 0$, получим

$$\delta(t) = \lim \frac{\mathbf{1}(t) - \mathbf{1}(t - \Delta t)}{\Delta t} = \frac{d}{dt} \mathbf{1}(t) , \qquad (8.4)$$

т. е. δ(*t*)-функция (функция Дирака) является производной от единичной функции, а следовательно, единичная функция есть интеграл от δ(*t*)-функции.

Реакция цепи на импульсную функцию может быть получена путем дифференцирования реакции цепи на единичную функцию. Свойство импульсной функции:

$$\int_{-\infty}^{\infty} \delta(t) dt = 1.$$
 (8.5)

Для определения реакции линейных цепей на воздействие в виде единичной функции или $\delta(t)$ -функции необходимо найти их изображения по Лапласу. Операторные изображения равны соответственно.

$$1(t) = \frac{1}{p}; \, \delta(t) = 1.$$
(8.6)

8.2. Переходная и импульсная характеристики цепи. Функция цепи

Рассмотрим электрическую цепь, не содержащую независимых источников тока и напряжения. Тогда под переходной характеристикой такой цепи понимают реакцию цепи на единичную функцию. Реакция цепи на импульсную функцию называется импульсной характеристикой.

Под *функцией цепи* понимают отношение изображения по Лапласу реакции цепи к изображению возмущения

$$H(p) = \frac{h(p)}{1(p)} \tag{8.7}$$

- функция цепи.

Пусть функция возмущения – единичная функция. Тогда изображения по Лапласу функций возмущения и реакции имеют вид

> $1(t)_{0} = (1(p)) - функция возмущения,$ $h(t)_{0} = (h(p)) - реакция цепи.$

Рассмотрим какой физический смысл имеет функция цепи в зависимости от реакции цепи и возмущения.

1. Допустим возмущение имеет смысл входного напряжения $u_1(t)$, а реакция – выходного $u_2(t)$.

$$1(t) \to u_1(t), h(t) \to u_2(t).$$

Если от временных функций перейдем к изображению по Лапласу

и найдем функцию цепи, то получим $H(p) = \frac{U_2(p)}{U_1(p)} = H_U(p)$ – изображение передаточной функции по напряжению, т.е. функция цепи в этом случае имеет смысл передаточной функции по напряжению.

2. Допустим возмущение имеет смысл – напряжения u(t), а реакция – тока i(t)

$$\mathbf{1}(t) \to U(t) = U(p), h(t) \to i(t) = I(p).$$

Тогда функция цепи имеет смысл входной операторной проводимости

$$H(p) = \frac{I(p)}{U(p)} = Y_{\text{BX}}(p).$$

3. Возмущение – ток i(t), а реакция – напряжение u(t):

$$\mathbf{1}(t) \to i(t) = I(p), \ h(t) \to u(t) = U(p).$$

Тогда функция цепи имеет смысл входного операторного сопротивления

$$H(p) = \frac{U(p)}{I(p)} = Z_{\rm BX}(p).$$

4. Возмущение – входной ток $i_1(t)$, а реакция – выходной ток $i_2(t)$

$$1(t) \rightarrow i_1(t) = I_1(p), h(t) \rightarrow i_2(t) = I_2(p).$$

Тогда функция цепи имеет смысл передаточной функции по току

$$H(p) = \frac{I_2(p)}{I_1(p)} = H_I(p).$$

Как видно из четырех рассмотренных случаев, функция цепи всегда имеет физический смысл и может быть заранее определена для каждой конкретной цепи, при этом изображение переходной характеристики цепи по Лапласу равно изображению передаточной функции, деленному на *p*.

$$h(p) = \mathbf{1}(p)H(p) = \frac{H(p)}{p}.$$
(8.8)

77

Зная функцию цепи, можно найти реакцию на основе обратного преобразования Лапласа

$$h(t) = L^{-1} \left[\frac{H(p)}{p} \right].$$
 (8.9)

Реакцию цепи можно найти и зная δ -функцию цепи

$$h_{\delta}(p) = H(p), \qquad (8.10)$$

т. е. изображение реакции цепи на импульсную функцию равно функции цепи (передаточной функции) и импульсная характеристика есть оригинал от передаточной функции.

Так как изображение переходной функции отличается от изображения передаточной функции только множителем *p*, то

$$h_{\delta}(t) = \frac{d}{dt}h(t) \tag{8.11}$$

и импульсная характеристика может быть найдена как производная от переходной характеристики и наоборот. При этом если переходная характеристика имеет скачок при t = 0, то импульсная характеристика будет иметь два слагаемых:

$$h_{\delta}(t) = \frac{d}{dt}h(t) = h_{\delta}^{+}(t)\mathbf{1}(t) + h(0)\delta(t).$$
(8.12)

Первое слагаемое представляет собой ту часть импульсной характеристики при $\tau > 0$, которая получена дифференцированием переходной характеристики без учета ее начального скачка при t = 0; второе слагаемое содержит единичную импульсную функцию, умноженную на начальное значение переходной характеристики h(0).

8.3. Анализ переходных процессов на основе переходных характеристик

В случае если входное воздействие представляет собой прямоугольный импульс либо последовательность прямоугольных импульсов, то реакция в цепи может быть просто определена по переходным характеристикам цепи. Покажем это на следующем примере.

Пример

Найдем ток в цепи R, L при действии прямоугольного импульса амплитудой U_0 и длительностью t_1 (рис. 8.7)

Определяем функцию цепи. Возмущение – входное напряжение u(t), реакция – ток i(t). Следовательно, $1(t) \rightarrow u(t)$, $h(t) \rightarrow i(t)$, т. е. функция цепи имеет смысл входной проводимости и ее изображение равно

Рис. 8.7

$$H(p) = Y_{\rm\scriptscriptstyle BX}(p) = \frac{1}{R+pL}.$$

Следовательно, реакция цепи

$$h(p) = I(p) = \frac{H(p)}{p} = \frac{Y_{\text{BX}}(p)}{p} = \frac{1}{p(R+pL)} = \frac{A(p)}{B(p)}$$

Найдем по теореме разложения изображение искомой функции

$$i(t) = \sum_{i=1}^{2} \frac{A(p_i)}{B'(p_i)} e^{Pit}.$$

Находим корни полинома знаменателя

$$B(p) = 0; p_1 = 0; p(R + pL); p_2 = -R/L.$$

Определяем значение производной от полинома знаменателя

$$B'(p) = 2pL; B'(p_1) = R; B'(p_2) = R + pL(-R/L) = -R.$$

Значение числителя при двух значениях корней p_1 и p_2

$$A(p_1) = A(p_2) = 1.$$

Подставляем найденные значения полинома числителя и производной от полинома знаменателя в выражение теоремы разложения, получим реакцию цепи на единичное входное напряжение в виде

$$i(t) = \frac{A(p_1)}{B'(p_1)}e^{P_1t} + \frac{A(p_2)}{B'(p_2)}e^{P_2t} = \frac{1}{R}e^0 + \frac{1}{-R}e^{-(R/L)t} = \frac{1}{R} - \frac{1}{R}e^{-Rt/L} = \frac{1}{R}(1 - e^{-Rt/L}).$$

Если возмущение приложено в момент времени t_1 (единичная функция со сдвигом), то реакция цепи может быть найдена из реакции цепи на единичную функцию путем замены t на $(t-t_1)$, т. е. как реакция на смещенную функцию $1(t-t_1)$. Следовательно, реакция цепи для смещенной единичной функции будет равна

$$1(t-t_1) = \frac{1}{R}(1-e^{-(R/L)(t-t_1)}).$$

Как известно, прямоугольный импульс можно представить в виде двух прямоугольных импульсов, смещенных относительно друг друга на время t_1 (рис. 8.8). Выражая их через единичные функции, запишем положительный импульс $U_0 = 1(t)U_0$; отрицательный импульс $-U_0 = 1(t-t_1)U_0$. Накладывая одну функцию на другую, получим первоначальный прямоугольный импульс. Реакцию цепи на прямоугольный импульс в соответствии с принципом наложения можно получить, сложив реакции от двух смещенных функций.

