

Contents
1. Cover
2. Title Page
3. Copyright Page
4. Dedication
5. Contents
6. ACKNOWLEDGMENTS
7. INTRODUCTION
8. 1 Introduction to JavaScript

1. What You Need to Know
1. Basic HTML and CSS Knowledge
2. Basic Text Editor and Web Browser Knowledge
3. Which Version?
4. Client-Side and Server-Side Programming

2. Beginning with JavaScript
1. Prototype-Based
2. Interpreted Language
3. Numerous Environments

3. Putting It All Together
4. Online Resources
5. Try This 1-1: Use JavaScript to Write Text
6. Chapter 1 Self Test

9. 2 Placing JavaScript in an HTML File
1. Using the HTML Script Tags

1. Identifying the Scripting Language
2. Calling External Scripts
3. Specifying when the Script Should Load
4. Using <noscript></noscript> Tags

2. Creating Your First Script
1. Writing a “Hello World” Script
2. Creating an HTML Document for the Script
3. Inserting the Script into the HTML Document

3. Try This 2-1: Insert a Script into an HTML Document
4. Using External JavaScript Files

1. Creating a JavaScript File
2. Creating the HTML Files
3. Viewing the Pages in Your Browser

5. Try This 2-2: Call an External Script from an HTML Document
6. Using JavaScript Comments

1. Inserting Comments on One Line
2. Adding Multiple-Line Comments

7. Chapter 2 Self Test
10. 3 Using Variables

1. Understanding Variables
2. Why Variables Are Useful

1. Variables as Placeholders for Unknown Values
2. Variables as Time-Savers
3. Variables as Code Clarifiers

3. Defining Variables for Your Scripts
1. Declaring Variables
2. Assigning Values to Variables
3. Naming Variables

4. Understanding Data Types
1. Number
2. String
3. Boolean
4. Null
5. Undefined
6. Symbol
7. Object

5. Try This 3-1: Declare Variables
6. Using Variables in Scripts

1. Making a Call to a Variable
2. Adding Variables to Text Strings

7. Writing a Page of JavaScript
1. Creating the Framework
2. Defining the Variables
3. Adding the Commands
4. Modifying the Page

8. Try This 3-2: Create an HTML Page with JavaScript
9. Chapter 3 Self Test

11. 4 Using Functions
1. What a Function Is
2. Why Functions Are Useful
3. Structuring Functions

1. Declaring Functions
2. Defining the Code for Functions
3. Naming Functions
4. Adding Arguments to Functions
5. Adding Return Statements to Functions

4. Calling Functions in Your Scripts
1. Script Tags: Head Section or Body Section
2. Calling a Function from Another Function
3. Calling Functions with Arguments
4. Calling Functions with Return Statements
5. Other Ways to Define Functions

5. Try This 4-1: Create an HTML Page with Functions
6. Scope/Context Basics

1. Global Context
2. Function Context
3. Block Context

7. Try This 4-2: Write Your Own Functions
8. Chapter 4 Self Test

12. 5 JavaScript Operators
1. Understanding the Operator Types
2. Understanding Arithmetic Operators

1. The Addition Operator (+)
2. The Subtraction Operator (–)
3. The Multiplication Operator (*)
4. The Division Operator (/)
5. The Modulus Operator (%)
6. The Increment Operator (++)
7. The Decrement Operator (– –)
8. The Unary Plus Operator (+)
9. The Unary Negation Operator (–)

10. The Exponentiation Operator
3. Understanding Assignment Operators

1. The Assignment Operator (=)

2. The Add-and-Assign Operator (+=)
3. The Subtract-and-Assign Operator (–=)
4. The Multiply-and-Assign Operator (*=)
5. The Divide-and-Assign Operator (/=)
6. The Modulus-and-Assign Operator (%=)
7. The Exponent-and-Assign Operator (**=)

4. Try This 5-1: Adjust a Variable Value
5. Understanding Comparison Operators

1. The Is-Equal-To Operator (==)
2. The Is-Not-Equal-To Operator (!=)
3. The Strict Is-Equal-To Operator (===)
4. The Strict Is-Not-Equal-To Operator (!==)
5. The Is-Greater-Than Operator (>)
6. The Is-Less-Than Operator (<)
7. The Is-Greater-Than-or-Equal-To Operator (>=)
8. The Is-Less-Than-or-Equal-To Operator (<=)

6. Understanding Logical Operators
1. The AND Operator (&&)
2. The OR Operator (||)
3. The NOT Operator (!)
4. The Bitwise Operators

7. Special Operators
8. Understanding Order of Operations
9. Try This 5-2: True or False?

10. Chapter 5 Self Test
13. 6 Conditional Statements and Loops

1. Defining Conditional Statements
1. What Is a Conditional Statement?
2. Why Conditional Statements Are Useful

2. Using Conditional Statements
1. Using if/else Statements
2. Using the switch Statement
3. Using the Conditional Operator
4. User Input from a Prompt

3. Try This 6-1: Work with User Input
4. Defining Loops

1. What Is a Loop?

2. Why Loops Are Useful
5. Using Loops

1. for
2. while
3. do while
4. for in, for each in, and for of
5. Using break and continue

6. Try This 6-2: Work with for Loops and while Loops
7. Chapter 6 Self Test

14. 7 JavaScript Arrays
1. What Is an Array?
2. Why Arrays Are Useful
3. Defining and Accessing Arrays

1. Naming an Array
2. Defining an Array
3. Accessing an Array’s Elements
4. Using the length Property and Loops
5. Changing Array Values and Changing the Length

4. Try This 7-1: Use Loops with Arrays
5. Array Properties and Methods

1. Properties
2. Methods

6. Nesting Arrays
1. Defining Nested Arrays
2. Loops and Nested Arrays

7. Try This 7-2: Nested Arrays Practice
8. Chapter 7 Self Test

15. 8 Objects
1. Defining Objects
2. Creating Objects

1. Naming
2. Single Objects

3. Try This 8-1: Create a Computer Object
4. Object Structures

1. Constructor Functions
2. Using Prototypes
3. The class Keyword

5. Helpful Statements for Objects
1. The for-in Loop
2. The with Statement

6. Try This 8-2: Practice with the Combination Constructor/Prototype
Pattern

7. Understanding Predefined JavaScript Objects
1. The Navigator Object
2. The History Object

8. Chapter 8 Self Test
16. 9 The Document Object

1. Defining the Document Object
2. Using the Document Object Model
3. Using the Properties of the Document Object

1. Collections
2. The cookie Property
3. The dir Property
4. The lastModified Property
5. The referrer Property
6. The title Property
7. The URL Property
8. The URLUnencoded Property

4. Using the Methods of the Document Object
1. The get Methods for Elements
2. The open() and close() Methods
3. The write() and writeln() Methods

5. Using DOM Nodes
1. DOM Node Properties
2. DOM Node Methods

6. Try This 9-1: Add a DOM Node to the Document
7. Creating Dynamic Scripts

1. Styles in JavaScript
2. Simple Event Handling
3. Coding a Dynamic Script

8. Try This 9-2: Try Out Property Changes
9. Chapter 9 Self Test

17. 10 Event Handlers
1. What Is an Event Handler?

2. Why Event Handlers Are Useful
3. Understanding Event Handler Locations and Uses

1. Using an Event Handler in an HTML Element
2. Using an Event Handler in the Script Code

4. Learning the Events
1. The Click Event
2. Focus and Blur Events
3. The Load and Unload Events
4. The Reset and Submit Events
5. The Mouse Events
6. The Keyboard Events

5. Try This 10-1: Focus and Blur
6. Other Ways to Register Events

1. The addEventListener() Method
2. The attachEvent() Method

7. The Event Object
1. DOM and Internet Explorer: DOM Level 0 Registration
2. Using event with Modern Event Registration
3. Properties and Methods
4. Event Information

8. Try This 10-2: Using addEventListener()
9. Creating Scripts Using Event Handlers

1. Show Hidden Content
2. Change Content
3. Custom Events

10. Chapter 10 Self Test
18. 11 Introduction to Node.js

1. Introducing Node.js
2. Installing Node.js

1. Check for a Current Installation
2. Install Node.js
3. Write a “Hello World” Script

3. Using Node Modules
1. Using Native Node Modules
2. Asynchronous Execution
3. Non-Native Modules

4. Try This 11-1: Use a Custom Module

5. Installing a Database
1. Database Options
2. Install PostgreSQL
3. Create a Database Using pgAdmin

6. Try This 11-2: Test Some SQL Queries
7. Creating a Web Server
8. Chapter 11 Self Test

19. 12 Math, Number, and Date Objects
1. Using the Math Object

1. What Is the Math Object?
2. How the Math Object Is Useful
3. Properties
4. Methods

2. Try This 12-1: Display a Random Link on a Page
3. Understanding the Number Object

1. Properties
2. Methods

4. Using the Date Object
1. Properties and Methods
2. Methods That Get Values
3. Methods That Set Values
4. Other Methods
5. How About Some Date Scripts?

5. Try This 12-2: Create a JavaScript Clock
6. Continuing Project

1. Getting to the Needed Data
2. Running Some Calculations on the Results

7. Chapter 12 Self Test
20. 13 Handling Strings

1. Introduction to the String Object
1. The String Object
2. The String Literal
3. What’s the Difference?

2. Using the Properties and Methods of the String Object
1. The length Property

3. Methods of the String Object
4. Try This 13-1: Use indexOf() to Test an Address

5. Using Cookies
1. Setting a Cookie
2. Reading a Cookie

6. Try This 13-2: Remember a Name
7. Using Regular Expressions

1. Creating Regular Expressions
2. Testing Strings Against Regular Expressions
3. Adding Flags
4. Creating Powerful Patterns
5. Grouping Expressions
6. The replace(), match(), matchAll(), and search() Methods
7. More Information

8. Continuing Project
9. Chapter 13 Self Test

21. 14 Browser-Based JavaScript
1. Window: The Global Object
2. Using the Properties of the Window Object

1. The closed Property
2. The frames Property
3. The innerWidth and innerHeight Properties
4. The length Property
5. The location Property
6. The name Property
7. The opener Property
8. The parent, self, and top Properties
9. The status and defaultStatus Properties

3. Try This 14-1: Use the location and innerWidth Properties
4. Using the Methods of the Window Object

1. The alert(), prompt(), and confirm() Methods
2. The print() Method
3. The setInterval() and clearInterval() Methods
4. The setTimeout() and clearTimeout() Methods

5. Try This 14-2: Use the setTimeout() and confirm() Methods
6. The Main Window and New Windows

1. The Tale of Pop-up Windows
2. Opening New Windows
3. Closing New Windows

4. Moving, Resizing, and Scrolling New Windows
5. The resizeBy() and resizeTo() Methods
6. The scrollBy() and ScrollTo() Methods

7. Working with Images
1. Rollovers

8. JavaScript and Frames
1. Purpose of Frames
2. Accessing Frames
3. Breaking Out of Frames
4. Using iFrames

9. Chapter 14 Self Test
22. 15 JavaScript Forms and Data

1. Accessing Forms
1. Using the forms Array
2. Using an ID

2. Using the Properties and Methods of the Form Object
1. Properties
2. Methods

3. Ensuring the Accessibility of Forms
1. Using Proper Element and Label Order
2. Using <label></label> Tags
3. Using <fieldset></fieldset> Tags
4. Not Assuming Client-Side Scripting

4. Validation
1. Simple Validation
2. Techniques
3. Check Boxes and Radio Buttons

5. Try This 15-1: Request a Number
6. HTML5 and Forms

1. New Elements
2. New Input Types
3. New Attributes
4. HTML5 Form Validation

7. Try This 15-2: Validate a Phone Number with HTML5 or
JavaScript

8. AJAX and JSON
1. AJAX

2. JSON
9. Chapter 15 Self Test

23. 16 Further Browser-Based JavaScript
1. Using jQuery

1. Obtaining jQuery
2. Getting Started: document.ready()
3. Using Selectors
4. Altering Classes
5. Methods for Effects
6. Further Reading

2. Try This 16-1: Use jQuery to Create Effects
3. Debugging Scripts

1. Types of Errors
2. Using the Console
3. Using a Lint Tool
4. Browser Developer Tools

4. JavaScript and Accessibility
1. Separate Content from Presentation
2. Enhancing Content

5. Try This 16-2: Make This Code Accessible
6. JavaScript Security

1. Page Protection
7. JavaScript and APIs from HTML

1. The <canvas> Element
2. Drag and Drop

8. Try This 16-3: Drag and Drop
9. Node.js App Completion

1. Update the Node.js Code
2. Update the Front-end Code

10. Need Help?
11. Chapter 16 Self Test

24. A Answers to Self Tests
1. Chapter 1: Introduction to JavaScript
2. Chapter 2: Placing JavaScript in an HTML File
3. Chapter 3: Using Variables
4. Chapter 4: Using Functions
5. Chapter 5: JavaScript Operators

6. Chapter 6: Conditional Statements and Loops
7. Chapter 7: JavaScript Arrays
8. Chapter 8: Objects
9. Chapter 9: The Document Object

10. Chapter 10: Event Handlers
11. Chapter 11: Introduction to Node.js
12. Chapter 12: Math, Number, and Date Objects
13. Chapter 13: Handling Strings
14. Chapter 14: Browser-Based JavaScript
15. Chapter 15: JavaScript Forms and Data
16. Chapter 16: Further Browser-Based JavaScript

25. Index

Guide
1. Cover
2. Title Page
3. JavaScript: A Beginner’s Guide, Fifth Edition

Page List
1. i
2. ii
3. iii
4. iv
5. v
6. vi
7. vii
8. viii
9. ix

10. x
11. xi
12. xii
13. xiii

14. xiv
15. xv
16. xvi
17. xvii
18. xviii
19. 1
20. 2
21. 3
22. 4
23. 5
24. 6
25. 7
26. 8
27. 9
28. 10
29. 11
30. 12
31. 13
32. 14
33. 15
34. 16
35. 17
36. 18
37. 19
38. 20
39. 21
40. 22
41. 23
42. 24
43. 25
44. 26
45. 27
46. 28
47. 29
48. 30
49. 31
50. 32

51. 33
52. 34
53. 35
54. 36
55. 37
56. 38
57. 39
58. 40
59. 41
60. 42
61. 43
62. 44
63. 45
64. 46
65. 47
66. 48
67. 49
68. 50
69. 51
70. 52
71. 53
72. 54
73. 55
74. 56
75. 57
76. 58
77. 59
78. 60
79. 61
80. 62
81. 63
82. 64
83. 65
84. 66
85. 67
86. 68
87. 69

88. 70
89. 71
90. 72
91. 73
92. 74
93. 75
94. 76
95. 77
96. 78
97. 79
98. 80
99. 81

100. 82
101. 83
102. 84
103. 85
104. 86
105. 87
106. 88
107. 89
108. 90
109. 91
110. 92
111. 93
112. 94
113. 95
114. 96
115. 97
116. 98
117. 99
118. 100
119. 101
120. 102
121. 103
122. 104
123. 105
124. 106

125. 107
126. 108
127. 109
128. 110
129. 111
130. 112
131. 113
132. 114
133. 115
134. 116
135. 117
136. 118
137. 119
138. 120
139. 121
140. 122
141. 123
142. 124
143. 125
144. 126
145. 127
146. 128
147. 129
148. 130
149. 131
150. 132
151. 133
152. 134
153. 135
154. 136
155. 137
156. 138
157. 139
158. 140
159. 141
160. 142
161. 143

162. 144
163. 145
164. 146
165. 147
166. 148
167. 149
168. 150
169. 151
170. 152
171. 153
172. 154
173. 155
174. 156
175. 157
176. 158
177. 159
178. 160
179. 161
180. 162
181. 163
182. 164
183. 165
184. 166
185. 167
186. 168
187. 169
188. 170
189. 171
190. 172
191. 173
192. 174
193. 175
194. 176
195. 177
196. 178
197. 179
198. 180

199. 181
200. 182
201. 183
202. 184
203. 185
204. 186
205. 187
206. 188
207. 189
208. 190
209. 191
210. 192
211. 193
212. 194
213. 195
214. 196
215. 197
216. 198
217. 199
218. 200
219. 201
220. 202
221. 203
222. 204
223. 205
224. 206
225. 207
226. 208
227. 209
228. 210
229. 211
230. 212
231. 213
232. 214
233. 215
234. 216
235. 217

236. 218
237. 219
238. 220
239. 221
240. 222
241. 223
242. 224
243. 225
244. 226
245. 227
246. 228
247. 229
248. 230
249. 231
250. 232
251. 233
252. 234
253. 235
254. 236
255. 237
256. 238
257. 239
258. 240
259. 241
260. 242
261. 243
262. 244
263. 245
264. 246
265. 247
266. 248
267. 249
268. 250
269. 251
270. 252
271. 253
272. 254

273. 255
274. 256
275. 257
276. 258
277. 259
278. 260
279. 261
280. 262
281. 263
282. 264
283. 265
284. 266
285. 267
286. 268
287. 269
288. 270
289. 271
290. 272
291. 273
292. 274
293. 275
294. 276
295. 277
296. 278
297. 279
298. 280
299. 281
300. 282
301. 283
302. 284
303. 285
304. 286
305. 287
306. 288
307. 289
308. 290
309. 291

310. 292
311. 293
312. 294
313. 295
314. 296
315. 297
316. 298
317. 299
318. 300
319. 301
320. 302
321. 303
322. 304
323. 305
324. 306
325. 307
326. 308
327. 309
328. 310
329. 311
330. 312
331. 313
332. 314
333. 315
334. 316
335. 317
336. 318
337. 319
338. 320
339. 321
340. 322
341. 323
342. 324
343. 325
344. 326
345. 327
346. 328

347. 329
348. 330
349. 331
350. 332
351. 333
352. 334
353. 335
354. 336
355. 337
356. 338
357. 339
358. 340
359. 341
360. 342
361. 343
362. 344
363. 345
364. 346
365. 347
366. 348
367. 349
368. 350
369. 351
370. 352
371. 353
372. 354
373. 355
374. 356
375. 357
376. 358
377. 359
378. 360
379. 361
380. 362
381. 363
382. 364
383. 365

384. 366
385. 367
386. 368
387. 369
388. 370
389. 371
390. 372
391. 373
392. 374
393. 375
394. 376
395. 377
396. 378
397. 379
398. 380
399. 381
400. 382
401. 383
402. 384
403. 385
404. 386
405. 387
406. 388
407. 389
408. 390
409. 391
410. 392
411. 393
412. 394
413. 395
414. 396
415. 397
416. 398
417. 399
418. 400
419. 401
420. 402

421. 403
422. 404
423. 405
424. 406
425. 407
426. 408
427. 409
428. 410
429. 411
430. 412
431. 413
432. 414
433. 415
434. 416
435. 417
436. 418
437. 419
438. 420
439. 421
440. 422
441. 423
442. 424
443. 425
444. 426
445. 427
446. 428
447. 429
448. 430
449. 431
450. 432
451. 433
452. 434
453. 435
454. 436
455. 437
456. 438
457. 439

458. 440
459. 441
460. 442
461. 443
462. 444
463. 445
464. 446
465. 447
466. 448
467. 449
468. 450
469. 451
470. 452
471. 453
472. 454
473. 455
474. 456
475. 457
476. 458
477. 459
478. 460
479. 461
480. 462
481. 463
482. 464
483. 465
484. 466
485. 467
486. 468
487. 469
488. 470
489. 471
490. 472
491. 473
492. 474
493. 475
494. 476

495. 477
496. 478
497. 479
498. 480
499. 481
500. 482
501. 483
502. 484
503. 485
504. 486
505. 487
506. 488
507. 489
508. 490
509. 491
510. 492
511. 493
512. 494
513. 495
514. 496
515. 497
516. 498
517. 499
518. 500
519. 501
520. 502
521. 503
522. 504
523. 505
524. 506
525. 507
526. 508
527. 509
528. 510
529. 511
530. 512
531. 513

532. 514
533. 515
534. 516
535. 517
536. 518
537. 519
538. 520
539. 521
540. 522
541. 523
542. 524
543. 525
544. 526
545. 527
546. 528
547. 529
548. 530
549. 531
550. 532
551. 533
552. 534
553. 535
554. 536
555. 537
556. 538
557. 539
558. 540
559. 541
560. 542

Copyright © 2020 by McGraw-Hill Education (Publisher). All rights
reserved. Except as permitted under the United States Copyright Act of 1976,
no part of this publication may be reproduced or distributed in any form or by
any means, or stored in a database or retrieval system, without the prior
written permission of the publisher, with the exception that the program
listings may be entered, stored, and executed in a computer system, but they
may not be reproduced for publication.

ISBN: 978-1-26-045769-8
MHID: 1-26-045769-9

The material in this eBook also appears in the print version of this title:
ISBN: 978-1-26-045768-1, MHID: 1-26-045768-0.

eBook conversion by codeMantra
Version 1.0

All trademarks are trademarks of their respective owners. Rather than put a
trademark symbol after every occurrence of a trademarked name, we use
names in an editorial fashion only, and to the benefit of the trademark owner,
with no intention of infringement of the trademark. Where such designations
appear in this book, they have been printed with initial caps.

McGraw-Hill Education eBooks are available at special quantity discounts to
use as premiums and sales promotions or for use in corporate training
programs. To contact a representative, please visit the Contact Us page at
www.mhprofessional.com.

Oracle and Java are registered trademarks of Oracle Corporation and/or its
affiliates. All other trademarks are the property of their respective owners,
and McGraw-Hill Education makes no claim of ownership by the mention of
products that contain these marks.

Screen displays of copyrighted Oracle software programs have been
reproduced herein with the permission of Oracle Corporation and/or its
affiliates.

http://www.mhprofessional.com

Information has been obtained by Publisher from sources believed to be
reliable. However, because of the possibility of human or mechanical error by
our sources, Publisher, or others, Publisher does not guarantee to the
accuracy, adequacy, or completeness of any information included in this
work and is not responsible for any errors or omissions or the results obtained
from the use of such information.

TERMS OF USE

This is a copyrighted work and McGraw-Hill Education and its licensors
reserve all rights in and to the work. Use of this work is subject to these
terms. Except as permitted under the Copyright Act of 1976 and the right to
store and retrieve one copy of the work, you may not decompile, disassemble,
reverse engineer, reproduce, modify, create derivative works based upon,
transmit, distribute, disseminate, sell, publish or sublicense the work or any
part of it without McGraw-Hill Education’s prior consent. You may use the
work for your own noncommercial and personal use; any other use of the
work is strictly prohibited. Your right to use the work may be terminated if
you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL EDUCATION
AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES
AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR
RESULTS TO BE OBTAINED FROM USING THE WORK, INCLUDING
ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE
WORK VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY
DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
McGraw-Hill Education and its licensors do not warrant or guarantee that the
functions contained in the work will meet your requirements or that its
operation will be uninterrupted or error free. Neither McGraw-Hill Education
nor its licensors shall be liable to you or anyone else for any inaccuracy, error
or omission, regardless of cause, in the work or for any damages resulting
therefrom. McGraw-Hill Education has no responsibility for the content of
any information accessed through the work. Under no circumstances shall
McGraw-Hill Education and/or its licensors be liable for any indirect,

incidental, special, punitive, consequential or similar damages that result
from the use of or inability to use the work, even if any of them has been
advised of the possibility of such damages. This limitation of liability shall
apply to any claim or cause whatsoever whether such claim or cause arises in
contract, tort or otherwise.

To my wife, Heather, and children, Eva, Elizabeth, Elaine,
and Evan, Bruce and Joy Anderson, and Dr. J. D. and

Linda Andrews

In memory of John and Betty Hopkins, James D. and Livian
Anderson, John William and Edith Hopkins, Burley T. and

Aline Price, “Doc” Flores, and Clifton Idom

About the Author
John Pollock is employed as a software developer during the day and works
on Web sites and other projects during the evening. You can find him on
Twitter (@ScripttheWeb) or LinkedIn (https://www.linkedin.com/in/john-
pollock-82a2b074). John holds a Bachelor of Arts in English from Sam
Houston State University and currently lives in New Waverly, Texas with his
wife, Heather, and children, Eva, Elizabeth, Elaine, and Evan.

About the Technical Editor
Christie Sorenson is a senior software engineer at ZingChart. She has
worked on JavaScript-based systems since 1997 and has been fascinated with
the evolution of the language. She has collaborated and been the technical
editor on several JavaScript and HTML books. She holds a Bachelor of
Science in Computer Science from University of California, San Diego, and
now lives in San Francisco with her husband, Luke, and daughters, Ali and
Keira.

https://www.linkedin.com/in/john-pollock-82a2b074

Contents

ACKNOWLEDGMENTS
INTRODUCTION

1 Introduction to JavaScript
What You Need to Know

Basic HTML and CSS Knowledge
Basic Text Editor and Web Browser Knowledge
Which Version?
Client-Side and Server-Side Programming

Beginning with JavaScript
Prototype-Based
Interpreted Language
Numerous Environments

Putting It All Together
Online Resources
Try This 1-1: Use JavaScript to Write Text
Chapter 1 Self Test

2 Placing JavaScript in an HTML File
Using the HTML Script Tags

Identifying the Scripting Language
Calling External Scripts
Specifying when the Script Should Load
Using <noscript></noscript> Tags

Creating Your First Script
Writing a “Hello World” Script
Creating an HTML Document for the Script
Inserting the Script into the HTML Document

Try This 2-1: Insert a Script into an HTML Document

Using External JavaScript Files
Creating a JavaScript File
Creating the HTML Files
Viewing the Pages in Your Browser

Try This 2-2: Call an External Script from an HTML Document
Using JavaScript Comments

Inserting Comments on One Line
Adding Multiple-Line Comments

Chapter 2 Self Test

3 Using Variables
Understanding Variables
Why Variables Are Useful

Variables as Placeholders for Unknown Values
Variables as Time-Savers
Variables as Code Clarifiers

Defining Variables for Your Scripts
Declaring Variables
Assigning Values to Variables
Naming Variables

Understanding Data Types
Number
String
Boolean
Null
Undefined
Symbol
Object

Try This 3-1: Declare Variables
Using Variables in Scripts

Making a Call to a Variable
Adding Variables to Text Strings

Writing a Page of JavaScript
Creating the Framework

Defining the Variables
Adding the Commands
Modifying the Page

Try This 3-2: Create an HTML Page with JavaScript
Chapter 3 Self Test

4 Using Functions
What a Function Is
Why Functions Are Useful
Structuring Functions

Declaring Functions
Defining the Code for Functions
Naming Functions
Adding Arguments to Functions
Adding Return Statements to Functions

Calling Functions in Your Scripts
Script Tags: Head Section or Body Section
Calling a Function from Another Function
Calling Functions with Arguments
Calling Functions with Return Statements
Other Ways to Define Functions

Try This 4-1: Create an HTML Page with Functions
Scope/Context Basics

Global Context
Function Context
Block Context

Try This 4-2: Write Your Own Functions
Chapter 4 Self Test

5 JavaScript Operators
Understanding the Operator Types
Understanding Arithmetic Operators

The Addition Operator (+)
The Subtraction Operator (–)
The Multiplication Operator (*)

The Division Operator (/)
The Modulus Operator (%)
The Increment Operator (++)
The Decrement Operator (– –)
The Unary Plus Operator (+)
The Unary Negation Operator (–)
The Exponentiation Operator

Understanding Assignment Operators
The Assignment Operator (=)
The Add-and-Assign Operator (+=)
The Subtract-and-Assign Operator (–=)
The Multiply-and-Assign Operator (*=)
The Divide-and-Assign Operator (/=)
The Modulus-and-Assign Operator (%=)
The Exponent-and-Assign Operator (**=)

Try This 5-1: Adjust a Variable Value
Understanding Comparison Operators

The Is-Equal-To Operator (==)
The Is-Not-Equal-To Operator (!=)
The Strict Is-Equal-To Operator (===)
The Strict Is-Not-Equal-To Operator (!==)
The Is-Greater-Than Operator (>)
The Is-Less-Than Operator (<)
The Is-Greater-Than-or-Equal-To Operator (>=)
The Is-Less-Than-or-Equal-To Operator (<=)

Understanding Logical Operators
The AND Operator (&&)
The OR Operator (||)
The NOT Operator (!)
The Bitwise Operators

Special Operators
Understanding Order of Operations
Try This 5-2: True or False?
Chapter 5 Self Test

6 Conditional Statements and Loops
Defining Conditional Statements

What Is a Conditional Statement?
Why Conditional Statements Are Useful

Using Conditional Statements
Using if/else Statements
Using the switch Statement
Using the Conditional Operator
User Input from a Prompt

Try This 6-1: Work with User Input
Defining Loops

What Is a Loop?
Why Loops Are Useful

Using Loops
for
while
do while
for in, for each in, and for of
Using break and continue

Try This 6-2: Work with for Loops and while Loops
Chapter 6 Self Test

7 JavaScript Arrays
What Is an Array?
Why Arrays Are Useful
Defining and Accessing Arrays

Naming an Array
Defining an Array
Accessing an Array’s Elements
Using the length Property and Loops
Changing Array Values and Changing the Length

Try This 7-1: Use Loops with Arrays
Array Properties and Methods

Properties

Methods
Nesting Arrays

Defining Nested Arrays
Loops and Nested Arrays

Try This 7-2: Nested Arrays Practice
Chapter 7 Self Test

8 Objects
Defining Objects
Creating Objects

Naming
Single Objects

Try This 8-1: Create a Computer Object
Object Structures

Constructor Functions
Using Prototypes
The class Keyword

Helpful Statements for Objects
The for-in Loop
The with Statement

Try This 8-2: Practice with the Combination Constructor/Prototype
Pattern
Understanding Predefined JavaScript Objects

The Navigator Object
The History Object

Chapter 8 Self Test

9 The Document Object
Defining the Document Object
Using the Document Object Model
Using the Properties of the Document Object

Collections
The cookie Property
The dir Property
The lastModified Property

The referrer Property
The title Property
The URL Property
The URLUnencoded Property

Using the Methods of the Document Object
The get Methods for Elements
The open() and close() Methods
The write() and writeln() Methods

Using DOM Nodes
DOM Node Properties
DOM Node Methods

Try This 9-1: Add a DOM Node to the Document
Creating Dynamic Scripts

Styles in JavaScript
Simple Event Handling
Coding a Dynamic Script

Try This 9-2: Try Out Property Changes
Chapter 9 Self Test

10 Event Handlers
What Is an Event Handler?
Why Event Handlers Are Useful
Understanding Event Handler Locations and Uses

Using an Event Handler in an HTML Element
Using an Event Handler in the Script Code

Learning the Events
The Click Event
Focus and Blur Events
The Load and Unload Events
The Reset and Submit Events
The Mouse Events
The Keyboard Events

Try This 10-1: Focus and Blur
Other Ways to Register Events

The addEventListener() Method
The attachEvent() Method

The Event Object
DOM and Internet Explorer: DOM Level 0 Registration
Using event with Modern Event Registration
Properties and Methods
Event Information

Try This 10-2: Using addEventListener()
Creating Scripts Using Event Handlers

Show Hidden Content
Change Content
Custom Events

Chapter 10 Self Test

11 Introduction to Node.js
Introducing Node.js
Installing Node.js

Check for a Current Installation
Install Node.js
Write a “Hello World” Script

Using Node Modules
Using Native Node Modules
Asynchronous Execution
Non-Native Modules

Try This 11-1: Use a Custom Module
Installing a Database

Database Options
Install PostgreSQL
Create a Database Using pgAdmin

Try This 11-2: Test Some SQL Queries
Creating a Web Server
Chapter 11 Self Test

12 Math, Number, and Date Objects
Using the Math Object

What Is the Math Object?
How the Math Object Is Useful
Properties
Methods

Try This 12-1: Display a Random Link on a Page
Understanding the Number Object

Properties
Methods

Using the Date Object
Properties and Methods
Methods That Get Values
Methods That Set Values
Other Methods
How About Some Date Scripts?

Try This 12-2: Create a JavaScript Clock
Continuing Project

Getting to the Needed Data
Running Some Calculations on the Results

Chapter 12 Self Test

13 Handling Strings
Introduction to the String Object

The String Object
The String Literal
What’s the Difference?