Рис. 8.8

Реакция цепи на единичную функцию:

$$i(t) = \frac{1}{R}(1 - e^{-Rt/L}).$$

Реакция цепи на неединичную функцию:

$$i_1(t) = \frac{U_0}{R} (1 - e^{-Rt/L}).$$

Реакция цепи на смещенную функцию:

$$i_2(t-t_1) = \frac{U_0}{R} (1 - e^{-R/L(t-t_1)}).$$

Окончательно реакция цепи:

при
$$0 < t < t_1 \implies i(t) = i_1(t) = \frac{U_0}{R} (1 - e^{-Rt/L}),$$

На рис. 8.9 представлен ток в цепи *RL* при включении ее на прямоугольный импульс. На основе рассмотренного выше примера можно аналогичным образом найти реакцию цепи при действии двух, трех и более прямоугольных сигналов.

8.4. Анализ переходных процессов на основе интеграла Дюамеля

Этот метод используется, если функция возмущения имеет более сложную форму. Представим нашу функцию в виде ступенчатой кривой. Для этого разобьем интервал изменения по времени на равные участки длительностью $\Delta \tau$ (рис. 8.10), т. е. $t_k - t_{k-1} = \Delta \tau$. Рассмотрим последовательно реакцию цепи $h(t) = f_2(t)$ на каждую из неединичных функций. Реакция цепи на первую ступенчатую функцию $f_1(0)$:

$$f_2^{(0)}(t) = f(0)h(t),$$

где h(t) – реакция цепи на единичную функцию.

Реакция цепи на скачок возмущения ${\Delta} f_1$:

$$f_2^{(1)}(t) = \Delta f_1 h(t - \Delta \tau).$$

Реакция цепи на скачек Δf_2 :

$$f_2^{(2)}(t) = \Delta f_2 h(t - 2\Delta \tau).$$

Реакция цепи при действии k-го скачка возмущения Δf_k :

Реакцию цепи при действии всех неединичных функций найдем путем суммирования реакции от каждой неединичной функции – это возможно на основе линейности принципа наложения. Получим

$$f_2(t) = f_1(0)h(t) + \sum_{k=1}^n \Delta f_k h(t - k\Delta \tau).$$
(8.13)

Запишем величину скачка следующим образом:

$$\Delta f_k = \frac{\Delta f_k}{\Delta \tau} \Delta \tau.$$

Подставим в (8.12), получим

$$f_2(t) = f_1(0)h(t) + \sum_{k=1}^n \frac{\Delta f_k}{\Delta \tau} (t - k\Delta \tau) \Delta \tau.$$
(8.14)

Устремим длительность $\Delta \tau \to 0$, тогда в выражении (8.14) будем иметь вместо ступенчатой кривой огибающую функцию, т. е. функцию $f_1(t)$, а приращение Δf_k будет выражаться через производную от функции воздействия, а сумма заменится интегралом. Получим

$$f_2(t) = f_1(0)h(t) + \int_0^t f_1'(\tau)h(t-\tau)d\tau$$
(8.15)

- интеграл наложения (Дюамеля).

Если переменную т заменить на $t-\upsilon$ то получим вторую форму записи интеграла Дюамеля

$$f_2(t) = f_1(0)h(t) + \int_0^t f_1'(t-\upsilon)h(\upsilon)d\upsilon, \qquad (8.16)$$

где $f_1^{(t)}(\tau)$ и $f_1^{(t-\upsilon)}$ – производные от входного возмущения $f_1(t)$ по времени t с последующей заменой аргумента υt на t и t- υ соответственно; $f_1(t)$ – величина входного возмущения при t = 0. Выполняя замену переменных, можно получить еще две формы интеграла Дюамеля, записанные уже через импульсную характеристику $h_{\delta}(t)$

$$f_{2}(t) = \int_{0}^{t} f_{1}(\tau) h_{\delta}(t-\tau) d\tau$$
 (8.17)

или

$$f_2(t) = \int_0^t f_1(t-\upsilon) h_{\delta}(\upsilon) d\upsilon, \qquad (8.18)$$

где интегрирование ведется с момента, предшествующего коммутации $t = 0^-$ и значит, учитывается скачок входного возмущения при t = 0.

При использовании интеграла Дюамеля в случае, если функция возмущения имеет различные аналитические выражения на разных интервалах времени, необходимо интервал интегрирования разбивать на отдельные участки. При этом расчет реакции цепи выполняется для отдельных интервалов времени.

Пример

Определить ток в цепи *RL* при действии прямоугольного импульса (см. рис. 8.7 и 8.11).

Рис. 8.11

Находим переходную характеристику

$$h(t) = \frac{1}{R} (1 - e^{\alpha t})$$

и записываем переходную характеристику со сдвигом на т

$$h(t-\tau)=\frac{1}{R}(1-e^{\alpha(t-\tau)}).$$

Представляем возмущение в виде аналитической функции

$$f_1(t) = U_0$$
, при $0 < t < t_1$,
 $f_1(t) = 0$, при $t > t_1$.

Находим производную и начальное значение возмущения

$$f_1'(t) = 0; f_1(0) = U_0.$$

Подставляем найденные выражения в интеграл Дюамеля, получим

при
$$0 < t < t_1$$
 $f_2(t) = i(t) = f_1(0)h(t) = \frac{U_0}{R}(1 - e^{\alpha t}),$

при
$$t > t_1$$
 $f_2(t) = i(t) = \frac{U_0}{R}(1 - e^{\alpha t}) + \int_0^t 0h(t - \tau) + (f_{1 n p} - f_{1 c \pi})h(t - t_1),$

где $f_{1пр}$, $f_{1сл}$ – пределы функций (значения) справа и слева от точки $t = t_1$, соответственно.

Если функция имеет скачок первого рода (т. е. меняет закон изменения скачком во время t_1 , (рис. 8.11)), то реакция цепи определяется следующим образом:

$$(f_{1 \text{ mp}} - f_{1 \text{ c.r.}})h(t - t_1)e = (0 - U_0)\frac{1}{R}(1 - e^{\alpha(t - t_1)}).$$

Рассмотрим другой пример. Пусть входное напряжение имеет вид треугольного импульса (пунктирная линия на рис 8.11). Если импульс треугольный, то производная от возмущения не равна нулю и ток в цепи определяется из следующего выражения:

$$f_2(t) = \frac{U_0}{R} (1 - e^{\alpha t}) + \int_0^{t_1} Kh(t - \tau) dt + (f_{1 \pi p} - f_{1 c \pi})h(t - t_1),$$

где

$$K = \frac{d}{dt} f_1(t) = \frac{d}{dt} \left(\frac{U_m}{t_1} t \right) = \frac{U_m}{t_1}$$

– производная от функции возмущения.

Взяв интеграл, получим выражение реакции цепи для этого случая.