Using the Properties and Methods of the String Object
The length Property

Methods of the String Object
Try This 13-1: Use indexOf() to Test an Address
Using Cookies

Setting a Cookie
Reading a Cookie

Try This 13-2: Remember a Name
Using Regular Expressions

Creating Regular Expressions
Testing Strings Against Regular Expressions
Adding Flags
Creating Powerful Patterns
Grouping Expressions
The replace(), match(), matchAll(), and search() Methods
More Information

Continuing Project
Chapter 13 Self Test

14 Browser-Based JavaScript
Window: The Global Object
Using the Properties of the Window Object

The closed Property
The frames Property
The innerWidth and innerHeight Properties
The length Property
The location Property
The name Property
The opener Property
The parent, self, and top Properties
The status and defaultStatus Properties

Try This 14-1: Use the location and innerWidth Properties
Using the Methods of the Window Object

The alert(), prompt(), and confirm() Methods
The print() Method
The setInterval() and clearInterval() Methods
The setTimeout() and clearTimeout() Methods

Try This 14-2: Use the setTimeout() and confirm() Methods
The Main Window and New Windows

The Tale of Pop-up Windows
Opening New Windows
Closing New Windows
Moving, Resizing, and Scrolling New Windows

The resizeBy() and resizeTo() Methods
The scrollBy() and ScrollTo() Methods

Working with Images
Rollovers

JavaScript and Frames
Purpose of Frames
Accessing Frames
Breaking Out of Frames
Using iFrames

Chapter 14 Self Test

15 JavaScript Forms and Data
Accessing Forms

Using the forms Array
Using an ID

Using the Properties and Methods of the Form Object
Properties
Methods

Ensuring the Accessibility of Forms
Using Proper Element and Label Order
Using <label></label> Tags
Using <fieldset></fieldset> Tags
Not Assuming Client-Side Scripting

Validation
Simple Validation
Techniques
Check Boxes and Radio Buttons

Try This 15-1: Request a Number
HTML5 and Forms

New Elements
New Input Types
New Attributes
HTML5 Form Validation

Try This 15-2: Validate a Phone Number with HTML5 or JavaScript

AJAX and JSON
AJAX
JSON

Chapter 15 Self Test

16 Further Browser-Based JavaScript
Using jQuery

Obtaining jQuery
Getting Started: document.ready()
Using Selectors
Altering Classes
Methods for Effects
Further Reading

Try This 16-1: Use jQuery to Create Effects
Debugging Scripts

Types of Errors
Using the Console
Using a Lint Tool
Browser Developer Tools

JavaScript and Accessibility
Separate Content from Presentation
Enhancing Content

Try This 16-2: Make This Code Accessible
JavaScript Security

Page Protection
JavaScript and APIs from HTML

The <canvas> Element
Drag and Drop

Try This 16-3: Drag and Drop
Node.js App Completion

Update the Node.js Code
Update the Front-end Code

Need Help?
Chapter 16 Self Test

A Answers to Self Tests
Chapter 1: Introduction to JavaScript
Chapter 2: Placing JavaScript in an HTML File
Chapter 3: Using Variables
Chapter 4: Using Functions
Chapter 5: JavaScript Operators
Chapter 6: Conditional Statements and Loops
Chapter 7: JavaScript Arrays
Chapter 8: Objects
Chapter 9: The Document Object
Chapter 10: Event Handlers
Chapter 11: Introduction to Node.js
Chapter 12: Math, Number, and Date Objects
Chapter 13: Handling Strings
Chapter 14: Browser-Based JavaScript
Chapter 15: JavaScript Forms and Data
Chapter 16: Further Browser-Based JavaScript

Index

I
Acknowledgments

would like to begin by thanking my wonderful wife, Heather Pollock, for
all of her love, support, and encouragement in all I do. I love you! I would
also like to thank my three daughters, Eva, Elizabeth, and Elaine, as well

as my son, Evan. I love all of you!
I would like to thank my parents, Bruce and Joy Anderson, for their love

and guidance, and for always supporting my endeavors.
I would like to thank Dr. J. D. and Linda Andrews for their love, guidance,

and support.
In addition, I would like to thank Richard Pollock (brother) and family,

Misty Castleman (sister) and family, Warren Anderson (brother) and family,
Jon Andrews (brother) and family, Lisa and Julian Owens (aunt/uncle) and
family, and every aunt, uncle, cousin, or other relation in my family. All of
you have been a great influence in my life.

I would like to thank all of my editors at McGraw-Hill for their
outstanding help and support throughout the writing of this book. Thanks to
Lisa McClain, Emily Walters, Claire Yee, Snehil Sharma, Sarika Gupta, Bart
Reed, and to all the editors who worked on this and previous editions of the
book.

Thanks to my technical editor, Christie Sorenson, for editing and checking
over all the technical aspects of the book and for helping me provide clear
explanations of the topics that are covered.

I would like to thank God for the ability He has given me to help and teach
people by my writing. “In all your ways acknowledge Him, and He shall
direct your paths.” (Proverbs 3:6)

W
Introduction

elcome to JavaScript: A Beginner’s Guide, Fifth Edition! Years ago,
I was surfing the Web and noticed that people were publishing pages
about themselves and calling them homepages. After viewing a

number of these, I decided to create a homepage myself. I had no idea where
to begin, but through trial and error I figured out how to code HTML and
publish my documents on a Web server. Over time, I saw some interesting
effects used on other homepages (like alert messages that popped up out of
nowhere or images that would magically change when I moved my mouse
over them). I was curious and just had to know what was being done to create
those effects. Were these page creators using HTML tags I did not know
about?

Eventually, one site revealed what was being used to create those effects:
JavaScript. I went in search of information on it and came across a few
tutorials and scripts on the Web. Since I had programmed in other languages
(such as a relatively obscure language called Ada), I was able to catch on to
JavaScript fairly quickly by looking at these tutorials and scripts.

I learned enough that I decided to create a Web site that would teach
HTML and JavaScript to beginners. As soon as I began the project, I received
questions from visitors that were way over my head—forcing me to dig
deeper and learn more about JavaScript. As a result, I became completely
familiar with this scripting language and what it can do. Not only can you add
fun effects to a Web page, you can create scripts that will perform useful
tasks, like validate form input, add navigational elements to documents, and
react to user events.

The goal of this book is to help you to learn the basics of the JavaScript
language with as little hair pulling and monitor smashing as possible. You do
not need any prior programming experience to learn JavaScript from this
book. All you need is knowledge of HTML and/or XHTML, Cascading Style
Sheets (CSS), and how to use your favorite text editor and Web browser (see
Chapter 1 for more information).

What This Book Covers
The 16 chapters of this book cover specific topics on the JavaScript language.
The first two chapters cover the most basic aspects of the language: what it is,
what you need to know to begin using JavaScript, and how to place
JavaScript into an HTML file. The middle of the book (Chapters 3–14)
covers beginning JavaScript topics from variables all the way to using
JavaScript with forms. The final two chapters (Chapters 15–16) introduce
some advanced techniques, and point you toward resources if you want to
learn more about JavaScript once you have completed the book.

This book includes a number of special features in each chapter to assist
you in learning JavaScript. These features include

• Key Skills & Concepts Each chapter begins with a set of key skills and
concepts that you will understand by the end of the chapter.

• Ask the Expert The Ask the Expert sections present commonly asked
questions about topics covered in the preceding text, with responses from
the author.

• Try This These sections get you to practice what you have learned using a
hands-on approach. Each Try This will have you code a script through
step-by-step directions on what you need to do to in order to accomplish
the goal. You can find solutions to each project on the McGraw-Hill
Professional Web site at www.mhprofessional.com/computingdownload.

• Notes, Tips, and Cautions These elements call your attention to
noteworthy statements that you will find helpful as you move through the
chapters.

• Code Code listings display example source code used in scripts or
programs.

• Callouts Callouts display helpful hints and notes about the example code,
pointing to the relevant lines in the code.

• Self Test Each chapter ends with a Self Test, a series of 15 questions to
see if you have mastered the topics covered in the chapter. The answers to
each Self Test can be found in the appendix.

That is it! You are now familiar with the organization and special features

http://www.mhprofessional.com/computingdownload

of this book to start your journey through JavaScript. If you find that you are
stuck and need help, feel free to contact me with your questions. To contact
me, you can reach me on LinkedIn (https://www.linkedin.com/in/john-
pollock-82a2b074) or you can find me on Twitter (@ScripttheWeb).

Now it is time to learn JavaScript. Get ready, get set, and have fun!

https://www.linkedin.com/in/john-pollock-82a2b074

W

Chapter 1
Introduction to JavaScript

Key Skills & Concepts
• Using Text Editors, WYSIWYG Editors, and Web Browsers

• Defining JavaScript

• Differences Between Client-Side and Server-Side Programming

elcome to JavaScript: A Beginner’s Guide, Fifth Edition! You’re
obviously interested in learning JavaScript, but perhaps you’re not
sure what you need to know to use it. This chapter answers some

basic questions about what JavaScript is, provides a brief history of the
language, and discusses the various environments that can use JavaScript for
programming.

JavaScript is ubiquitous on the World Wide Web. You can use JavaScript
both to make your Web pages more interactive, so that they react to a
viewer’s actions, and to give your Web pages some special effects (visual or
otherwise). JavaScript can now even be used to perform input/output
operations or build Web servers by using Node.js!

JavaScript often gets included with Hypertext Markup Language (HTML)
and Cascading Style Sheets (CSS) as the three recommended languages for
beginning Web developers (whether you build Web sites for business or
pleasure). Of course, you can build a Web page by using only HTML and
CSS, but JavaScript allows you to add additional features that a static page of
HTML can’t provide without some sort of scripting or programming help.

What You Need to Know
Before you begin learning about JavaScript, you should have (or obtain) a
basic knowledge of the following:

• HTML and Cascading Style Sheets (CSS)

• Text editors and Web browsers

• The different versions of JavaScript

• Differences in client-side and server-side programming

If you have this basic knowledge, you’ll do just fine as you work through
this book. Knowing another programming/scripting language or having
previous experience with JavaScript isn’t required. This book is a beginner’s
guide to JavaScript.

If you think you don’t have enough experience in one of the
aforementioned areas, a closer look at each one may help you decide what to
do.

Basic HTML and CSS Knowledge
While you don’t need to be an HTML guru, you do need to know where to
place certain elements (like the head and body elements) and how to add your
own attributes. This book will reference scripts in the head section (between
the <head> and </head> tags) and the body section (between the <body> and
</body> tags).

Sometimes, you will also need to add an attribute to a tag for a script to
function properly. For example, you may need to name a form element using
the id attribute, as shown in the following code:

<input type="text" id="thename">

If you know the basics of using tags and attributes, the HTML portion
shouldn’t pose any problems in learning JavaScript.

If you don’t have a basic knowledge of HTML, you can learn it fairly
quickly through a number of media. For example, you can buy a book or look
for some helpful information on the Web. A good book is HTML: A
Beginner’s Guide, Fifth Edition by Wendy Willard (McGraw-Hill, 2013). To

find information about HTML on the Web, check out
developer.mozilla.org/en-
US/docs/Learn/HTML/Introduction_to_HTML/Getting_started.

Occasionally, you will need to use CSS to add or change presentation
features on a Web page. We will mainly use CSS for the purposes of
dynamically changing CSS properties via JavaScript in this book. A good
place to learn CSS is developer.mozilla.org/en-
US/docs/Learn/CSS/Introduction_to_CSS/How_CSS_works.

Basic Text Editor and Web Browser Knowledge
Before jumping in and coding with JavaScript, you must be able to use a text
editor or HTML editor, and a Web browser. You’ll use these tools to code
your scripts.

Text Editors
A number of text editors and HTML editors support JavaScript. If you know
HTML, you’ve probably already used an HTML editor to create your HTML
files, so you might not have to change.

However, some HTML editors have problems related to adding JavaScript
code (such as changing where the code is placed or altering the code itself
when you save the file). This is more often the case when using WYSIWYG
(What You See Is What You Get) editors. It is best to use a code editor such
as Sublime or Visual Studio Code (recommended) or a plain text editor.
Some examples of text editors are Notepad, TextPad, and Simple Text.

Web Browsers
Again, if you’ve been coding in HTML, you probably won’t need to change
your browser. However, some browsers have trouble with the newer versions
of JavaScript. The choice of Web browser is ultimately up to you, as long as
it’s compatible with JavaScript. I recommend the latest version of one of
following browsers to test your JavaScript code:

• Google Chrome

• Mozilla Firefox

http://developer.mozilla.org/en-US/docs/Learn/HTML/Introduction_to_HTML/Getting_started
http://developer.mozilla.org/en-US/docs/Learn/CSS/Introduction_to_CSS/How_CSS_works

• Microsoft Edge

New versions of these browsers continue to be produced. The newest
versions will continue to support more features.

To give you an idea of what some browsers look like, Figure 1-1 shows a
Web page when viewed in Chrome, and Figure 1-2 shows a Web page when
viewed in Mozilla Firefox.

Figure 1-1 A Web page viewed in Google Chrome

Figure 1-2 A Web page viewed in Mozilla Firefox

If you have an older browser and you can’t upgrade, a number of features
(mostly discussed later in the book) may not work in that browser. Even so,
the book can still help you learn the JavaScript language itself (especially
when you’re using Node.js instead of a browser), so you don’t need to give
up if you have an older browser.

NOTE

Even if you have one of the latest browsers, your web site viewers
may not, so it is always appropriate to understand what features may
not be supported in older browsers. This book will cover how to
handle a number of these issues.

Which Version?
The version of JavaScript being used by a browser is typically associated
with what version of ECMAScript it supports. You can see what
ECMAScript versions are supported by each browser at

kangax.github.io/compat-table/es6/.
ECMAScript is the international standard name and specification used for

the JavaScript language, so it’s not a new language but a standard that is set
for JavaScript, JScript, and other implementations of the language. For more
on ECMAScript, see www.ecma-
international.org/publications/standards/Ecma-262.htm.

At the time of this writing, the browsers recommended earlier in this
chapter should support at least ECMAScript 7. Node.js uses the V8
JavaScript engine, and the latest version of Node.js should also support at
least ECMAScript 7.

Remember, It’s Not Java
JavaScript and Java are two different languages. Java is a programming
language that must be compiled (running a program through software that
converts the higher-level code to machine language) before a program can be
executed. More information on the Java language can be found at
docs.oracle.com/javase/tutorial/.

Similarities to Other Languages
JavaScript does have similarities to other programming and scripting
languages. If you have experience with Java, C++, or C, you’ll notice some
similarities in the syntax, which may help you to learn more quickly. Because
it’s a scripting language, JavaScript also has similarities to languages like
PHP—which can also be run through an interpreter rather than being
compiled.

If you have programming or scripting experience in any language, it will
make learning JavaScript easier—but it isn’t required.

Client-Side and Server-Side Programming
The addition of Node.js allows JavaScript to be run on the server side in
addition to its traditional space on the client side. Learning a little about these
different environments will help you to understand the type of programming
that will need to be done when working on the client side versus working on
the server side.

A client-side language is run directly through the client being used by the

http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://docs.oracle.com/javase/tutorial/

viewer. In the case of client-side JavaScript, the client is typically a Web
browser. Therefore, client-side JavaScript is run directly in the Web browser
and doesn’t need to handle any requests on a Web server. The limitation is
that client-side JavaScript cannot directly save information (though it can
send information to a server-side program to do so).

NOTE

Using the XMLHttpRequest object and the Fetch API allows
JavaScript to send and request data from the server. These will be
covered briefly in Chapter 14.

A client-side language is useful for tasks that deal with the content of a
document or that allow information to be validated before it is sent to a
server-side program or script. For instance, JavaScript can change the content
of one or more elements on a Web page when the user clicks a link or presses
a button (many other user actions can also be activated).

JavaScript can also be used to check the information entered into a form
before the form is sent to a server-side program to be processed. This
information check can prevent strain on the Web server by not allowing
submissions with inaccurate or incomplete information. Rather than the
program running on the server until the information is correct, that data can
be sent to the server just once with correct information. This also benefits the
user, since client-side validation can provide feedback much more quickly to
allow the user to make any corrections.