9. ЧЕТЫРЕХПОЛЮСНИКИ

9.1. Основные определения и уравнения четырехполюсника

Четырехполюсник – это сложная электрическая схема, имеющая два входных (зажимы 1 и 1') и два выходных (2 и 2') зажима (рис. 9.1). Четырехполюсники делятся на пассивные и активные.

Рис. 9.1

Четырехполюсник называется *пассивным*, если он не содержит источников энергии, либо содержит скомпенсированные источники энергии. *Активный* четырехполюсник содержит источники энергии.

Различают автономные и неавтономные активные четырехполюсники.

Автономный четырехполюсник: при отключении его от источника на его выходных зажимах наблюдается напряжение.

У *неавтономного* четырехполюсника после отключения от цепи напряжение на разомкнутых зажимах не обнаруживается.

Рис. 9.2

Под уравнениями четырехполюсника понимают выражения, связывающие входные напряжения и ток с выходными напряжением и током. В зависимости от того, какие две величины принимаются за известные, а какие за неизвестные различают шесть типов уравнений четырехполюсника

1. Уравнения в Z-параметрах.

В обычной форме и матричной форме

$$\begin{cases} \dot{U}_1 = Z_{11}\dot{I}_1 + Z_{12}\dot{I}_2, & \begin{bmatrix} \dot{U}_1 \\ \dot{U}_2 = Z_{21}\dot{I}_1 + Z_{22}\dot{I}_2. & \begin{bmatrix} \dot{U}_1 \\ \dot{U}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{Z} \end{bmatrix} \begin{bmatrix} \dot{I}_1 \\ \dot{I}_2' \end{bmatrix} = \begin{bmatrix} Z_{11} & Z_{12} \\ Z_{21} & Z_{22} \end{bmatrix} \begin{bmatrix} \dot{I}_1 \\ \dot{I}_2' \end{bmatrix}.$$
(9.1)

Физический смысл Z-параметров:

 $Z_{11} = \frac{\dot{U_1}}{\dot{I_1}} \Big|_{\dot{I_2}} = 0^{-}$ входное сопротивление четырехполюсника в режиме прямого холостого хода (разомкнуты выходные зажимы);

 $Z_{22} = \frac{\dot{U}_2}{\dot{I}_2} \Big| \dot{I}_1 = 0^{-}$ выходное сопротивление четырехполюсника в режиме обратного холостого хода (разомкнуты входные зажимы);

 $Z_{12} = \frac{\dot{U}_1}{\dot{I}_2} \Big| \dot{I}_1 = 0^{-}$ передаточное сопротивление в режиме обратного

холостого хода;

 $Z_{21} = \frac{\dot{U}_2}{\dot{I}_1} \Big| \dot{I}_2' = 0$ — передаточное сопротивление в режиме прямого холостого хода.

Сопротивления Z_{11} и Z_{22} имеют физический смысл, могут быть непосредственно измерены, например омметром. Передаточные сопротивления физического смысла не имеют и могут быть только рассчитаны.

Для линейной пассивной цепи справедливо $Z_{12} = Z_{21}$ – принцип линейности электрической цепи.

Пассивный четырехполюсник имеет только три независимых Z-параметра из четырех; Z-параметры называют параметрами холостого хода четырехполюсника, так как определяются из опытов прямого и обратного холостого хода.

Симметричный четырехполюсник – четырехполюсник, у которого схема одинакова относительно его входных и выходных зажимов. Тогда для симметричного четырехполюсника $Z_{11} = Z_{22}$.

2. Уравнения в Ү-параметрах.

$$\begin{cases} \dot{I}_{1} = Y_{11}\dot{U}_{1} + Y_{12}\dot{U}_{2}, \\ \dot{I}_{2}' = Y_{21}\dot{U}_{1} + Y_{22}\dot{U}_{2}, \\ \end{cases} \begin{bmatrix} \dot{I}_{1} \\ \dot{I}_{2}' \end{bmatrix} = \begin{bmatrix} \mathbf{Y} \end{bmatrix} \begin{bmatrix} \dot{U}_{1} \\ \dot{U}_{2} \end{bmatrix},$$
(9.2)

 $\begin{bmatrix} Y \end{bmatrix} = \begin{bmatrix} Y_{11} & Y_{12} \\ Y_{21} & Y_{22} \end{bmatrix}$ – матрица *Y*-параметров четырехполюсника; *Y*-параметры определяются из опытов прямого или обратного короткого замыкания (прямое короткое замыкание $\dot{U}_2 = 0$; обратное $-\dot{U}_1 = 0$, напряжение подано на выходные зажимы).

Физический смысл У-параметров четырехполюсника:

$$Y_{11} = \frac{\dot{I}_1}{\dot{U}_1} \Big| \dot{U}_2 = 0^{-1}$$
 входная проводимость при прямом коротком за-

мыкании;

$$Y_{22} = rac{\dot{I}_2'}{\dot{U}_2} \Big| \dot{U}_1 = 0 -$$
выходная проводимость при обратном коротком

замыкании;

$$Y_{12} = rac{\dot{I}_1}{\dot{U}_2} \Big| \dot{U}_1 = 0^{-}$$
 передаточная проводимость при обратном корот-

ком замыкании;

$$Y_{21} = rac{\dot{I}_2^{\,\prime}}{\dot{U}_1} \Big| \dot{U}_2 = 0^{\,-}$$
 передаточная проводимость при прямом корот-

ком замыкании.

Для пассивного четырехполюсника передаточные проводимости $Y_{12} = Y_{21.}$ Для симметричного четырехполюсника дополнительно: $Y_{11} = Y_{22}$, т. е. из четырех Y-параметров для симметричного четырехполюсника два независимых Y-параметра.

3. Уравнения в А-параметрах.

В обычной форме и матричной форме

$$\begin{cases} \dot{U}_1 = A_{11}\dot{U}_2 + A_{12}\dot{I}_2, & [\dot{U}_1]\\ \dot{I}_1 = A_{21}\dot{U}_2 + A_{22}\dot{I}_2, & [\dot{I}_1] = [\mathbf{A}] \begin{bmatrix} \dot{U}_2\\ \dot{I}_2 \end{bmatrix}. \end{cases}$$
(9.3)

Уравнения в *А*-параметрах используются при прямой передаче энергии. Нагрузка включена на выходные зажимы (рис. 9.1)

Физический смысл постоянных:

. .

$$A_{11} = \frac{\dot{U}_1}{\dot{U}_2} \dot{I}_2 = 0$$
 – характеризует передачу напряжения через четы-

рехполюсник в режиме холостого хода;

$$A_{11} = \frac{1}{H_U} \Big| \dot{I}_2 = 0$$
, где $H_U = \frac{\dot{U}_2}{\dot{U}_1}$ – передаточная функция по напря-

жению;

$$A_{22} = \frac{\dot{I}_1}{\dot{I}_2} \Big| \dot{U}_2 = 0^{-x}$$
арактеризует передачу тока через четырехполюс-

ник в режиме короткого замыкания;

$$\begin{split} A_{22} = & \frac{1}{H_{i}} \bigg| \dot{U}_{2} = 0, \text{ где } H_{I} = & \frac{\dot{I}_{2}}{\dot{I}_{1}} - \text{передаточная функция по току;} \\ A_{12} = & \frac{\dot{U}_{1}}{\dot{I}_{2}} \bigg| \dot{U}_{2} = & 0 \\ & - \text{ передаточное сопротивление в режиме короткого} \end{split}$$

замыкания

 $A_{21} = \frac{\dot{I}_1}{\dot{U}_2} \Big| \dot{I}_2 = 0^{-1}$ передаточная проводимость в режиме холостого хода. Иногда в учебной циторотит

А-постоянных: $A_{11} = A$; $A_{12} = B$; $A_{21} = C$; $A_{22} = D$. Тогда матрица [А]-параметров имеет вид

$$\begin{bmatrix} \mathbf{A} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$

Из четырех А-параметров только три постоянные – независимые, так как для пассивного четырехполюсника AD-BC = 1. Кроме этого, для симметричного четырехполюсника A = D, поэтому для симметричного четырехполюсника только две постоянные независимые.

4. Уравнения в В-параметрах.

Напряжение источника U₂ подано на выходные зажимы (рис. 9.3.).

Рис. 9.3

Уравнения четырехполюсника при обратном включении четырехполюсника имеют вид

$$\begin{cases} \dot{U}_2 = B_{11}\dot{U}_1 + B_{12}\dot{I}_1', \\ \dot{I}_2' = B_{21}\dot{U}_1 + B_{22}\dot{I}_1'. \end{cases}$$
(9.4)

Если заменить токи $\dot{I}_1\,$ на $\,-\dot{I}_1'\,$ и $\dot{I}_2\,$ на $-\dot{I}_2'\,$ и решить уравнения в формеA (9.3) относительно \dot{U}_2 и \dot{I}'_2 , то получим уравнения четырехполюсника в форме В-параметров, выраженные через параметры формы А. Для обратимого четырехполюсника:

$$\begin{cases} \dot{U}_2 = A_{22}\dot{U}_1 + A_{12}\dot{I}_1', \\ \dot{I}_2' = A_{21}\dot{U}_1 + A_{11}\dot{I}_1'. \end{cases}$$
(9.5)

89

Сопоставляя полученную систему уравнений (9.5) при обратном включении через A-параметры с уравнениями четырехполюсника при прямом включении (9.3) видим, что с изменением направления передачи постоянные A_{11} и A_{22} (A и D) меняются местами. Поэтому для симметричного четырехполюсника $A_{11} = A_{22}$ (A = D), так как по определению симметричного четырехполюсника напряжения не меняются, т. е. схема одинакова относительно входных и выходных зажимов.

5. Уравнения в Н-параметрах.

$$\begin{cases} \dot{U}_1 = H_{11}\dot{I}_1 + H_{12}\dot{U}_2, \\ \dot{I}'_2 = H_{21}\dot{I}_1 + H_{22}\dot{U}_2. \end{cases}$$
(9.6)

6. Уравнения в G-параметрах.

$$\begin{cases} \dot{I}_1 = G_{11}\dot{U}_1 + G_{12}\dot{I}_2', \\ \dot{U}_2 = G_{21}\dot{U}_1 + G_{22}\dot{I}_2'. \end{cases}$$
(9.7)

Уравнения с *H* и *G*-параметрами обычно используются для схем с транзисторами. *H* и *G*-параметры определяются из режимов холостого хода и короткого замыкания.

Пример

Рассмотрим транзистор с общей базой (рис. 9.4) и составим для него уравнения в *H*-параметрах.

Рис. 9.4

В схеме замешения транзистора (рис. 9.5) имеется зависимый источник ЭДС \longrightarrow . Величина этого источника ЭДС зависит от параметра управления, в данном случае от \dot{I}_1 , $\dot{E} = R_K \dot{I}_1 \alpha$, где α – коэффициент усиления по току.

Схема замещения биполярного транзистора на низкой частоте (рис. 9.5) представляет собой активный неавтономный четырехполюсник.

Составим уравнения (для цепи рис. 9.5) по законам Кирхгофа:

Рис. 9.5

$$\begin{cases} \dot{I}_{3} = \dot{I}_{1} + \dot{I}_{2}', \\ \dot{I}_{1}R_{\partial} + \dot{I}_{3}R_{6} = \dot{U}_{1}, \\ \dot{I}_{2}'R_{K} + \dot{I}_{3}R_{6} - \dot{U}_{2} = -R_{K}\alpha\dot{I}_{1}. \end{cases}$$

При анализе цепей с зависимыми источниками вначале составляются уравнения цепи аналогично тому, как и с независимыми источниками. Затем через искомые неизвестные выражают параметр управления в зависимом источнике, группируют слагаемые с одинаковыми неизвестными и решают полученную систему уравнений, как это сделано ниже

$$\dot{I}_{2}'R_{K} + (\dot{I}_{1} + \dot{I}_{2}')R_{6} + R_{K}\alpha\dot{I}_{1} = \dot{U}_{2}; \implies \dot{I}_{2}' = -\frac{R_{6} + \alpha R_{K}}{R_{K} + R_{6}}\dot{I}_{1} + \frac{1}{\underbrace{\frac{1}{R_{K} + R_{6}}}_{H_{22}}\dot{U}_{2}}$$

$$\dot{U}_{1} = \dot{I}_{1}R_{\partial} + \dot{I}_{1}R_{\delta} + \dot{I}_{2}'R_{\delta} = \dot{I}\underbrace{\left(\begin{array}{c}R_{\partial} + R_{\delta} - R_{\delta}\frac{R_{\delta} + \alpha R_{K}}{R_{K} + R_{\delta}}\right)}_{H_{11}} + \underbrace{\frac{R_{\delta}}{R_{K} + R_{\delta}}}_{H_{12}}\dot{U}_{2} + \underbrace{\frac{R_{\delta}}{R_{K} + R_{\delta}}}_{H_{12}}\dot{U}_{2}} + \underbrace{\frac{R_{\delta}}{R_{K} + R_{\delta}}}_{H_{12}}\dot{U}_{2}} + \underbrace{\frac{R_{\delta}}{R_{K} + R_{\delta}}}_{H_{12}}\dot{U}_{2}} + \underbrace{\frac{R_{\delta}}{R_{$$

Сопоставляя коэффициенты в уравнениях с *H*-параметрами, находим *H*-параметры транзистора.

Зная уравнение четырехполюсника в одной системе параметров, можно найти их в другой системе. Для этого необходимо одну систему переменных выразить через другую, т. е. решить систему из двух уравнений относительно другой пары неизвестных.

9.2. Эквивалентные схемы замещения пассивного четырехполюсника

Для любого пассивного четырехполюсника только три независимых постоянных, поэтому простейшая схема замещения должна содержать три сопротивления, соединенных либо в «звезду» сопротивлений (рис. 9.6), либо «треугольник» сопротивлений (рис. 9.7).

Найдем, как связаны сопротивления *T*-образной схемы замещения четырехполюсника (рис. 9.8.) с*A*-параметрами четырехполюсника.

Рис. 9.8

Для этого составим ЗТК для узла 1 и ЗНК для контура, положительное направление которого указано пунктиром:

$$\dot{I}_1 = \dot{I}_2 + \dot{I}_0,$$
 (9.8)

$$\dot{U}_{12} = \dot{I}_2 Z_2 + \dot{U}_2.$$
 (9.9)

Из закона Ома имеем

$$\dot{I}_0 = \frac{\dot{U}_{12}}{Z_0} = \dot{U}_{12}Y_0 = Y_0\dot{U}_2 + Y_0Z_2\dot{I}_2, \qquad (9.10)$$

где $Y_0 = 1/Z_0$.