NOTE

While client-side JavaScript is able to help validate information sent
to the server, it cannot replace server-side validation since users may
have JavaScript disabled or unavailable in the device being used
(which allows them to bypass the client-side validation). For security
reasons, you should always use server-side validation, regardless of
whether or not you incorporate client-side validation.

For client-side JavaScript, the Document Object Model (DOM) is
provided so that you can access the different elements in a document. This is
typically accessible within a browser for HTML documents.

A server-side language runs on a server. For example, a server-side

language can be used to receive information from the user of a Web browser
and then take an action using that information. The server-side program can
send information back to the Web browser, save it to a database, or do any
number of other things that the Web browser cannot do on its own.

However, a server-side language is likely to be limited in its ability to deal
with special features of the client that can be accessed with a client-side
language (like the width of the browser window or the contents of a form
before it’s submitted to the server).

Traditionally, server-side programming was done in languages other than
JavaScript, such as PHP, Perl, Python, Ruby, Java, and a number of others.
When Node.js came along, it allowed the opportunity to use JavaScript on the
server side in addition to the client side.

Depending on the needs of you or your company, you may or may not use
Node.js, but this book will cover it in order to provide a more complete
introduction to the JavaScript language and the different environments in
which JavaScript can be used.

Ask the Expert
Q: You mentioned that I could use a text editor or HTML editor

of my choice, but I’m not quite sure what that means. What is a
text editor and where can I find one?

A: A text editor is a program that you can use to save and edit written
text. Text editors range from simple to complex, and a number of
choices are available: Notepad, WordPad, and Simple Text, to
name a few. You can also purchase and download some from the
Web, like NoteTab or TextPad.

An HTML editor is either a more complex text editor or an
editor that allows you to add code by clicking buttons or by other
means—often called a What You See Is What You Get
(WYSIWYG) editor.

For the purposes of JavaScript coding, you may decide to use a
more code-oriented program that can offer features such as code
highlighting, completion, debugging tools, and more, such as
Visual Studio or Sublime. I recommend one of these tools since

they offer more features to assist with programming.

Q: What exactly do I need to know about using a text editor?

A: Basically, you only need to know how to type plain text into the
editor, save the file with an .html, .css, or .js extension, and be able
to open it again and edit it if necessary. Special features aren’t
needed because HTML, CSS, and JavaScript files are made up of
plain text, but the features of coding tools like Visual Studio and
Sublime can be extremely helpful as you write HTML, CSS, and
JavaScript code.

Q: What do I need to know about using a browser?

A: All you absolutely need to know is how to open a local HTML file
on your computer (or on the Web) and how to reload a page. If you
don’t know how to open an HTML file from your own computer,
open your browser and go to the address bar. Type in file:///C:/ and
press ENTER. If you are using a drive letter other than C, type that
letter instead of C in the example. The browser will display files
and folders from the drive and allow you to navigate to the file you
want to open. Click an HTML file to open it. The following
illustration shows how this might look after navigating into a few
folders from the C drive using Google Chrome:

Q: Where do I get those browsers you mentioned?

A: Here are links for the browsers:

• Google Chrome www.google.com/chrome/

• Mozilla Firefox www.mozilla.com/firefox

• Microsoft Edge https://www.microsoft.com/en-
us/windows/microsoft-edge

Beginning with JavaScript
JavaScript came about as a joint effort between Netscape Communications
Corporation and Sun Microsystems, Inc. The news release of the new
language was issued on December 4, 1995, back when Netscape Navigator
2.0 was still in its beta version. JavaScript version 1.0 became available with

http://www.google.com/chrome/
http://www.mozilla.com/firefox
https://www.microsoft.com/en-us/windows/microsoft-edge

the new browser. (Before its release as JavaScript, it was called LiveScript.)
JavaScript is a prototype-based interpreted language that can be used in

numerous environments. To expand on this definition, let’s look at its
important parts one by one.

Prototype-Based
Prototype-based means that JavaScript is an object-oriented programming
language that can use items called objects. However, the objects are not
class-based, so no distinction is made between a class and an instance;
instead, objects inherit from other objects via the prototype property.
JavaScript has made changes in ES6 to allow you to use the class keyword,
but the language is not technically class-based. You’ll learn how to work with
JavaScript objects in Chapter 10. You don’t need to understand them in detail
until you know a few other features of the language.

Interpreted Language
An interpreted language doesn’t require a program to be compiled before it is
run. All the interpretation is done on-the-fly by the client. The client, such as
a Web browser or the Node.js environment, is what is being used to interpret
the language.

With a compiled programming language, before you can run a program
you have written, you must compile it using a special compiler to be sure
there are no syntax errors. With a scripting language, the code is interpreted
as it is loaded in the client. Thus, you can test the results of your code more
quickly. However, errors won’t be caught before the script is run and could
cause problems with the client if it can’t handle the errors well. In the case of
JavaScript, the error handling is up to the client being used by the viewer.

Numerous Environments
JavaScript can be run in numerous environments. Most commonly, the
environment is a Web browser since JavaScript has basically become the
default scripting language used when adding dynamic interactivity to a Web
page.

While JavaScript is often thought of in relation to Web browsers, a
number of other environments use it for programming, such as Adobe

Acrobat and Flash (based on ECMAScript). In addition to this, Node.js
allows JavaScript to be used as a server-side language or to perform
input/output operations on an operating system. This book will cover
JavaScript in Node.js and in the Web browser at a beginner level to help you
get started with programming in both environments.

Putting It All Together
To begin, you might wonder how JavaScript is run in a browser. Where
should you write your JavaScript code, and what tells the browser it is
different from anything else on a Web page? The answers are general for
now, but the next chapter provides more details.

JavaScript runs in the browser by being added into an existing HTML
document (either directly or by referring to an external script file). You can
add special tags and commands to the HTML code that will tell the browser
that it needs to run a script. When the browser sees these special tags, it
interprets the JavaScript commands and will do what you have directed it to
do with your code. Thus, by simply editing an HTML document, you can
begin using JavaScript on your Web pages and see the results.

For example, the following code adds some JavaScript to an HTML file
that writes some text onto the Web page. Notice the addition of <script> and
</script> tags. The code within them is JavaScript.

The next chapter looks at how to add JavaScript in an HTML file by using
the <script> and </script> HTML tags. This will be your first step on the road
to becoming a JavaScript coder!

Online Resources
To find additional information online to help you with JavaScript, here are

some useful resources:

• Projects/code for this book: github.com/JohnPollock/JSABG-ED-5

• An excellent tutorial site that includes cut-and-paste scripts:
www.javascriptkit.com

• A place where you can address questions about JavaScript to fellow
coders: stackoverflow.com/questions/tagged/javascript

Try This 1-1 Use JavaScript to Write Text

pr1_1.html

This project shows you JavaScript in action by loading an HTML document
in your browser. The script writes a line of text in the browser using
JavaScript.

Step by Step
1. Copy and paste the code shown here into your text editor:

2. Save the file as pr1_1.html and open it in your Web browser. You
should see a single line of text that was written with JavaScript. (To
open a file in your Web browser, go to the File menu and look for an
option that says something like Open, or Open File, and select it. You
should be able to browse for the file you want to open as you would with
other programs.)

Try This Summary
In this project, you copied and pasted a section of code into a text editor and

http://github.com/JohnPollock/JSABG-ED-5
http://www.javascriptkit.com
http://stackoverflow.com/questions/tagged/javascript

saved the file. When you opened the saved file in your Web browser, a line of
text was displayed in the browser. This text was written in the browser
window using JavaScript. You will see more about how this type of script
works in Chapter 2.

 Chapter 1 Self Test

1. You must know which of the following to be able to use JavaScript in a
Web browser?

A. Perl
B. C++
C. HTML
D. SGML

2. Which of the following is something you should have to use JavaScript
in a Web page?

A. A Web browser
B. A C++ compiler
C. A 500GB hard drive
D. A DVD-RW drive

3. The choice of a Web browser is up to you, as long it’s compatible with
__________.

A. Flash
B. VBScript
C. JavaScript
D. Windows XP

4. JavaScript and Java are the same language.

A. True
B. False

5. __________ is the international standard name and specification used
for the JavaScript language.

A. JScript
B. LiveScript
C. ECMAScript
D. ActionScript

6. JavaScript has similarities to other programming and scripting
languages.

A. True
B. False

7. Before its release as JavaScript, JavaScript was called __________.

A. Java
B. JavaCup
C. LiveScript
D. EasyScript

8. JavaScript is __________.

A. prototype-based
B. class-based
C. object deficient
D. not a language that uses objects

9. A fancy code editor is necessary to edit JavaScript files.

A. True
B. False

10. In what ways can a fancy code editor help a JavaScript programmer?

A. It may offer features such as movies and video games.
B. It may offer features such as code highlighting, completion,

debugging tools, and more.
C. It may offer features such as electronics repairs and warranties.
D. It can’t help at all.

11. A(n) __________ language doesn’t require a program to be compiled
before it is run.

A. programming
B. server-side
C. interpreted
D. computer

12. JavaScript can only be used in a Web browser environment.

A. True
B. False

13. In JavaScript, what handles errors in a script?

A. The operating system
B. A compiler
C. A program on the Web server
D. The client

14. How is JavaScript added to a Web page?

A. It isn’t. It must be compiled and loaded separately.
B. It is taken from a compiled program on the server.
C. You place the code in a file by itself and open that file.
D. It is added to an HTML document.

15. What is added to a Web page to insert JavaScript code?

A. <script> and </script> HTML tags
B. The JavaScript code word
C. <javascript> and </javascript> HTML tags
D. <java> and </java> HTML tags

N

Chapter 2
Placing JavaScript in an HTML File

Key Skills & Concepts
• Using the HTML Script Tags

• Creating Your First Script

• Using External JavaScript Files

• Using JavaScript Comments

ow that you have been introduced to JavaScript, you’re ready to start
coding. This chapter introduces front-end (browser-based) JavaScript,
while Chapter 3 will introduce how JavaScript can be used with

Node.js.
Since front-end JavaScript code is included in HTML documents, you

need to know how to tell Web browsers to run your scripts. The most
common way to set off a script is to use the HTML <script> and </script>
tags in your document. You can place your script tags in either the head or
the body section of an HTML document.

This chapter first shows you how to use the script tags to begin and end a
segment of JavaScript code. Then, you will get started creating and running
your first scripts. At the end of the chapter, you will learn how to add
JavaScript comments to document your scripts.

Using the HTML Script Tags

Script tags are used to tell the browser where code for a scripting language
will begin and end in an HTML document. In their most basic form, script
tags appear just like any other set of HTML tags:

As you can see, there is the opening <script> tag, the JavaScript code, and
then the closing </script> tag. When you use just the basic opening and
closing tags like this, almost all browsers will assume that the scripting
language to follow will be JavaScript.

In HTML, the script tag is not case sensitive. However, in XHTML, the
script tag must be in lowercase. JavaScript is case sensitive in all versions, so
you will need to be more careful with it. In this book, I will use HTML5 for
the HTML code (even though HTML5 is not case sensitive, I will write the
tag and attribute names in lowercase). For the JavaScript code, I will use the
case that is needed for it to function correctly.

The <script> tag has six possible attributes: type, language (deprecated),
charset, src, defer, and async. These attributes give the browser additional
information about when the script should load, the scripting language, and the
location of an external JavaScript file (if any).

Identifying the Scripting Language
The scripting language between the opening and closing script tags could be
JavaScript, VBScript, or some other language, though JavaScript is almost
always set as the default scripting language in browsers. If desired, you can
explicitly identify JavaScript as the scripting language by adding the type
attribute with the value of “text/javascript” to the opening script tag:

NOTE

The type attribute in the opening script tag is required in XHTML in

order for the Web page to validate, but is optional in HTML.

In the past, the language attribute was used to identify the scripting
language, but is ignored in modern browsers and will cause the page to be
invalid in XHTML and HTML5. It should no longer be used.

The charset attribute, which allows for the character set of the JavaScript
code to be specified, is not recognized by most browsers and is not
recommended.

You will see additional important attributes discussed in the following
sections.

Calling External Scripts
Script tags allow you to call an external JavaScript file in your document. An
external JavaScript file is a text file that contains nothing but JavaScript
code, and it is saved with the .js file extension. By calling an external file,
you can save the time of coding or copying a long script into each page in
which the script is needed. Instead, you can use a single line on each page
that points to the JavaScript file with all of the code.

You can call external scripts by adding the src (source) attribute to the
opening script tag:

<script src="yourfile.js"></script>

This example calls a JavaScript file named yourfile.js from any HTML
document in which you place this tag. Be sure there are no spaces or code
between the opening and closing script tags, as this may cause the script call
to fail.

If the script is extremely long, using the src attribute to add the script to
multiple pages can be much quicker than inserting the entire code on each
page. Also, the browser will cache the external JavaScript file the first time it
is loaded, making subsequent Web pages that use the script render faster.
Using an external script is also helpful when dealing with page validation and
when trying to keep script code separated from markup (HTML) code. In
addition, the src attribute allows you to include other people’s script files as
libraries in the very same way.

By default, script files are loaded in the order in which they are placed in
the HTML code (synchronously). There are some options for altering this

behavior, which are described in the next section.

Specifying when the Script Should Load
The last two attributes, defer and async, allow you to specify when an
external script should be loaded. These attributes are not fully supported by
older browsers, or may behave differently, so be aware that an older browser
may not execute the script when it is expected to do so.

The defer Attribute
The defer attribute allows you to specify that an external script file should be
loaded, but should not execute until the page has completed parsing (the
</html> tag has loaded). The following <script> tag would defer the
execution of the external JavaScript code:

<script src="file.js" defer></script>

NOTE

If you are using XHTML, set this attribute using defer=“defer”.

Support for this attribute is available in Internet Explorer 4+, Firefox 3.5+,
and Chrome 7+. Internet Explorer 4–7 will allow this attribute to work on
inline scripts as well, but versions 8 and above only support this attribute on
external scripts as other browsers do.

The async Attribute
When the async attribute is set, the page can continue to load without waiting
for the script to load, and the script will execute after it completely loads.
Here is an example:

<script src="file.js" async></script>

NOTE

If you are using XHTML, set this attribute using async="async".

Support for this attribute is available in Firefox 3.5+ and Chrome 7+.

Using <noscript></noscript> Tags
One way of providing alternate content for those viewers without JavaScript
(or with JavaScript turned off) is to use the noscript tag. The <noscript>
</noscript> tags may be placed anywhere in the HTML document and can
contain any content needed for those viewers browsing without JavaScript.
For example:

This example displays the phrase “The color is red.” to the viewer either
through JavaScript or through the text within the <noscript></noscript> tags.

CAUTION

Some older browsers may not handle the noscript tag correctly and
won’t display the content in either section. If your users have older
browsers, another alternative is to display the content on the page and
then use JavaScript to enhance the content for those who are able to
display it with JavaScript on.

The <noscript> tag can be useful at times, but there are often better ways
to provide the same content to those without JavaScript (avoiding the
document.write() method, for instance). You will learn more about accessible
JavaScript as you progress through this book.

Ask the Expert
Q: Do I always need to use script tags to add JavaScript to a

page?

A: It’s possible to use event handlers that allow you to write short bits
of script within the event-handling attribute of an HTML tag.
You’ll learn about event handlers in Chapter 13.

Q: What about the language attribute?

A: The language attribute once was used to specify the scripting
language to be used, and for a time some browsers allowed a
JavaScript version to be specified (for example,
language=“JavaScript1.2”). This is no longer the case, and the
attribute has been deprecated. Since it is completely ignored in
modern browsers and causes pages not to validate in XHTML and
HTML5, it should no longer be used.

Q: My page won’t validate in XHTML strict (or transitional)
when I add a script to it. How do I get the page to validate?

A: If the script contains characters used in XHTML such as < (which
is used for “less than” in JavaScript but is seen as the beginning of
a new tag in XHTML), then the page won’t validate with the script
directly in the document without adding a CDATA section:

This will allow the page to validate, but because the <!
[CDATA[and]]> characters are in the script, the script will no
longer work. To fix this, you need JavaScript comments (/* and */)
around those characters when they are within the script tags:

As you can see, this can get quite tedious very quickly!

Typically, the better option is to use an external script file if you
are using XHTML, which eliminates this problem because only the
script tags themselves are needed in the XHTML document.