Подставляя выражение (9.10) в (9.8), получим

$$\dot{I}_1 = Y_0 \dot{U}_2 + (1 + Y_0 Z_2) \dot{I}_2.$$
 (9.11)

Сравним выражение (9.11) со вторым уравнением четырехполюсника в A-параметрах (9.3). Сопоставляя коэффициенты при U и токе I, получим

$$\dot{I}_1 = C_0 \dot{U}_2 + D\dot{I}_2 \implies \begin{array}{c} C = Y_0 = 1/Z_0, \\ D = 1 + Y_0 Z_2. \end{array}$$
(9.12)

Из ЗНК для входного контура Т-образного четырехполюсника

$$\dot{U}_1 = Z_1 \dot{I}_1 + \dot{U}_{12}$$

или с учетом выражения (9.11)

$$\dot{U}_1 = Z_1 \dot{I}_1 + \dot{I}_2 Z_2 + \dot{U}_2 = (Z_1 Y_0 + 1) \dot{U}_2 + (Z_1 + Z_2 + Z_1 Z_2 Y_0) \dot{I}_2.$$
(9.13)

Сравним (9.13) с первым уравнением четырехполюсника в *А*-параметрах

$$\dot{U}_{1} = A\dot{U}_{2} + B\dot{I}_{2} \implies \begin{array}{c} A = Z_{1}Y_{0} + \mathbf{1}, \\ B = Z_{1} + Z_{2} + Z_{1}Z_{2}Y_{0}. \end{array}$$
(9.14)

На основе полученных выражений (9.12) и (9.14) определяем параметры, т. е. сопротивления эквивалентной *T*-образной схемы четырехполюсника

$$Z_0 = \frac{1}{C}; Z_1 = \frac{A-1}{C}; Z_2 = \frac{D-1}{C}.$$
(9.15)

Для физической реализуемости *T*-образной схемы необходимо, чтобы вещественные части полученных выражений (9.15) были бы неотрицательными, так как они представляют собой активные сопротивления

$$\operatorname{Re}\left[\frac{1}{C}\right] \ge 0; \operatorname{Re}\left[\frac{A-1}{C}\right] \ge 0; \operatorname{Re}\left[\frac{D-1}{C}\right] \ge 0.$$

Рассмотрим теперь Π -образную схему замещения четырехполюсника (рис. 9.9).

Рис. 9.9

Составим ЗТК для узла 1 и ЗНК для контура с указанным положительным направлением обхода контура (рис. 9.9). Получим выражения, которые связывают сопротивления П-образной схемы с постоянными четырехполюсника в форме А.

Для физической реализуемости необходимо, чтобы вещественные части соответствующих выражений были неотрицательны.

9.3. Передаточные функции четырехполюсника

Под *передаточной функцией*, как известно, понимают отношение реакции цепи к возмущению, т. е. отношение выходного сигнала к входному.

Если имеется установившийся режим в цепи гармонического тока, то следует рассматривать отношение комплексного действующего значения реакции к возмущению.

Если имеется переходный процесс, то рассматриваем отношение их изображений по Лапласу. При этом различают следующие передаточные функции:

1.
$$H_U(p) = \frac{U_2(p)}{U_1(p)}$$
 – передаточная функция по напряжению;
2. $H_I(p) = \frac{I_2(p)}{I_1(p)}$ – передаточная функция по току;
3. $H_Z(p) = \frac{U_2(p)}{I_1(p)}$ – передаточная функция сопротивления;
4. $H_Y(p) = \frac{I_2(p)}{U_1(p)}$ – передаточная функция проводимости.

Найдем связь между постоянными четырехполюсника в форме *A* и передаточными функциями. Для этого возьмем четырехполюсник (рис. 9.10) и запишем уравнения в *A*-параметрах.

$$\begin{cases} \dot{U}_{1} = A\dot{U}_{2} + B\dot{I}_{2}, \\ \dot{I}_{1} = C\dot{U}_{2} + D\dot{I}_{2}. \end{cases}$$

Рис. 9.10

Определим передаточную функцию четыр
ехполюсника по напряжению и подставим вместо \dot{U}_1 его выражение через
 A-параметры, получим

$$H_U(j\omega) = \frac{\dot{U}_2}{\dot{U}_1} = \frac{\dot{U}_2}{A\dot{U}_2 + B\dot{I}_2} = \frac{Z_H}{AZ_H + B}.$$
 (9.16)

Передаточная функция по напряжению H_U зависит от сопротивления нагрузки $Z_{\rm H}$ и полностью определяется постоянными четырехполюсника.

Аналогично можно найти передаточную функцию по току

$$H_{I}(j\omega) = \frac{\dot{I}_{2}}{\dot{I}_{1}} = \frac{\dot{I}_{2}}{C\dot{U}_{2} + D\dot{I}_{2}} = \frac{1}{CZ_{\rm H} + D}.$$
(9.17)

Зависимость модуля передаточной функции $H(\omega)$ от частоты называется амплитудно-частотной характеристикой (AЧХ), а фазы $\varphi(\omega) - \phi$ азочастотной характеристикой (ФЧХ).

Пример

Найдем передаточную функцию цепи (рис. 9.11) и построим ее АЧХ и ФЧХ.

Рис. 9.11

Записываем передаточную функцию по напряжению

$$H_U(j\omega) = \frac{\dot{U}_2}{\dot{U}_1}.$$
 (9.18)

По закону Ома находим входной ток

$$\dot{I}_1 = \frac{\dot{U}_1}{j_{(0)}L + \frac{1}{Y_{12}}}.$$
(9.19)

где $Y_{12} = j \omega C + \frac{1}{R_{\rm H}}$ – проводимость параллельного участка. Выходное напряжение с учетом (9.19) равно

$$\dot{U}_{2} = \dot{I}_{1} \frac{1}{Y_{12}} = \frac{\dot{U}_{2}}{\left(j \omega L + \frac{1}{Y_{12}}\right) Y_{12}} = \frac{\dot{U}_{1}}{1 + j \omega L Y_{12}} = \frac{\dot{U}_{1}}{1 + j \frac{\omega L}{R_{H}} - \omega^{2} L C}.$$
 (9.20)

Тогда из (9.18) с учетом (9.20) передаточная функция имеет вид

$$H_U(j\omega) = \frac{1}{\left(1 - \omega^2 LC\right) + j\frac{\omega L}{R_{\rm H}}} = \frac{1}{\sqrt{\left(1 - \omega^2 LC\right)^2 + \left(\frac{\omega L}{R_{\rm H}}\right)^2}} = H_U(\omega)e^{j\psi},$$

где

$$H_U(w) = \frac{1}{\sqrt{\left(1 - \omega^2 LC\right)^2 + \left(\frac{\omega L}{R_{\rm H}}\right)^2}}$$

– АЧХ передаточной функции;

$$\psi(\omega) = -\varphi(\omega) = -\arctan \frac{\omega L}{R_{\rm H} \left(1 - \omega^2 L C\right)}$$

-ФЧХ передаточной функции.

На рис. 9.12 приведены *АЧХ* и *ФЧХ* передаточной функции по напряжению схемы (рис. 9.11).

Рис. 9.12

Рассмотрим физический смысл AYX и ΦYX передаточной функции по напряжению цепи (рис. 9.13) и определим какими свойствами должен обладать четырехполюсник, чтобы в нагрузке была максимальная мощность.