Creating Your First Script
Now that you know how to use the HTML script tags to tell browsers about
the JavaScript in a document, you’re ready to learn how to add the actual
JavaScript code between those script tags. The first coding example often
given to teach any language is one that writes some sort of text to the default
output area, commonly known as a basic “Hello World” script. Following
that convention, your first script will write a string of text to a Web page.

Writing a “Hello World” Script
Rather than write “Hello World,” you’ll use another line of text for this
script: “Yes! I am now a JavaScript coder!” This requires only a single line of
code, using the document.write() method, which writes a string of text to the
document:

Notice the parentheses and the quotation marks around the text. The
parentheses are required because the document.write() method is a JavaScript
function, which takes an argument contained in parentheses. You will learn
more about JavaScript functions in Chapter 5.

The quotation marks denote a string of text. A string is a data type defined
in JavaScript by placing the value inside quotation marks. Chapter 4 provides
details on strings and other JavaScript data types.

The last thing to notice about your script is the semicolon at the end of the
line. The semicolon signals the end of a JavaScript statement. A statement is
a portion of code that does not need anything added to it to be complete in its
syntax (its form and order). A statement can be used to perform a single task,
to perform multiple tasks, or to make calls to other parts of the script that
perform several statements. Most JavaScript statements end with a

semicolon, so it is a good idea to get in the habit of remembering to add one.

NOTE

In later chapters, you will see various lines that do not end in
semicolons because they open or close a block of code. Also, many
scripts you encounter may not end statements with semicolons.
JavaScript is lenient about the use of a semicolon in most cases;
however, it is best to use the semicolon to end a statement because it
can prevent possible errors and aid in debugging (removing errors
from) the script later.

So, to write a text string to the page, you use the document.write() method,
followed by the text, surrounded by quotation marks and enclosed in
parentheses. End the line (the statement) with a semicolon. JavaScript will
handle the rest of the job.

Creating an HTML Document for the Script
In order to make this example complete and test the script, you need to insert
it into an HTML document. First, create the following HTML document with
the basic tags (using any text editor you prefer):

Save the document as test1.html in your text editor. You will open it later
with a Web browser to see the results of the script. Next, you’ll add your
JavaScript code to this HTML document, so leave the file open.

Inserting the Script into the HTML Document
Now you need to insert the script in the document. Where should it go? You

can place a script between the <head> and </head> tags, or between the
<body> and </body> tags. Since this example writes a text string directly to
the page, you want to insert the script between the <body> and </body> tags,
wherever you want the text string to appear. It can come before, after, or
between any HTML code on the page.

To make it clear how the script results appear, you’ll add HTML code to
write lines of text before and after the script. The script tags and the script
itself are inserted between those lines. Add the lines shown next between the
<body> and </body> tags:

Save the test1.html document again. You should now be able to open the
document in your Web browser to see the results of the script. Figure 2-1
shows how the text should look in your browser when you load the Web
page.

Figure 2-1 The test.html file in a Web browser

Congratulations, you have now finished your first script!

NOTE

The example code in this section uses the entire HTML document and
all of its tags. In order to keep things as relevant as possible, from this
point on the example code will use only the HTML tags involved with
the scripts rather than the entirety of its tags. Project code may use
entire HTML documents as needed.

Ask the Expert
Q: Why is there a dot (.) in the document.write() command?

A: Document is one of JavaScript’s predefined objects, and write() is
a predefined method of the document object. The dot puts the
object and the method together to make the function work. Chapter
10 explains JavaScript objects, and Chapter 13 introduces front-end
JavaScript and the document object in more depth.

Q: How do I know when to add the script inside the head section
and when to add it inside the body section?

A: In the past, JavaScript code was almost always placed inside the
head section, which kept it in a separate area from the rest of the
HTML code. Modern coding practice is typically to place all
JavaScript code in an external .js file and to place the <script>
tag(s) right before the closing </body> tag. This ensures that the
HTML page has loaded in the browser (since large scripts can
delay the loading of the page if placed elsewhere), giving the user a
better experience.

Try This 2-1 Insert a Script into an HTML Document

pr2_1.html

This project gives you practice adding a script to your page. You will create
an HTML document and insert a script that displays a short sentence in the

browser window when the page loads.

Step by Step
1. Set up an HTML document so that you have a simple file with nothing

between the <body> and </body> tags yet.

2. Put the following line of text into the Web page within a <p> tag:

I am part of the HTML document!

3. Insert a <p> tag after this line.

4. After the <p> tag, insert a script that will write the following line on the
page:

This came from my script, and is now on the page!

5. After the script, add a </p> tag. Add another opening <p> tag.

6. Put the following line of text into the Web page after the last <p> tag,
and make it emphasized (using tags):

I am also part of the HTML document, after the script results!

7. Add a </p> tag to complete the paragraph.

8. Here is what your HTML document should look like:

9. Save the file as pr2_1.html and view the page in your browser to see the
results.

Try This Summary

In this project, you created an HTML file. Using the knowledge that you
acquired thus far in this chapter, you inserted within the HTML file a script
that writes a specific line of text on the page. When the HTML page is
opened in a Web browser, the result of the script is displayed between two
lines of text.

Using External JavaScript Files
Now suppose that you want to use your “Hello World” script (the one you
created earlier in this chapter) on more than one page, but you do not want to
write it out on each page. You can do this by putting the script in an external
script file and calling it with the src attribute of the script tag. For this
method, you need to create a JavaScript text file to hold your script. You also
need one or more HTML files into which you will place the script tags to call
your external script file.

Creating a JavaScript File
For this example, you will create a JavaScript file that contains only one line.
For practical applications, you would use this approach for lengthier scripts—
the longer the script is, the more useful this technique becomes (especially if
you are trying to validate your Web pages or you are separating your script
code from your markup).

Open a new file in your text editor and insert only the JavaScript code (the
document.write() statement) itself. The script tags are not needed in the
external JavaScript file. The file should appear like this:

document.write("Yes! I am now a JavaScript coder!");

Save the file as jsfile1.js in your text editor. To do this, you may need to
use the Save As option on the File menu and place quotation marks around
your filename, as shown in Figure 2-2 (using Notepad with Windows). If you
are using an editor such as VS Code or Sublime, you won’t need to add
quotes around the filename since .js files are already supported.

Figure 2-2 An example of saving a file with a .js extension using quote
marks so it will save with the correct file extension

Once the file has been saved, you can move on to the next step, which is to
create the HTML files in which to use the script.

Creating the HTML Files
You will create two files in which to place your script. The technique should
work for any number of HTML files, though, as long as you add the required
script tags to each file.

For the first file, create your base HTML document and insert the script
tags into the body section of the document, using the src attribute to point to
the jsfile1.js file, and add some HTML text to the body of the page to identify
it as the first HTML document:

Save this file as jsext1.html in your text editor. Be sure to save it in the
same directory as your jsfile1.js file.

The second HTML document looks the same as the first one, except that
the HTML text says that it’s page 2:

Save this file as jsext2.html in your text editor. Again, be sure to place it in
the same directory as the other files.

Viewing the Pages in Your Browser
Open the jsext1.html file in your Web browser. It should appear as shown in
Figure 2-3, with the JavaScript inserted in the page from the external script
file.

Figure 2-3 The result of calling the script in the jsext1.html file, the first

HTML page

Next, open the jsext2.html file in your Web browser. It should appear as
shown in Figure 2-4, with only the small difference of the text you added to
the HTML file to say that this is page 2. The JavaScript should write the
same text to this page as it did to the first HTML page.

Figure 2-4 The result of calling the script in the jsext2.html file, the
second HTML page

Although we used a short script in this example, it should give you an idea
of how using an external file could be a great time-saver when you have a
large script.

Try This 2-2 Call an External Script from an HTML
Document

pr2_2.html

prjs2_2.js

This project will allow you to practice creating external JavaScript files and
using them to insert a script into a Web page.

Step by Step
1. Set up a simple HTML document with nothing between the <body> and

</body> tags.

2. Place the following line of text between the body tags of the page:

3. This text is from the HTML document!

4. Place a <p> tag after this text.

5. Save it as pr2_2.html.

6. Create an external JavaScript file that will write the following line when
it is executed:

I love writing JavaScript and using external files!

7. Here is how your JavaScript file should look:
document.write("I love writing JavaScript, and using

external files!");

8. Save the JavaScript file as prjs2_2.js.

9. Go back to the HTML document. Place the script tags after the <p> tag
in the document so that the external JavaScript file will write its
sentence on the page.

10. Insert a </p> tag after the script tags.

11. The body of your HTML document should look like this:

12. Save the HTML file and view the results in your browser.

Try This Summary
In this project, you created an HTML page. Using your knowledge of
external JavaScript files from the previous section, you created an external
JavaScript file and placed the necessary code into the HTML file to include
the external JavaScript file. When the HTML file is displayed in a Web
browser, a line of plain text is shown, followed by the results of the external

JavaScript file.

Using JavaScript Comments
You may need to make notes in your JavaScript code, such as to describe
what a line of code is supposed to do. It’s also possible that you will want to
disable a line of the script for some reason. For instance, if you are looking
for an error in a script, you may want to disable a line in the script to see if it
is the line causing the error. You can accomplish these tasks by using
JavaScript comments. You can insert comments that appear on one line or
numerous lines.

Inserting Comments on One Line
If you want to add commentary on a single line in your code, place a pair of
forward slashes before the text of the comment:

// Your comment here

In this format, anything preceding the two slashes on that line is “live”
code—code that will be executed—and anything after the slashes on that line
is ignored. For example, suppose that you wrote this line in your code:

document.write("This is cool!"); // writes out my opinion

The document.write() method will be run by the browser, so the text “This is
cool!” will be written to the page. However, the comment after the slashes
will be ignored by the JavaScript interpreter.

If you place the forward slashes at the beginning of a line, the interpreter
will ignore the entire line. Suppose that you move the slashes in the previous
example to be the first items on the line:

// document.write("This is cool!"); writes out my opinion

In this format, the entire line is ignored, since it begins with the two slashes
that represent a JavaScript comment. The text will not be written to the page,
since the code will not be executed. In effect, you are disabling the

document.write() statement. You may wish to do this if the script containing
this line has an error and you want to know whether or not this line is causing
the problem.

One thing to remember is that any further comment markers (//) on the
same line will not matter so the following code:

// document.write("This is cool!"); writes out my opinion

Is the same as:

// document.write("This is cool!"); // writes out my opinion

The first comment marker comments out the rest of the line regardless of any
additional single-line comment markers.

Adding Multiple-Line Comments
Comments denoted by a pair of forward slashes apply only to the line on
which they appear; their effects are cut off at the end of the line. You can
span multiple lines with this type of comment by adding the slashes to each
line of code, as in this example:

To add comments that span any number of lines without placing slashes on
every line, you can use a different comment format: a forward slash followed
by an asterisk at the beginning of the comment, then the text of the comment,
and then an asterisk followed by a forward slash at the end of the comment.
Here’s an example:

Using this format, you can begin the comment on one line and end it on
another line.

Multiple-line comments can be handy when you want to insert lengthier
descriptions or other text, but you need to be careful when you use them.
Look at this example to see if you can find a problem with it:

Did you notice that the closing JavaScript comment symbols are missing?
When you use multiple-line comments, you need to be careful to close them.
Otherwise, you might accidentally comment out code you need executed! In
this example, the comment just keeps going on with no end in sight. To fix
this, you need to close the JavaScript comments before the document.write()
method is used:

Note, however, that multiple-line comments cannot be placed inside other
multiple-line comments, since the closing comment code for the inner
comment will close the comment early. For example, consider this code:

As you can see, the first instance of the ending */ causes the entire comment
to end, and the code afterward could be executed.

In the preceding examples, you saw how comments can be used to provide

some documentation of what to expect from each script. In Chapter 3, you
will learn how using comments can help you debug your JavaScript code. For
now, you should get in the habit of adding comments to your scripts as short
documentation or instructions.

 Chapter 2 Self Test

1. What is the purpose of the <script> and </script> tags?

A. To tell the browser where a script begins and ends
B. To let the browser know when the script should be loaded
C. To point to an external JavaScript file
D. All of the above

2. Why would you use the type attribute in the opening script tag?

A. To let the browser know what type of coder you are
B. To ensure the Web page validates when using XHTML
C. To create a typing script
D. To make sure the script does not make a grammatical error

3. Is JavaScript code case sensitive?

A. Yes
B. No

4. The noscript tag provides __________ for those without __________.

5. An external JavaScript file commonly uses a filename extension of
__________.

A. .js
B. .html
C. .jav
D. .java

6. Which of the following correctly points to an external JavaScript file
named yourfile.js?

A. <extscript src="yourfile.js"></extscript>
B. <script src="yourfile.js"></script>
C. <script language="yourfile.js"></script>
D. <script link="yourfile.js"></script>

7. In HTML, the script tag is not case sensitive. However, with XHTML,
the script tag must be in __________.

8. The __________ signals the end of a JavaScript statement.

A. colon
B. period
C. question mark
D. semicolon

9. To write a string of text on a Web page, the __________ method can be
used.

A. document.write()
B. document.print()
C. document.type()
D. window.print()

10. When would it be a good idea to use an external JavaScript file?

A. When the script is short and going to be used in only one HTML
document

B. When your Web site viewers have older browsers
C. When the script is very long or needs to be placed in more than

one HTML document
D. External files are not a good idea

11. JavaScript comments can be very useful for the purpose of __________
or __________ your code.

12. Which of the following indicates that a single line of commentary will
follow it within JavaScript code?

A. /*

B. /-
C. //
D. <!--

13. Which of the following indicates that more than one line of commentary
will follow it within JavaScript code?

A. /*
B. /-
C. //
D. <!--

14. Which of the following indicates the end of a multiple-line JavaScript
comment?

A. \\
B. -->
C. /*
D. */

15. When you use multiple-line JavaScript comments, you need to be
careful to __________ them.

A. close
B. read
C. program
D. compile

N

Chapter 3
Using Variables

Key Skills & Concepts
• Understanding Variables

• Why Variables Are Useful

• Defining Variables for Your Scripts

• Understanding Variable Types

• Using Variables in Scripts

ow that you have learned the basics of adding JavaScript to a Web
page, it is time to get into the inner workings of the language. Since
variables are an important part of JavaScript coding, you will need to

know as much as possible about what they are and why they are useful in
your scripts. Once you have an understanding of how variables work and
what they can do, you will be able to move on to other topics that build on
the use of the various types of variables.

In this chapter, you will begin by learning what variables are and why they
are useful. You will then move on to find out about the methods that are used
to declare variables and how to assign a value to a variable. Finally, you will
see how to use variables in your scripts.

Understanding Variables
A variable represents or holds a value. The actual value of a variable can be

changed at any time. To understand what a variable is, consider a basic
statement that you may recall from algebra class:

x=2

The letter x is used as the name of the variable. It is assigned a value of 2. To
change the value, you simply give x a new assignment:

x=4

The name of the variable stays the same, but now it represents a different
value.

Taking the math class example one step further, you probably had to solve
a problem like this one:

If x=2, then 3+x=?

To get the answer, you put the value of 2 in place of the variable x in the
problem, for 3+2=5. If the value of x changes, so does the answer to the
problem. So, if x=7, then the calculation turns into 3+7, and now the result is
10.

Variables in JavaScript are much like those used in mathematics. You give
a variable a name, and then assign it values based on your needs. If the value
of the variable changes, it will change something that happens within the
script.

Why Variables Are Useful
Using variables offers several benefits:

• They can be used in places where the value they represent is unknown
when the code is written.

• They can save you time in writing and updating your scripts.

• They can make the purpose of your code clearer.

Variables as Placeholders for Unknown Values
Often, a variable will hold a place in memory for a value that is unknown at

the time the script is written. A variable value might change based on
something entered by the viewer, or it may be changed by you later in the
script code.

For instance, you might have a function that takes in certain values based
on user input (functions will be discussed in Chapter 4). Since the value of
user input is unknown at the time the script is written, a variable can be used
to hold the value that will be input by the user. This is true for any sort of
user input, whether it be in the form of a JavaScript prompt/confirm box,
input fields in a form, or other methods of input.

Variables as Time-Savers
Variables speed up script writing because their values can change. When you
assign a value to a variable at the beginning of a script, the rest of the script
can simply use the variable in its place. If you decide to change the value
later, you need to change the code in only one place—where you assigned a
value to the variable—rather than in numerous places.

For instance, suppose that back in math class, you were asked to solve this
problem:

If x=2, then 3+x-1+2-x=?

You know that you need to substitute the value of 2 for each x that appears,
for 3+2–1+2–2=4. Now if the teacher wants you to do this problem again
with a different value for x, the whole problem does not need to be rewritten.
The teacher can just give you the following instruction:

Solve the above problem for x=4.

The longer and more complex the problem gets, the more useful the
variable becomes. Rather than rewriting the same thing over and over, you
can change one variable to offer an entirely new result.

The same idea will apply when you start using JavaScript functions. You
will be able to call the same function multiple times and send it different
values to use to perform calculations or other tasks. This will help to keep
your code size smaller and make development time faster.

Variables as Code Clarifiers

Since variables represent something, and you can give them meaningful
names, they are often easier to recognize when you read over (and debug)
your scripts. If you just add numbers, you may forget what they stand for. For
example, consider this line of code:

TotalPrice = 2.42 + 4.33;

Here, the numbers could mean almost anything. Instead, you might assign
2.42 as the value of a variable named CandyPrice and 4.33 as the value of a
variable named OilPrice:

TotalPrice = CandyPrice + OilPrice;

Now, rather than trying to remember the meaning of the numbers, you can
see that the script is adding the price of some candy to the price of some oil.
This is also useful in debugging, because the meaningful variable names
make it easier to spot errors.

Defining Variables for Your Scripts
Now that you understand what variables are and why you want to use them,
you need to learn how to make them work in your scripts. You create
variables by declaring them. Then you assign values to them using the
JavaScript assignment operator. When you name your variables, you need to
follow the rules for naming variables in JavaScript, as well as consider the
meaningfulness of the name.

Declaring Variables
To declare text as a variable, you use the var keyword, which tells the
browser that the text to follow will be the name of a new variable:

var variablename;

For example, to name your variable coolcar, the declaration looks like
this:

var coolcar;

In this example, you have a new variable with the name coolcar. The
semicolon ends the statement. The variable coolcar does not have a value
assigned to it yet (JavaScript will give it a value of undefined).

To declare multiple variables, one option is to use the var statement each
time:

var coolcar;

var cooltruck;

var coolvan;

Alternatively, you can use a single var statement and separate each variable
name with commas, making sure the last one ends in a semicolon (to end the
var statement):

If you use this format, you can also declare all of the variables on a single
line:

var coolcar, cooltruck, coolvan;

Since all of these are within the same var statement, this does not cause any
issues. You may see this format from time to time as you look at JavaScript
code.

As described in the next section, you can give your variables a value at the
same time that you declare them, or you can assign them a value later in your
script.

Assigning Values to Variables
The code for giving a variable a name is simple, but there are some
restrictions on words that you can use for variables and the cases of the
letters. To assign a value to a variable, you use the JavaScript assignment
operator, which is the equal to (=) symbol. If you want to declare a variable
and assign a value to it on the same line, use this format:

var variablename = variablevalue;

For example, to name your variable paycheck and give it the numeric
value 1200, use this statement:

var paycheck = 1200;

The statement begins with the keyword var, followed by the variable
paycheck, just as in the plain variable declaration described in the previous
section. Next comes the assignment operator (=), which tells the browser to
assign the value on the right side of the operator to the variable on the left
side of the operator. To the right of the assignment operator is 1200, which is
the numeric value being assigned to the variable paycheck. The line ends
with a semicolon to mark the end of the statement.

CAUTION

Be careful not to think of the assignment operator (=) as having the
meaning “is equal to.” This operator only assigns a value. The
operator for “is equal to” is two equal signs together (==), as you’ll
learn in Chapter 5.

To declare and assign another variable, you use the same format. For
example, to set up a variable named spending to track the amount of money
you are spending from the paycheck variable, use these statements:

Of course, you will also notice that this financial situation is headed for
trouble, since the money being spent in the spending variable is more than
what is being brought in with the paycheck variable. Oddly, it is starting to
look like the budget for my Web site!

The method you used earlier to declare multiple variables with a single var
statement will also work to declare and assign values to multiple variables.
Commas are used to separate each variable assignment, as shown in the
following code:

Again, remember that the last variable that is declared and assigned a value
will end with a semicolon to complete the var statement.

The value assigned to the variable can also be the result of a calculation,
as shown in the following code:

var net = 1500 - 1200;

In this case, the result is 300 and will be assigned to the variable net.
The examples you’ve seen illustrate the proper and safe way to code

variable declarations and assignments. However, JavaScript allows a certain
amount of flexibility when it comes to variables. In many cases, the code will
work without using precise coding syntax. For example, you may see some
scripts written without using the var keyword the first time a variable is used.
JavaScript will often declare the variable the first time it is used even if it is
previously undeclared. An example is shown here:

paycheck = 1200;

This works since the variable is being assigned a value (JavaScript will
simply declare the variable and assign it the value of 1200). However, if you
were trying to declare the variable without an assignment, the following
would not be valid:

paycheck;

This declaration would still require the var keyword to be valid, as in the
following code:

var paycheck;

You may also see a script that leaves off the ending semicolon:

var paycheck = 1200

And in some scripts, both features are left out of the variable assignment:

paycheck = 1200

All of these shortcuts may seem handy, but it is best to go ahead and
define each variable before using it, use the var keyword, and include the

semicolon. Not doing so can cause errors in some browsers and may give
people the impression the code was not written well. Also, any of these
omissions can be really troublesome if you need to debug the script.

For example, if you leave off the var when you make your variable
declaration, the variable is automatically placed in the global scope, which
can easily lead to problems down the road. You will see more about how
scope affects variable values in Chapter 4.

Giving variables the correct declarations and assignments will avoid
problems, and your code will be easier to read and understand.

Naming Variables
Before you start naming your own variables, you need to be aware of
JavaScript’s naming rules. The factors you need to consider when choosing
names are case sensitivity, invalid characters, and the names that are reserved
by JavaScript. Additionally, you should try to give your variables names that
are both easy to remember and meaningful.

Using Case in Variables
JavaScript variables are case sensitive—paycheck, PAYCHECK, Paycheck,
and PaYcHeCk are four different variables. When you create a variable, you
need to be sure to use the same case when you write that variable’s name
later in the script. If you change the capitalization at all, JavaScript sees it as
a new variable or returns an error. Either way, it can cause problems with
your script.

Here are a couple of suggestions for using case in your variable names:

• If you are using a variable name that consists of only one word, it is
probably easiest to use lowercase for the entire name. It will be quicker to
type, and you will know when you use it later to type it all in lowercase.

• For a variable name with two words, you might decide to capitalize the
first letter of each word. For example, you may name a variable MyCar or
My_Car (you will see more on the underscore character, _, in the next
section). You also might use what is called “camelCase,” where you leave
the first word in lowercase and make each subsequent word uppercase. For
example, you may name a variable myCar or myCoolCar.

The capitalization of variables is entirely up to you, so you should use
whatever style you are most comfortable with. It is best that you adopt a
convention and continue to use it. For instance, if you name a variable using
lowercase characters only, you should do the same throughout the script to
avoid accidentally switching the case when using the variable later. In this
book, I use only lowercase characters for variable names, to keep the code
clear.

Using Allowed Characters
An important rule to remember is that a variable name must begin with a
letter, underscore (_), or dollar character ($). The variable name cannot
begin with a number or any other character that is not a letter (other than the
underscore and dollar). The other characters in the variable name can be
letters, numbers, underscores, and dollar characters. Blank spaces are not
allowed in variable names. So, the following variable names would be valid:

• paycheck

• _paycheck

• pay2check

• pay_check

• $pay_245

However, the following variable names are not valid:

• #paycheck

• 1paycheck

• pay check

• pay_check 2

• _pay check

The hardest rule to remember may be that you cannot begin the name with
a number (it’s the one I forget most often). While such a name may look
valid, JavaScript doesn’t allow it.

Avoiding Keywords and Reserved Words
Another rule to keep in mind when naming your variables is to avoid the use
of JavaScript keywords and reserved words. Keywords are special words that
are used for a specific purpose in JavaScript. For instance, you’ve learned
that the reserved word var is used to declare a JavaScript variable. Using it as
a variable name can cause numerous problems in your script, since this word
is meant to be used in a different way. Reserved words are special words that
are reserved to be used as keywords at a later date, so they should also not be
used as variable names, in order to prevent your code from having potential
problems in the future.

Table 3-1 lists the keywords and reserved words in JavaScript. Note that
all of these words are in all lowercase letters. In later chapters, you will use a
number of the keywords, so they will become more familiar over time.

Table 3-1 JavaScript Keywords and Reserved Words

Giving Variables Meaningful Names
Although x is an acceptable variable name, it is unlikely that you will be able
to remember what it stands for if you need to debug the program later. Also,
if someone else is trying to help you debug the code, their job will be even
harder.

You should try to give your variables names that describe what they
represent as clearly as possible. Suppose that you want to use a variable to
hold a number of an example on a page. Rather than use x, ex, or another
short variable, use something more descriptive:

var examplenumber = 2;

The variable examplenumber will be easy for you to recognize later, and
other coders will be more likely to understand its use quickly.

The more variables you use in a script, the more important it becomes to
use meaningful and memorable names.

Understanding Data Types
So far, you’ve seen examples of variable values that are numbers. In
JavaScript, a variable value can be one of several data types, including
number, string, boolean, null, undefined, symbol, and object.

Unlike stricter programming languages, JavaScript does not force you to
declare the type of variable when you define it. Instead, JavaScript allows
virtually any value to be assigned to any variable. It also allows you to
change the data type if you change the value. Although this gives you
flexibility in coding, you need to be careful because you can end up with
some unexpected results—especially when adding numbers (see Chapter 5
for more on this topic).

Number
Numbers are just that—numbers. JavaScript does not require numbers to be
declared as integers, floating-point (decimal) numbers, or any other number
type. Instead, any number is seen as just another number, whether it is 7, –2,
3.453, or anything else. The number will remain the same type unless you
perform a calculation to change the type. For instance, if you use an integer
in a variable, it won’t suddenly have decimal places unless you perform a
calculation of some sort to change it (dividing unevenly, for instance).

As you’ve seen, you define a number variable by using the keyword var:

var variablename = number;

Here are some examples:

If you need to use a particularly long number, JavaScript has exponential
notation. To denote the exponent, use a letter e right after the base number
and before the exponent. For example, to create a variable named bignumber
and assign it a value of 4.52 × 105 (452,000), put the letter e in place of
everything between the number and the exponent (to represent the phrase
“times 10 to the power of”):

var bignumber = 4.52e5;

NOTE

JavaScript may return an answer to a calculation using exponential
notation (like many calculators).

String
String values contain a string of text. The string may contain letters, words,
spaces, numbers, symbols, or most anything you like. Strings are defined in a
slightly different way than numbers, using this format:

var variablename = "stringtext";

Here are some examples of string variables:

As you can see, strings can be short, long, or anything in between. You
can place all sorts of text and other characters inside string variables.
However, the quotation marks, some special characters, and the case
sensitivity of strings need to be considered.

Matching the Quotation Marks
In JavaScript, you define strings by placing them inside quotation marks
(quotes, for short), as you saw in the examples. JavaScript allows you to use
either double quotes or single quotes to define a string value. The catch is that
if the string is opened with double quotes, it must be closed with double
quotes:

var mycar = "Red Corvette";

The same goes for single quotes:

var myhouse = 'small brick house';

Trying to close the string with a nonmatching type of quotation mark, or
leaving out an opening or closing quotation mark, will cause problems.

These mistakes will result in an “Unterminated String” error in the Web
browser.

NOTE

If you use double quotes to enclose the string, you can use single
quotes inside the string and vice versa.

Watching the Case
JavaScript strings are case sensitive. This may not seem important now, but it
matters when you need to compare strings for a match. It only takes one
character in a different case to make the strings different:

"My car is fun to drive!"

"my car is fun to drive!"

You’ll learn more about string comparisons in Chapter 7.

Using Special Characters
Special characters enable you to add things to your strings that could not be
added otherwise. For example, suppose that you need a tab character between
each word in a string. If you press the TAB key on the keyboard, JavaScript
will probably see it as a bunch of spaces. Instead, use the special character \t,
which places a tab in the string, as in this example:

var mypets="dog\tcat\tbird";

In each spot where the special character \t appears, JavaScript interprets a tab
character.

The special characters all begin with a backslash character (\). Thus, if you
want a single backslash character in your string, you need to use the special
code for a backslash: \\. For instance, suppose you wish to write the following
sentence on a Web page: “Go to the directory c:\javascript on your
computer.” If you use the string as it is written, your code would look like
this:

The problem is that the single backslash would not be printed on the Web
page. It would appear as

Go to the directory c:javascript on your computer

Unless the backslash is followed with the code for a special character,
JavaScript prints the character after the slash as it appears (you will see this in
the escape technique discussed in the next section). To fix this, use the \\
special code to print a single backslash on the page:

Now you get the sentence you want printed to the browser, like this:

Go to the directory c:\javascript on your computer.

The special characters used in JavaScript are shown in Table 3-2.

Table 3-2 Special JavaScript Characters

Suppose that you want to print a sentence on a Web page with strong
emphasis. JavaScript allows you to print HTML code to the page as part of a
string in the document.write() method (which you used for your first scripts
in Chapter 2). To do this, you can add in the and tags
from HTML, as in this sample code:

Now suppose that you want the code itself to appear on two lines when it
is viewed (via “View Source” in the browser), like this:

JavaScript Rules!

This is fun.

You can do this by adding the newline special character to the code:

The \n special code is only a newline in JavaScript; it will not result in an
HTML line break. The JavaScript newline code does not add a new line to

the result of the code shown in the browser display. So, the end result of the
preceding code is a sentence like this one:

JavaScript Rules! This is fun.

If you want to add a line break in the browser display, you need to use the
HTML
 tag to produce it.

Keep in mind that the JavaScript newline affects only the appearance of
the source code; it is not a factor in the end result. However, it does help later
when you want to format the output of JavaScript alert boxes and various
other JavaScript constructions.

Escaping Characters
JavaScript allows you to escape certain characters, so that they will show up
correctly and avoid causing errors. Like special characters, escape sequences
use the backslash character (\), which precedes the character that needs to be
escaped.

As noted earlier, JavaScript checks each string for the presence of special
characters before rendering it. This is useful if you want to have a quote
within a string. For example, suppose that you want to print the following
sentence on a Web page:

John said, "JavaScript is easy."

What would happen if you just threw it all into a document.write()
command?

If you look near the end of the document.write() line, you will see that the
two double quotes together could cause trouble, but the browser will actually
get upset before that point. When the double quote is used before the word
JavaScript, the browser thinks you have closed the string used in the
document.write() command and expects the ending parenthesis and
semicolon. Instead, there is more text, and the browser gets confused.

To avoid problems with quotes, use the backslash character to escape the

quotation marks inside the string. By placing a backslash in front of each of
the interior double quote marks, you force them to be seen as part of the text
string, rather than as part of the JavaScript statement:

This fixes the problem with the string, and the sentence will print with the
quotation marks.

CAUTION

Also watch for single quotes and apostrophes within strings. Escaping
these is required for strings enclosed within single quotes.

The escape technique also works for HTML code in which you need
quotation marks. For instance, if you want to put a link on a page, you use the
anchor tag and place the URL in quotes. If you escape the quotes in the
anchor tag, JavaScript allows you to write the HTML code to the page within
the document.write() method, as in this example:

This does the job, but there is also an easier way to make this work if you do
not want to escape quotation marks all of the time.

To avoid escaping the quotes in the preceding code, you could use single
quotes around the URL address instead, as in this code:

You can also do this the other way around if you prefer to use single
quotes on the outside, as in this example:

The important point to remember here is to be sure that you do not use the
same type of quotation marks inside the string as you use to enclose the
string. If you need to go more than one level deep with the quotes, you need
to start escaping the quotes; this is because if you switch again, it will
terminate the string. For example, look at this code:

The first one would work, since the quotes are escaped to keep the string
going. However, the second line only switches back to double quotes when
inside the single quotes within the string. Placing the double quotes there
without escaping them causes the string to terminate and gives an error.