Рис. 9.13

Запишем передаточную функцию четырехполюсника

$$H_U(j\omega) = \frac{\dot{U}_2}{\dot{U}_1} = \frac{U_2 e^{j\psi_2}}{U_1 e^{j\psi_1}} = \frac{U_2}{U_1} e^{j(\psi_2 - \psi_1)} = H_U(\omega) e^{j\psi(\omega)},$$

где $H_U(\omega) = \frac{U_2}{U_1}$ – АЧХ передаточной функции четырехполюсника представляет собой зависимость коэффициента усиления от частоты; $\psi(w) = = \psi_2 - \psi_1 - \Phi$ ЧХ передаточной функции показывает, как изменяется фаза напряжения при прохождении через четырехполюсник.

С целью согласования сопротивления источника с сопротивлением нагрузки необходимо знать входное и выходное сопротивление четырехполюсника.

9.4. Входное сопротивление четырехполюсника. Характеристические параметры

Найдем, как связаны входное и выходное сопротивления четырехполюсника с параметрами и сопротивлениями нагрузки.

Рис. 9.14

Исходя из закона Ома, входное и выходное сопротивления равны соответственно

$$Z_{1_{\text{BX}}} = \frac{\dot{U}_1}{\dot{I}_1} = \frac{A\dot{U}_2 + B\dot{I}_2}{C\dot{U}_2 + D\dot{I}_2} = \frac{A_{Z_{2\text{H}}} + B}{C_{Z_{2\text{H}}} + D},$$
(9.22)

$$Z_{2_{\text{BX}}} = \frac{\dot{U}_2}{\dot{I}_2} = \frac{D\dot{U}_1 + B\dot{I}_1}{C\dot{U}_1 + A\dot{I}_1} = \frac{D_{Z_{1\text{H}}} + B}{C_{Z_{1\text{H}}} + A},$$
(9.21)

где $Z_{2H} = \frac{\dot{U}_2}{\dot{I}_2}; Z_{1H} = \frac{\dot{U}_1}{\dot{I}_1}$ – сопротивления нагрузки на выходе и входе четырехполюсника

Как видно из (9.21) и (9.22), для каждого конкретного значения сопротивления нагрузки существует единственное значение входного и выходного сопротивления четырехполюсника.

X арактеристическими сопротивлениями называется такая пара сопротивлений Z_{1C} и Z_{2C} , для которой выполняется два условия:

1. Если сопротивление Z_{2C} включено в качестве нагрузки на выходных зажимах, то входное сопротивление $Z_{1BX} = Z_{1C}$.

Рис. 9.15

2. Если сопротивление Z_{1C} включено в качестве нагрузки на входные зажимы, то выходное сопротивление $Z_{2_{Rx}} = Z_{2C}$ (рис. 9.15–9.16).

Рис. 9.16

Подставив Z_{1C} и Z_{2C} в (9.21) и (9.22), и решив систему, получим

$$Z_{1C} = \sqrt{\frac{AB}{CD}}; \ Z_{2C} = \sqrt{\frac{DB}{CA}}, \tag{9.23}$$

т. е. для каждого четырехполюсника существует только единственная пара характеристических сопротивлений Z_{1C} и Z_{2C} , так как они однозначно определяются через *A*-параметры четрырехполюсника.

Если четырехполюсник симметричен (A = D), то характеристические сопротивления одинаковы

$$A = D; Z_{1C} = Z_{2C} = \sqrt{\frac{B}{C}} = Z_C$$
 (9.24)

- повторное сопротивление.

Обозначим через $Z_{1_{\rm BX}}$ и $Z_{2_{\rm BX}}$ входное и выходное сопротивления четырехполюсника (рис. 9.13).

Для того, чтобы четырехполюсник выполнял условия согласования, необходимо, чтобы комплексное сопротивление источника было равно сопряженному комплексу входного сопротивления согласующего четырехполюсника, а выходное сопротивление равнялось со-

Рассмотрим вновь отношение напряжений, когда четырехполюсник нагружен на характеристическое сопротивление.

$$\frac{\dot{U}_1}{\dot{U}_2} = \frac{1}{H_U(jw)} = \frac{A\dot{U}_2 + B\dot{I}_2}{\dot{U}_2} = A + \frac{B}{Z_{2C}} = \sqrt{\frac{Z_{1C}}{Z_{2C}}} \left(\sqrt{\frac{Z_{2C}}{Z_{1C}}}A + \frac{B}{\sqrt{Z_{1C}Z_{2C}}}\right), (9.25)$$

где $Z_{2H} = Z_{2C} = \frac{\dot{U}_2}{\dot{I}_2}$.

С учетом выражений (9.23), найдем отношение и произведение характеристических сопротивлений

$$\frac{Z_{2C}}{Z_{1C}} = \sqrt{\frac{DBCD}{CAAB}} = \frac{D}{A},$$
(9.26)

$$Z_{1C}Z_{2C} = \sqrt{\frac{ABDB}{CDCA}} = \frac{B}{C}.$$
(9.27)

Подставим (9.26) и (9.27) в (9.25), получим для отношения напряжений:

$$\frac{\dot{U}_1}{\dot{U}_2} = \sqrt{\frac{Z_{1C}}{Z_{2C}}} \left(\sqrt{\frac{D}{A}} A + \frac{B}{\sqrt{B/C}} \right) = \sqrt{\frac{Z_{1C}}{Z_{2C}}} \left(\sqrt{AD} + \sqrt{BC} \right).$$
(9.28)

Проделав аналогичные преобразования для токов, имеем

$$\frac{\dot{I}_1}{\dot{I}_2} = \frac{1}{H_I(jw)} = \sqrt{\frac{Z_{2C}}{Z_{1C}}} \left(\sqrt{AD} + \sqrt{BC}\right).$$
(9.29)

Обозначим $\sqrt{AD} + \sqrt{BC} = e^{\gamma}$, где

$$\gamma = \ln\left(\sqrt{AD} + \sqrt{BC}\right) = \alpha + j\beta \tag{9.30}$$

- постоянная (мера) передачи.

Тогда из (9.28) и (9.29) с учетом (9.30) для несимметричного четырехполюсника будем иметь следующие уравнения:

$$\frac{\dot{U}_1}{\dot{U}_2} = \sqrt{\frac{Z_{1C}}{Z_{2C}}} e^{\gamma}, \ \frac{\dot{I}_1}{\dot{I}_2} = \sqrt{\frac{Z_{2C}}{Z_{1C}}} e^{\gamma}.$$
(9.31)

Постоянная передачи четырехполюсника (мера передачи) γ – третий характеристический параметр. Для каждого четырехполюсника эта постоянная единственна. Рассмотрим физический смысл постоянной γ. Для симметричного четырехполюсника из (9.31) с учетом (9.24) имеем

$$\frac{\dot{U}_1}{\dot{U}_2} = e^{\gamma} = \frac{\dot{I}_1}{\dot{I}_2}.$$

или

$$\gamma = \ln \frac{\dot{U}_1}{\dot{U}_2} = \ln \left(\frac{U_1 e^{j\psi_1}}{U_2 e^{j\psi_2}} \right) = \ln \frac{U_1}{U_2} + \ln e^{j(\psi_1 - \psi_2)} = \alpha + j\beta,$$
(9.32)

где
 $\alpha=\!\ln\!\frac{U_1}{U_2}-$ коэффициент затухания, Нп;
 $\beta=\psi_1\!-\!\psi_2\!-\!$ коэффициент фазы, рад.

Коэффициент затухания α показывает, как изменится модуль напряжения при прохождении через четырехполюсник. Если $\alpha = 0$, то затухания нет, если $\alpha = 1$, то напряжение уменьшается в *e*-раз, если $\alpha = 2$, то напряжение уменьшается в 7.4 раза.

Однако во многих практических случаях (в автоматике и радио технике) величину α измеряют в децибелах. Рассмотрим десятичный логарифм отношения мощностей при нагрузке на характеристическое сопротивление:

$$\log \frac{S_1}{S_2} = \log \frac{U_1 I_1}{U_2 I_2} = \log \frac{U_1^2}{U_2^2} = 2\log \frac{U_1}{U_2}$$
, B,

где \boldsymbol{S}_1 – полная мощность на входе; \boldsymbol{S}_2 – полная мощность на выходе.

Единица измерения затухания [Б] величина большая, поэтому пользуются величиной в 10 раз меньшей – децибелом, (1Б = 10дБ). При этом выражение для коэффициента затухания имеет вид

$$\alpha = 20\log \frac{U_1}{U_2}$$
, дБ.

Уменьшению мощности в 2 раза соответствует уменьшение напряжения в $\sqrt{2}$ раз, при этом коэффициент ослабления $\alpha = 3$ дВ. Если мощность на выходе в 10 раз меньше, то коэффициент затухания $\alpha = 10$ дБ, если напряжение на выходе в 10 раз меньше, чем на входе, то коэффициент затухания равен 20 дБ. Затухание 1 дБ соответствует уменьшению напряжения и мощности соответственно

$$\frac{U_1}{U_2} = 1,12, \ \frac{S_1}{S_2} = 1,26.$$

9.5. Сложные четырехполюсники

Сложные четырехполюсники составлены из простых четырехполюсников. Существуют различные типы включения четырехполюсников:

1. *Каскадное соединение* четырехполюсников (рис. 9.17). Выходные зажимы предыдущего четырехполюсника соединены со входными зажимами последующего.

Рис. 9.17

При каскадном соединении *А*-параметры сложного четырехполюсника (показан пунктирной линией) можно найти, если перемножить матрицы *А*-параметров составных четырехполюсников

$$(A) = (A)_{\mathrm{I}}(A)_{\mathrm{II}}.$$

2. Последовательное соединение четырехполюсников (рис. 9.18).

Входные зажимы соединены последовательно, аналогично – выходные зажимы; Z-параметры сложного четырехполюсника находят, суммируя матрицы Z-параметров составных четырехполюсников

$$(Z) = (Z)_{\mathrm{I}} + (Z)_{\mathrm{II}}.$$

Рис. 9.18

3. Параллельное соединение четырехполюсников (рис. 9.19).

Входные зажимы четырехполюсников включены параллельно, аналогично – выходные зажимы; *Y*-параметры сложного четырехполюсника находят, суммируя *Y*-параметры составных четырехполюсников

$$(Y) = (Y)_{\mathrm{I}} + (Y)_{\mathrm{II}}.$$

Кроме рассмотренных выше способов соединения четырехполюсников, существуют следующие типы:

Параллельно-последовательные соединение.

Последовательно-параллельные соединение.

При параллельно-последовательном соединении входные зажимы

соединены параллельно, а выходные – последовательно; при последовательно-параллельном – наоборот.

Такие типы включений используются для образования обратных связей по напряжению и по току. Для определения параметров сложного четырехполюсника в этих случаях используются *H*-или *G*-параметры.

9.6. Фильтры

Фильтром называется четырехполюсник, который служит для пропускания, либо задерживания сигналов определенных частот.

Полоса частот, которая пропускается фильтром, называется полосой пропускания (зоной прозрачности).

Полоса частот, которая не пропускается фильтром – *полоса задер*живания (зона непрозрачности).

Частоты, лежащие на границе полосы пропускания и задерживания – частоты среза (граничные частоты).

Требования к идеальному фильтру.

Коэффициента затухания α и передаточная функция $H_U(\omega)$: в полосе пропускания (ПП);

$$\alpha = 0; H_{II} = 1$$

в полосе задерживания (ПЗ) (см. рис. 9.20, 9.21.)

$$\alpha = \infty; H_{U}(\omega) = 0.$$

На рис. 9.20 приведена АЧХ передаточной функции для идеального полосового фильтра, а на рис. 9.21. – зависимость коэффициента затухания α.

Виды фильтров:

1. Фильтр нижних частот (рис. 9.22).

Полоса пропускания (ПП) от нуля до частоты среза ω_2 , т. е. $0 < \Pi \Pi < \omega_2$.

2. Фильтр верхних частот (рис.9.23)

Полоса пропускания (ПП) от частоты среза $\omega_1 \operatorname{дo} \infty$, т. е. $\omega_2 < \Pi \Pi < \infty$.

3. Полосовой фильтр (ПФ) (рис. 9.20 и 9.21).

Полоса пропускания (ПП) расположена между частотами среза: $\omega_1 < \omega < \omega_2$.

4. Заграждающий фильтр (ЗФ) (рис. 9.24).

Полоса задерживания ($\Pi 3$) между частотами среза $\omega_1 < \omega < \omega_2$.

Рис. 9.24

В зависимости от элементов фильтры делятся на:

1. Реактивные (состоящие из индуктивностей L и емкостей C).

- 2. Безиндукционные (*RC*-фильтры).
- 3. Активные фильтры (на базе операционных усилителей).

4. Пьезофильтры.

Существенным недостатком реактивных и безиндукционных фильтров является затухание сигнала на выходе. Поэтому получили широкое распространение активные фильтры, в которых устранен этот недостаток.

9.7. Активные фильтры

Активные фильтры позволяют устранить недостатки реактивных и безиндукционных фильтров. Сигнал на выходе усиливается за счет усилителя, имеющегося в данном фильтре.

Рассмотрим операционный усилитель (рис. 9.25).

Рис. 9.25

Усилитель имеет два входа: «+» прямой (неинвертирующий) и «-» инвертирующий вход. Выходное напряжение операционного усилителя $U_{\rm BMX} = ky(U'-U'')$, где $ky = 10^4 \div 10^5$ – коэффициент усиления по напряжению.

Схема замещения операционного усилителя с нагрузкой приведена на рис. 9.26.

Рис. 9.26

В схеме замещения $R_{_{\rm BX'}}$ – входное сопротивление прямого входа, а $R_{_{\rm BX''}}$ – входное сопротивление инвертирующего входа. Зависимый источник напряжения E управляется напряжениями на прямом и инвертирующем входах.

Построим схему фильтра нижних частот на основе операционного усилителя (рис. 9.27). Для этого в обратную связь между инвертирующим входом и выходом включим *RC*-цепь.

Рис. 9.27

Заменим операционный усилитель его схемой замещения.