As you can see, quotation marks can be a real pain when you need to use a
large number of them within a string. However, remembering to use the
backslash to escape the quotes when necessary will save you quite a few
headaches when you are looking for a missing quote. I’ve had to look for
missing quotes in my code a number of times, and my head was spinning
after a few of those encounters! Later in this chapter, you will see that you
can add strings together, which can simplify the use of quotes for you.

Boolean
A Boolean has a value of true or false. Here are examples:

var johncodes = true;

var johniscool = false;

Notice that the words true and false should not be enclosed in quotes. This is
because they are literal values that JavaScript recognizes.

Boolean variables are useful when you need variables that can only have
values of true and false, such as in event handlers (covered in Chapter 7).

NOTE

When we talk about the concept of a Boolean variable, the first letter
of the word Boolean is capitalized (because it is derived from the
name of the mathematician George Boole). However, the JavaScript
reserved word boolean is written in all lowercase letters when you use
the keyword in a script.

Null
Null is used to indicate an empty object (you will learn about objects in
Chapter 9). If you need to define an object with a value of null, use a
declaration like this:

var variablename = null;

As with the Boolean variables, you should not enclose this value in
quotation marks as you do with string values, because JavaScript recognizes
the special value of null. The null data type can only have one value: null.

Undefined
The undefined data type is similar to null, in that it only has one possible
value: undefined. This value occurs when a variable has not been assigned an
initial value, or when a previously undeclared variable is used. For example,
both of the following examples make use of undefined variables (you will see
more on how to use variables later in this chapter):

Symbol
A symbol value is a unique and unchangeable value that can be used as an
object property. You will learn more about objects in Chapter 10.

Object
An object is a collection of properties. Objects are a key part of JavaScript
and will be discussed in much more detail in Chapter 10. Note that functions
and arrays are also objects in JavaScript. This is a different approach from

many other languages, so you will want to be aware of this as you progress.

Ask the Expert
Q: Why do I need to learn about variables? Couldn’t I just put in

the number or text I want to use right where I’m going to use
it?

A: You can do that; however, it will make longer scripts much harder
to write, read, and debug. It also makes it much more difficult to
update your scripts because, in order to change that number or text,
you would need to change every line where it appears. When you
use variables, you can modify just one line of code to change the
value of a variable every place it is used. As you gain more
experience with JavaScript, you will see just how useful variables
are.

Q: Why don’t I need to define the type of number I am using
(such as float or integer) when I declare a numeric variable?

A: JavaScript doesn’t require this, which can be a good or bad feature
depending on your perspective. To JavaScript, any number is just a
number and can be used as a number variable.

Q: Why do I need to put quotation marks around the text in a
string?

A: This is done so that JavaScript knows where a string begins and
ends. Without it, JavaScript would be unsure what should be in a
string and what should not.

Q: But doesn’t a semicolon end a statement? Why not use that
and lose the quote marks?

A: A variable declaration or any command involving strings can
become more complex when the addition operator is used to add
two strings and/or variables together. When this happens,
JavaScript needs to know when one string stops and another begins
on the same line.

Q: What does the backslash (\) character do, in general?

A: If the backslash is followed by a code to create a special character,
the special character is rendered in its place. Otherwise, the first
character after a single backslash is seen “as-is” by JavaScript and
treated as part of the string in which it resides.

Try This 3-1 Declare Variables

pr3_1.html

This project gives you the opportunity to practice declaring variables with
various values. It also prints a short line of text on the page.

Step by Step
1. Create an HTML page, leaving the space between the <body> and

</body> tags open.

2. Between the <body> and </body> tags, add the <script> and </script>
tags as you learned in Chapter 2.

3. Create a numeric variable named chipscost and give it the value 2.59.

4. Create a Boolean variable named istrue and give it the value false.

5. Create a variable named nada and give it the value null.

6. Create a JavaScript statement to write to the Web page the string value
that follows. Remember to escape quotation marks when necessary:

John said, “This project is fun!”

7. The body section of the HTML document should look like this when
you are finished:

8. Save the file as pr3_1.html and view it in your Web browser.

You should see only the text that you output with the document.write()
command. The variable definitions won’t be printed on the browser screen.
You can view the page source code to see how the variable definitions look
in the code.

Try This Summary
In this project, you were able to use your skills to declare different types of
variables in a script. This project included a numeric variable, a Boolean
variable, and a variable with a value of null. You were also able to use skills
learned in Chapter 2 to write a line of text to the page with JavaScript.

Using Variables in Scripts
To make a variable useful, you need to do more than just declare it in the
script. You need to use it later in the script in some way, perhaps to print its
value or even just to change its value. To use a variable, you make the call to
a variable after it has been declared.

Making a Call to a Variable
The following code shows how to write the value of a variable to a Web page
using the document.write() method:

The script begins by declaring a variable mycar and giving it a value of
“Corvette”. Then, in the document.write() command, you see that just the
variable name mycar is enclosed within the parentheses. The result of this
script is simply to write “Corvette” to the browser.

There are no quotation marks around the mycar variable that is being
written to the page. The reason for this is that the mycar variable has already
been given a string value, so it does not need to be within quotes to print its
value to the page in the document.write() command. Already, you can see
how using a variable has the advantage of making a short document.write()
command easier to code.

Adding Variables to Text Strings
The preceding code just prints the value of the variable in the browser. If you
want that variable to print along with some other text in a string, the
document.write() command becomes more complex. The text string needs
quotes around it if it has not been defined as a variable, and the variable
needs to be on its own. You use the addition operator (+) to add the value of
the variable to the string, as shown in this example:

This code prints the following sentence in the browser window:

I like driving my Corvette.

Notice the space after the word “my” in the code. This ensures that a space
appears before the variable is added to the string. If you used the line

document.write("I like driving my" + mycar);

the result would be

I like driving myCorvette.

When adding to strings, you need to be careful to add the spaces that you
want to appear in the output.

The addition operator enables you to place a variable before, after, or even
into the middle of a string. To insert a variable into the middle of a string (so
that it shows with text on both sides of it), just use another addition operator
to add whatever you need to the right of the variable, as in this example:

Now the variable sits inside two text strings, putting a single string
together from three pieces. This code prints the following sentence to the
browser:

I like driving my Corvette every day!

The process of adding strings together as you have done here is called string
concatenation.

String Concatenation with Variables
When using the variable, you need to make sure that the variable and addition
operators are not inside the quotation marks of a string. If they are, you will
not get the results you intended. For example, look at this code:

JavaScript will not recognize the operators and variables here; they are seen
only as part of the text string because they are inside the quotes. Instead of
using the variable, JavaScript takes everything literally and prints this
sentence in the browser:

I like driving my + mycar + every day!

To make this code easier to write, you could place every string involved
into a variable, so that you only need to add the variable values together
rather than dealing with the quotes, like this:

This prints the same sentence but allows you to change its parts later without
needing to edit the document.write() command.

Template Literals
Template literals offer you an even simpler way to deal with string
concatenation. Rather than breaking up strings with the addition operator or
assigning several variables for a simple concatenation, you can use special
placeholders to insert values into a string.

Template literals are enclosed within backticks (`) rather than single or
double quotes, as shown in the following code:

Here, there is nothing particularly special about the backticks. Single or
double quotes would be just as effective. On the other hand, if you want to
use concatenation so that you can change the car type, you can now use
special placeholder syntax to do so. The following code shows this.

Notice how the variable mycar is enclosed within the special symbols ${}.
Doing so allows the value of mycar to be concatenated with the remainder of
the string without needing to break it apart into the various pieces required
using single or double quotes with the addition operator!

Using template literals and placeholders, you can now increase the number
of concatenations much more easily should it be needed. Here is an example:

This will write out the following line of text:

I like driving my Corvette when it is sunny and the traffic is

light!

If you are curious, the code to do the same thing without a template literal is
shown here:

One thing to mention here is that your variable values can use any type of
string (quoted or template literal) and your document.write will have the
same result. For instance, the following code will produce the same result as
the previous example:

As you can see, the template literal provides a simpler method for coding
such concatenations and can make the code more readable as well!

NOTE

Template literals were introduced in the specifications for ES2015. If
you are using one of the suggested Web browsers, these should work

well. If you need to code for compatibility with older browsers, you
may need to stick to plain string concatenation.

Template literals also allow a string to be on multiple lines before being
closed by the second backtick. Whereas strings within single and double
quotes can only encompass a single line of code without causing errors, a
template literal can span as many lines as needed. Just remember to add the
closing backtick! Here is an example:

One more thing to mention is that template literals allow you to freely use
either type of quotation mark without issues. Thus, you could write the
following code:

document.write(`She said, "I'm having fun!"`);

By using a template literal, you are free to use the quotation marks without all
of the escape characters and/or careful placement that needs to happen with a
quoted string value! The following result is printed to the browser:

She said, "I'm having fun!"

The techniques you’ve learned in this section will become useful as your
strings become more complex, especially when you use HTML code within
the strings.

NOTE

The keywords const and let were introduced in ES6 and are the latest
standard for declaring variables. For a better understanding of how
these work in contrast to the var keyword, they will be introduced in
Chapter 4 since functions and scope are key parts of understanding
how each of these keywords can best be used.

Writing a Page of JavaScript
Now that you know how to use variables and write basic HTML code to the
page using JavaScript, you will create a page that is almost entirely written
with JavaScript (everything inside the <body> and </body> tags), as a way to
reinforce the techniques you have learned up to this point.

Creating the Framework
The first thing you need is a basic framework for the page so that you know
where to insert your script. Since you are writing information onto the page,
the script tags will be placed within the <body> and </body> tags. In this
case, an external script file named ch3_code.js will be used. The body section
of your HTML document will look like this:

The code you place in the ch3_code.js file will determine what shows up
in the browser when you have finished.

Defining the Variables
To begin your script file, use some JavaScript code to write an HTML
heading. You could write the code as a string directly into the
document.write() command, as shown here:

document.write("<h1>A Page of JavaScript</h1>");

On the other hand, you could place the string inside a variable and use the
variable inside the document.write() command later in the script:

For this example, you will go with the second method, since it uses a
variable. You will see how this can be a handy feature as you get further into
the script.

In fact, along with the headingtext variable, you’ll create a bunch of
variables to hold the strings of HTML code to add to the page. The next one
will add a short sentence of introduction to the page. The variable declaration
for the introduction will look like this:

Next, you’ll add a link to the page. The variable declaration for the link looks
like this:

Next, you’ll put in some red text to add a little color. Here’s the redtext
variable definition:

Finally, you’ll add in some variables that give you just the opening and
closing strong tags and paragraph tags:

The code for all of the variables in the ch3_code.js file is as follows:

Adding the Commands
Now, following the variable declarations, you can add some
document.write() commands to the ch3_code.js file to write the contents of
the variables back to the HTML document:

This writes the heading at the top of the page. Adding the begineffect and
endeffect variables to the left and right of the myintro variable writes the
introductory text in bold under the heading. After that is a new paragraph
with a link, and then another new paragraph with the red text message.

Here is the entire code for the ch3_code.js file up to this point:

Save the ch3_code.js file and then load your HTML document. The end
result of this code in the browser is shown in Figure 3-1. Note the strong
introduction text and the use of paragraphs between sections.

Figure 3-1 The result of the JavaScript code in a Web browser

Modifying the Page
Now suppose that you do not like the layout as it appeared on the Web page.
Instead, you want the strongly emphasized introduction to be normally
emphasized. If you had written the document.write() commands with plain
strings rather than variables, you would need to search through the code to
find the tags and change them to tags.

However, since you used the variables, all you need to do is change the
values of the appropriate variables at the top of the script file rather than
looking for the strong tags inside a bunch of code.

The code that follows shows the changes that you could make to the script
file to get the new effect. Notice how you only need to change the values of
the begineffect and endeffect variables to change the format of the text on the
page:

Save the ch3_code.js file and reload your HTML document. Figure 3-2
shows how these changes affect the display of the page in a Web browser.

Figure 3-2 The page after changing some JavaScript variables

Try This 3-2 Create an HTML Page with JavaScript

pr3_2.html

prjs3_2.js

In this project, you will create an HTML page with JavaScript, similar to the
one you created in this chapter. The variables will be given new values, and

the differences should be noticeable.

Step by Step
1. Create an HTML page, leaving the space between the <body> and

</body> tags open.

2. Between the <body> and </body> tags, add the <script> and </script>
tags to link to a file named prjs3_2.js. Save the HTML file as
pr3_2.html.

3. Open a file to use as your JavaScript file. Save it with the filename
prjs3_2.js. Use this file to add the JavaScript code in steps 4–10.

4. Create a variable named myheading and give it this value:

This is My Web Page!

5. Create a variable named linktag and give it this value:

WebSiteLink!

6. Create a variable named sometext and give it this value:

This text can be affected by other statements.

7. Create a variable named begineffect and give it the value .

8. Create a variable named endeffect and give it the value .

9. Create a variable named beginpara and give it the value <p>.

10. Create a variable named endpara and give it the value </p>.

11. Place all of the variable definitions into a single var statement so that
you do not need to keep repeating the var keyword (remember to end the
last one with a semicolon).

12. Write the value of each variable back to the HTML document in this
order:

myheading
begineffect
sometext
endeffect

beginpara
linktag
endpara
beginpara
sometext
endpara

When you have finished, save the prjs3_2.js file. It should look like
this:

13. Open the pr3_2.html page in your Web browser and view the results.

14. Reopen the prjs3_2.js file and make the changes in steps 15–16.

15. Change the value of begineffect to .

16. Change the value of endeffect to .

17. When you have finished, save the prjs3_2.js file. It should look like this:

18. Reload the pr3_2.html page in your Web browser. Notice the
differences resulting from the changes in the variable values in the
JavaScript file.

19. Bonus Step: This JavaScript file could all be written with one variable
declaration (for sometext) and a single document.write statement by
using a template literal. Write this file using a template literal instead.
The bonus answer will be included in the “Self Test” answers.

Try This Summary
In this project, you combined your new skills in using variables with earlier
skills in writing to a Web page with JavaScript. You created a Web page with
a script that uses variables to write the HTML code on the page. You then
changed the values of two variables and resaved the script file. The changes
to the variables made visible changes to the page.

 Chapter 3 Self Test

1. A variable __________ or __________ a value.

2. What are two of the benefits of using variables?

A. They can save you time in writing and updating your scripts, and
they can make the purpose of your code clearer.

B. They make the purpose of your code clearer, and they make it
harder for noncoders to understand the script.

C. They can save you time in writing and updating your scripts, and
they make it harder for noncoders to understand the script.

D. They offer no advantages whatsoever.

3. To declare a variable, you use the __________ keyword.

4. What symbol is used as the assignment operator in JavaScript?

A. +
B. –
C. :
D. =

5. Which of the following declares a variable named pagenumber and
gives it a value of 240?

A. var PageNumber = 240;
B. pagenumber = 220;
C. var pagenumber = 240;
D. int named Pagenumber = 240;

6. Variable names are not case sensitive.

A. True
B. False

7. A variable name must begin with a(n) __________, a(n) __________, or
a(n) __________ character.

8. You should avoid using JavaScript keywords and reserved words as
variable names.

A. True
B. False

9. Which of the following variable declarations uses a variable with a valid
variable name in JavaScript?

A. var return;
B. var my_house;
C. var my dog;
D. var 2cats;

10. In JavaScript, the data __________ include number, string, boolean,
null, undefined, symbol, and object.

11. To denote an exponent in JavaScript, you use the letter __________
right after the base number and before the exponent.

12. Which of the following string declarations is invalid?

A. var mytext = "Here is some text!";
B. var mytext = 'Here is some text!';
C. var mytext = "Here is some text!';

D. var mytext = "Here is \n some text!";

13. Which of the following statements would be valid in JavaScript?

A. document.write("John said, "Hi! "");
B. document.write('John said, "Hi!"");
C. document.write("John said, "Hi!'");
D. document.write("John said, \"Hi!\"");

14. __________ characters enable you to add things to your strings that
could not be added otherwise.