Рис. 9.28

В соответствии с методом узловых напряжений для цепи (рис. 9.28) имеем

$$\begin{cases} \dot{U}_{10} \left(\frac{1}{R_1} + \frac{1}{R} + j\omega C + \frac{1}{R_{BX}''} \right) - \dot{U}_{20} \left(\frac{1}{R} + jwC \right) = \frac{\dot{U}_1}{R_1}, \\ \dot{U}_{20} = E = -k_y U''. \end{cases}$$
(9.33)

Из системы (9.33) при условии, что $R''_{\scriptscriptstyle \mathrm{BX}} >> R; \; R_1 = R; \; U'' = U_{10}, \;$ получим

$$\dot{U}_{10}\left(\frac{2}{R}+j\omega C\right)+\dot{U}_{10}\left(\frac{k_y}{R}+j\omega Ck_y\right)=\frac{\dot{U}_1}{R}$$

106

или

$$\dot{U}_{10} = \frac{U_1}{R \Big[2 \Big/ R + k_y \Big/ R + j \omega C \Big(1 + k_y \Big) \Big]}.$$

Откуда передаточная функция по напряжению равна

$$H_{U} = \frac{\dot{U}_{20}}{\dot{U}_{1}} = \frac{-k_{y}U_{1}}{R\left[2/R + k_{y}/R + j\omega C(1 + k_{y})\right]U_{1}}$$

или, пренебрегая величинами малыми по сравнению с коэффициентом усиления $ky = 10^4 \div 10^5$, получим

$$H_U(j\omega) = \frac{-k_y}{k_y + j\omega CRk_y} = -\frac{1}{1 + j\omega CR}$$

Найдем АЧХ и ФЧХ передаточной функции

$$H_U(j\omega) = \frac{e^{j180^0}}{\sqrt{1 + (\omega CR)^2}} = H_U(\omega)e^{j\psi},$$

где $H_U(\omega) = \frac{1}{\sqrt{1 + (\omega CR)^2}} - A \mathbf{Y} X$ передаточной функции; $\phi = \operatorname{arctg}(\omega CR),$

 $\psi(\omega) = +180^{\circ} - \phi - \Phi \Psi X$ передаточной функции.

На рис. 9.29 изображены *АЧХ* и *ФЧХ* активного фильтра нижних частот.

Фильтр нижних частот находит широкое применение в блоках питания компьютеров, в источниках бесперебойного питания, в телевизорах и в другой бытовой и профессиональной аппаратуре, питающейся от источника переменного напряжения (сети).

Библиографический список

1. Теоретические основы электротехники: Учебник для вузов / К. С. Демирчян, Л. Р. Нейман, Н. В. Коровкин, В. Л. Чечурин. СПб.: Питер. 2003. 576 с.

2. *Новгородцев А. Б.* Теоретические основы электротехники. 30 лекций по тории электрических цепей: Учеб. пособие. СПб.: Питер 2005. 576 с.

3. *Бычков Ю. А., Золотницкий В. М., Чернышов Э. П.* Основы теории электрических цепей: Учебник для вузов. СПб.: Лань. 2002.

4. *Прянишников В.А.* Теоретические основы электротехники: Курс лекций. СПб.: КОРОНА принт, 2000. 368 с.

5. *Бессонов Л.А.* Теоретические основы электротехники. М.: Гардарики, 2000. 523 с.

6. Колесников В. В. и др. Теоретические основы электротехники. Анализ переходных процессов в линейных цепях.: Учеб.пособие / ГУАП. СПб., 1999. 98 с.

7. Системный анализ и синтез многополюсников радиотехнических и приборных комплексов.: Учеб.пособие / С. И. Бардинский, В. В. Колесников и др; ГУАП. СПб., 2001. 88 с.

Оглавление

ПРЕДИСЛОВИЕ	3	
1. ОПРЕДЕЛЕНИЕ ПЕРЕХОДНЫХ ПРОЦЕССОВ		
1.1. Цель исследования переходных процессов		
1.2. Дифференциальные уравнения линейной цепи		
с сосредоточенными параметрами	6	
1.3. Законы коммутации	7	
1.4. Расчет порядка цепи	8	
2. АНАЛИЗ ЦЕПЕЙ ПЕРВОГО ПОРЯДКА		
КЛАССИЧЕСКИМ МЕТОДОМ	11	
2.1. Общий случай	11	
2.2. Включение цепи <i>RL</i> на источник постоянного		
напряжения	14	
2.3. Замыкание цепи <i>RL</i> на добавочное сопротивление	16	
2.4. Переходный процесс в цепи <i>RL</i> при включении на		
синусоидальное напряжение	19	
2.5. Включение цепи <i>RC</i> на постоянное напряжение	22	
2.6. Короткое замыкание цепи <i>RC</i>	25	
2.7. Включение цепи <i>RC</i> на источник		
гармонического напряжения	26	
З. АНАЛИЗ ЦЕПЕИ ВТОРОГО ПОРЯДКА КЛАССИЧЕСКИМ		
МЕТОДОМ	29	
3.1. Включение цепи <i>RLC</i> на источник постоянного		
напряжения	29	
3.2. Включение цепи <i>RLC</i> на источник синусоидального		
напряжения	34	
3.3. Расчет переходных процессов в сложных цепях.		
Способы составления характеристического уравнения	36	
4. МЕТОД ПЕРЕМЕННЫХ СОСТОЯНИИ.	41	
4.1. У равнения переменных состояния	41	
4.2. Уравнения состояния активных цепей	46	
5. ОПЕРАЦИОННЫИ МЕТОД РАСЧЕТА	50	
5.1. Преобразование Лапласа и его основные своиства	50	
5.2. Законы Кирхгофа в операционнои форме и	50	
уравнения элементов	52	
5.3. Анализ переходных процессов на основе	F 4	
операционного метода	94	
О. АНАЛИЗ ПЕРЕХОДНЫХ ПРОЦЕССОВ НА ОСНОВЕ	E 17	
ПРЕОБРАЗОВАНИЯ ФУРБЕ	57	
6.1. Основные понятия и определения	01	
6.2. Дифференцирующие электрические цепи	00	
о.э. интегрирующие электрические цепи	03	
(. АПАЛИЗ ЦЕПЕИ ПА ОСНОВЕ ДИСКРЕТНЫХ МОДЕЛЕИ	07	
(.1. Элементы цепи и их дискретные модели	07	
(.2. гасчет цепеи на основе дискретных моделеи	09	

8. АНАЛИЗ ПЕРЕХОДНЫХ ПРОЦЕССОВ НА ОСНОВЕ ПРИНЦИПА		
НАЛОЖЕНИЯ		
8.1. Определение реакции цепи на произвольное внешнее		
воздействие. Единичная и импульсная функции	73	
8.2. Переходная и импульсная характеристики цепи.		
Функция цепи	76	
8.3. Анализ переходных процессов на основе переходных		
характеристик	78	
8.4. Анализ переходных процессов на основе		
интеграла Дюамеля	81	
9. ЧЕТЫРЕХПОЛЮСНИКИ		
9.1. Основные определения и уравнения четырехполюсника	86	
9.2. Эквивалентные схемы замещения		
пассивного четырехполюсника	91	
9.3. Передаточные функции четырехполюсника	94	
9.4. Входное сопротивление четырехполюсника.		
Характеристические параметры	97	
9.5. Сложные четырехполюсники	101	
9.6. Фильтры	103	
9.7. Активные фильтры	105	
БИБЛИОГРАФИЧЕСКИЙ СПИСОК	108	

Учебное издание

Колесников Валерий Васильевич

ОСНОВЫ ТЕОРИИ ЦЕПЕЙ переходные процессы и четырехполюсники

Текст лекций

Редактор А. В. Семенчук Компьютерная верстка: И.С. Чернышев

Сдано в набор 15.04.05. Подписано к печати 23.06.06. Формат 60×84 1/16. Бумага офсетная. Печать офсетная. Усл. печ. л. 6,45. Усл. кр.-отт. 6,57. Уч. -изд. л. 6,6. Тираж 100 экз. Заказ №

Редакционно-издательский отдел Отдел электронных публикаций и библиографии библиотеки Отдел оперативной полиграфии СПбГУАП 190000, Санкт-Петербург, ул. Б. Морская, 67