15. Which of the following successfully displays the value of a variable
named myhobby by adding it to a string?

A. document.write("I like to +myhobby+ every weekend");
B. document.write("I like to " +myhobby+ " every weekend");
C. document.write("I like to myhobby every weekend");
D. document.write("I like to 'myhobby' every weekend");

A

Chapter 4
Using Functions

Key Skills & Concepts
• What a Function Is

• Why Functions Are Useful

• Structuring Functions

• Calling Functions in Your Scripts

s a JavaScript coder, you need to know how to use functions in your
scripts. Functions can make your scripts more portable and easier to
debug.

This chapter covers the basics of using functions. First, you will find out
what a function is and why functions are useful. Then, you will learn how to
define and structure functions. Finally, you will learn how to call functions in
your scripts.

What a Function Is
A function is basically a little script within a larger script. Its purpose is to
perform a single task or a series of tasks. What a function does depends on
what code you place inside it. For instance, a function might write a line of
text to the browser or calculate a numeric value and return that value to the
main script.

As you may recall from math class, a function can be used to calculate

values on a coordinate plane. You may have seen calculations like these:

f(x)=x+2

y=x+2

Both are commonly used to calculate the y coordinate from the value of the x
coordinate. If you need the y coordinate when x is equal to 3, you substitute 3
for x to get the y value: 3+2=5. Using the function, you find that when x=3,
y=5.

The function itself is just sitting on the paper (or, in our case, the script)
until you need to use it to perform its task. And you can use the function as
many times as you need to, by calling it from the main script.

Why Functions Are Useful
Functions help organize the various parts of a script into the different tasks
that must be accomplished. By using one function for writing text and
another for making a calculation, you make it easier for yourself and others to
see the purpose of each section of the script, and thus debug it more easily.

Another reason functions are useful is their reusability. They can be used
more than once within a script to perform their task. Rather than rewriting the
entire block of code, you can simply call the function again (they are even
used to create objects in JavaScript).

Consider the simple function y=x+2. If you use it only once, the function
doesn’t serve much purpose. If you need to get several values, however, the
function becomes increasingly useful. Rather than writing out the formula for
each calculation, you can just substitute the x values each time you need to
get the y value. So, if you need the y value when x is 3, 4, and 5, you can use
the function three times to get the y values. The function will calculate 5, 6,
and 7, respectively. Instead of writing the content of the function three times,
you only need to write it once to get three answers.

Functions can perform complex tasks and can be quite lengthy. In the
examples in this and later chapters, you’ll see just how useful and time-
saving they are in JavaScript.

Structuring Functions

Now that you understand what functions are and why you want to use them,
you need to learn how to structure them in your scripts. A function needs to
be declared with its name and its code. There are also some optional
additions you can use to make functions even more useful. You can import
one or more values into the function, which are called arguments. You can
also return a value to the main script from the function using the return
statement. You will start by looking at how the function begins.

Declaring Functions
On the first line of a function, you declare it as a function, name it, and
indicate whether it accepts any arguments. To declare a function, you use the
keyword function, followed by its name, and then a set of parentheses:

function functionname()

The keyword function tells the browser that you are declaring a function and
that more information will follow. The next piece of information is the
function’s name. Functions follow the same naming conventions as variables
(refer to Chapter 3 for a list of these conventions). After that, the set of
parentheses indicates whether the function accepts any arguments.

For example, to name your function reallycool and indicate that it does not
use any arguments, the first line looks like this:

function reallycool()

Because the function does not use any arguments, the parentheses are left
empty.

You may have noticed that there is no semicolon at the end. The
semicolon is absent because you use a different technique to show where the
function’s code begins and ends, as described next. However, each of the
separate lines of code within the function does end with a semicolon, as you
will see in the examples in this chapter.

Defining the Code for Functions
Curly brackets ({ }) surround the code inside the function. The opening curly
bracket marks the beginning of the function’s code; then comes the code;
and, finally, the closing curly bracket marks the end of the function, in this

format:

The interpreter will execute all of the code inside the curly brackets when
the function is called (as you will learn later in this chapter). When the
interpreter gets to the closing curly bracket, it knows the function has ended.
The interpreter will move to the next line of code or continue whatever it was
doing before the function was called.

The most common and recommended format for placing the curly brackets
is to put the opening bracket on the same line as the function declaration, as
shown in the previous code example. In this format, the opening brackets of
code blocks are seen to the right, and closing brackets appear on the left. This
is a useful technique to count how many brackets have been opened and/or
closed within a segment of code.

Of course, if you have a particularly short function, you can also place the
entirety of the function on a single line, like this:

function reallycool() { JavaScript code here }

The curly brackets are flexible in this way because white space, tabs, and
line breaks that appear between tokens in JavaScript are ignored (tokens are
such things as variable or function names, keywords, or other parts of the
code that must remain intact). Thus, the following code would be valid:

Though it may be more difficult to read and isn’t the recommended

formatting, JavaScript will still see it as valid code since the proper syntax is
otherwise in place.

In the examples in this book, I will place the opening bracket on the same
line as the function declaration and may occasionally place the entirety of a
function on one line if it is particularly short.

Naming Functions
As with variables, functions need to be named carefully to avoid problems
with your scripts. The same basic rules that applied to variables apply to the
naming of functions: case sensitivity, using allowed characters, and avoiding
keywords and reserved words. Refer to Chapter 3 for a list of these naming
rules.

Your functions will be easier to remember and to debug if you choose
names that reflect their purpose. As you learned in Chapter 3, for a variable,
you should use a name that represents its value, such as examplenumber to
stand for the number of an example on a page. A function name should tell
you something about what the function will do. For example, suppose that
you create a function that writes some text to the page. It could contain the
following line of code:

document.write("This is a strong statement!");

You could just name the function text, but that might not be descriptive
enough, because you could have other functions that also write text to the
page. Instead, you might name it something like show_important_message,
so that you know that the function is used to print a piece of strongly
emphasized text to the browser. The full function is shown here:

As with variables, the more functions you use in a script, the more
important it becomes to use meaningful and memorable names for them.

Adding Arguments to Functions
Arguments are used to allow a function to import one or more values from
somewhere outside the function. Arguments are set on the first line of the
function inside the set of parentheses, in this format:

function functionname(variable1, variable2)

Any value brought in as an argument becomes a variable within the function,
using the name you give it inside the parentheses.

For example, here is how you would define a function reallycool with the
arguments (variables) coolcar and coolplace:

Notice that in JavaScript, you do not use the var keyword when you set the
arguments for a function. JavaScript declares the variables automatically
when they are set as arguments to a function, so the var keyword is not used
here. For example, a line like this one is invalid:

function reallycool(var coolcar, var coolplace)

Where do the arguments come from in the first place? They are obtained
from outside the function when you make the function call. You will see how
this works later in this chapter. For now, you just need to know how they are
used as arguments to JavaScript functions.

NOTE

In other languages, it is often required that a variable have a
declaration when set as an argument, but JavaScript will do this for
you. However, when you declare variables outside of a function
declaration, you need to use the var keyword.

Another thing to mention is that the word parameter is generally used
interchangeably with the word argument in JavaScript, so they almost always
refer to the same thing. There are some technical differences between the two
terms in programming (parameter being a value placeholder, and argument

being the actual value) but these are not often distinguished in general
discussion. For simplicity, I will use arguments in this book to reference all
of these types of values, but if you want to read more about the technical
similarities and differences of the terms in programming, the following Stack
Overflow discussion is an interesting read:
stackoverflow.com/questions/156767/whats-the-difference-between-an-
argument-and-a-parameter.

Using Function Argument Values
When you assign arguments to a function, you can use them like any other
variables. For example, you could give the value of the coolcar variable to
another variable by using the assignment operator, as in this example:

This assigns the value of the coolcar argument to a variable named mycar.
Instead of assigning its value to another variable, you could just use the

coolcar argument in the function, as in this example:

If the value of coolcar is Corvette, then the function would print this line
to the browser when it is called:

My car is a Corvette

The coolcar argument is given a value out of the blue here. As you will see
later in this chapter, the value of coolcar is set when you call the function
from elsewhere in the script.

Using Multiple Arguments
You may have noticed that the previous example had two arguments but used
only one argument. A function can have as few or as many arguments as you
wish. When you assign multiple function arguments, the function doesn’t

http://stackoverflow.com/questions/156767/whats-the-difference-between-an-argument-and-a-parameter

need to use all of them. It can use one argument, a few, or none. How many
are used depends on what the function does and how it is called.

In the previous example, the second argument was not used. Here is how
you could change the function to use both arguments:

Now, if the value of coolcar is Corvette and the value of coolplace is Las
Vegas, the function would print the following line to the browser when it is
called:

My car is a Corvette and I drive it to Las Vegas

You can place as many arguments as your function needs within the
parentheses on the first line of the function. Here is an example with four
arguments:

function reallycool(coolcar, coolplace, coolfood, coolbreeze)

Remember to separate each argument with a comma when you have more
than one.

Adding Return Statements to Functions
A return statement is used to return to the scope from which the function was
called (for the time being, this is the main script), and can return a value.
When executed, a return statement will return immediately, so it is often the
last statement in a function or the result of a conditional statement (which you
will learn about in Chapter 6). The value returned can be the value of a
variable or another expression, using the following format:

return variablename or expression;

For example, to return the value of a variable cooltext, the return statement
looks like this:

return cooltext;

This returns the value of cooltext to the scope where the function was called.
Suppose that you want to write a function that returns the result of adding

two strings together. You could use a return statement, as in this example:

In this function, the first two variables are assigned string values, and the
addedtext variable is given the value of the addition of those two strings. The
new value is sent back to the script where it was called. It returns this string:

This is fun!

This returned value can be used in the scope that called the function. In its
current form, this function is not very useful, because the strings were just
defined in the function rather than being brought in as arguments.

This shortens the code a bit since you don’t need to define an additional
variable value. You will see more details on returning expressions shortly.

A return value can be a simple value, a calculation, or even nothing. All of
the following would be valid return statements:

All of these return the control back to the first JavaScript statement after the
function call. Returning nothing does this without sending back a value.

You can also return an expression, such as the addition of numbers or
strings (or any other expression you decide to build). The following would
also be valid return statements:

These would return the values “This is cool” and 42, respectively.
You will see examples of more useful functions that use arguments and

return statements in the next section.

Calling Functions in Your Scripts
Now that you know how the function itself works, you need to learn how to
call a function in your script. A call to a function in JavaScript is simply the
function name along with the set of parentheses (with or without arguments
between the opening and closing parentheses), ending with a semicolon, like
a normal JavaScript statement:

functionname();

You can call functions anywhere in your script code. You can even call a
function inside another function. You have actually been calling functions
since Chapter 1, since every time you used document.write(), you were
calling a function.

A good rule to follow is to have the function definition come before the
function call in the script. The easiest way to be sure that your function
definition comes before your function call is to place all of your function
definitions as close to the beginning of the script as possible (usually right
after your variable declarations). For example:

You will notice the window.alert() method is used, which is yet another
function. This method sends a pop-up alert to the viewer with the string sent
to it as an argument. The user must click the OK button to close the alert box.
This can be used for quick examples or to test code.

Defining a function before calling it is a suggestion for good coding
practice, not a strict rule. A function can be called anywhere in JavaScript,
due to function declaration hoisting. The JavaScript interpreter will first run
through all of the JavaScript code looking for any function declarations. Any
function declarations it finds are moved (hoisted) to the top of the code order.
The code is then executed in the new order, which allows all of the hoisted
functions to be called anywhere within the source code. For example, the
following code will work due to function declaration hoisting:

CAUTION

Function declaration hoisting only works when functions are defined
using a function declaration. For more information on this, see the
“Other Ways to Define Functions” section later in this chapter.

Script Tags: Head Section or Body Section
When adding scripts directly to a Web page rather than using an external file,
making sure that variable and function declarations are in the head section
often helps to ensure they are available when the script calls them in the body
section. However, since JavaScript often uses information from the document
that may not have loaded yet, this could become problematic. On the other
hand, having a lot of JavaScript code in the body section can also be
troublesome when you need to edit your HTML code (and if the JavaScript
code is in the body section, it needs to be after the element[s] that have the
information JavaScript needs to use to ensure the necessary information is
loaded).

A practice often used in modern JavaScript is to place the JavaScript code
in an external file (keeping the script code separate from the HTML code),

and then placing the script tags right before the closing </body> tag. The
reason for this placement is that it allows the page to load and display before
trying to load a JavaScript file. This makes the page appear to load faster, and
permits the JavaScript code to make use of the HTML tags and CSS
information provided by the document as soon as it executes, rather than
causing an error or needing to wait for the page to load first.

As an example, you will create a script that sends an alert message to the
viewer as soon as the page is loaded in the browser. To have a message pop
up in a small message box, you use a JavaScript method called
window.alert().

First, you’ll learn how to create a JavaScript alert, and then you’ll see how
to build a function that uses that method and call the function in a script.

Creating a JavaScript Alert
Rather than writing something to the screen with the document.write()
method, you can create a JavaScript alert that pops up in a message box by
using the window.alert() method. Like the document.write() method, the
window.alert() method takes the text string for the alert as an argument, using
this format:

window.alert("alert_text");

The string of text will be displayed in the alert pop-up box.
For example, suppose that you want to display “This is an alert!” in the

pop-up box. You write the command in your external JavaScript file (we will
use the filename js_alert.js for this example) like this:

window.alert("This is an alert!");

Now you know how to make the alert pop up, but how can you get it to
appear once the page has loaded? You can do this by making sure the script is
called right before the </body> tag in the HTML code:

Save the HTML file as js_alert.html and view it in your Web browser. As
you can see, this would certainly be an easy way to show an alert when the
page opens. However, because you are learning about functions, you will
take another approach.

Using a Function for a JavaScript Alert
The following code uses a function in your external JavaScript file to pop up
an alert box. In your js_alert.js file, change the code to the following:

NOTE

You can also have the function definition be located in the external
JavaScript file and call the function from the HTML file if you prefer.

This example creates a function named show_message() to do the job of
showing the alert. The alert will be shown only if you call the
show_message() function somewhere in the code. In this case, the function is
called right after its definition. The result is a small alert box with the
message “This is an alert!”

NOTE

When an alert box appears, you may see the page pause until you
click the OK button, or it may continue to load while waiting for you
to click OK. This depends on your browser.

Functions and Code Order
Even though the function in the previous example is defined first, it doesn’t
mean it will be executed first. A function is not executed until it is called; in
other words, JavaScript will not use the function until it gets to the function
call in the script.

Any commands that come before the function call (and that are not part of
the function definition) will be executed before the function. For instance, we
could change the code in the JavaScript file as follows:

This example defines the same function, show_message(), on the first line.
The function is followed by two lone window.alert commands, and then the
line that calls the function. Save the js_alert.js file with this new code and
then reload the js_alert.html file in your Web browser. You should see an
interesting result!

The two lone alert commands are the first executable statements
JavaScript sees, and they come first. The call to our function is seen last, so
the function is executed last. The result is three alerts, in this order:

• The user gets an alert, saying “I am first, ha!” and needs to click the OK
button to get rid of it.

• Then the alert that displays “I am second, ha ha!” appears, and the viewer
needs to click OK again.

• Finally, the function is executed, and the viewer sees the alert “This is an
alert!” and needs to click OK a third time to end the alert frenzy.

Although this example goes overboard with its alerts, it helps you

understand how a function call works.
One more thing to emphasize is that the order in which functions are

defined makes no difference, but the order in which they are called does.
Consider the following code:

Here, the functions are defined with show_message_1 first and
show_message_2 second, but show_message_2 is called first. Since the
calling order determines the execution order, the first message to display will
be “This is alert #2!” and the second will be “This is alert #1!”

As you gain more experience coding, choosing whether to place script tags
in the head or body section will become easier. When scripts use information
from the body of the HTML document, the script tags typically either are
placed in the head section with a function set up to initialize variables and
other functions when the page has loaded (this uses event handling, which
will be discussed in Chapter 8) or are placed in the body section just before
the ending </body> tag. I will use the latter method in this book.

Calling a Function from Another Function
Calling a function within another function can be a useful way to organize the
sequence in which your events will occur. Usually, the function is placed
inside another function that has a larger task to finish.

When you place a function call within a function, you should define the
function that will be called before you define the function that calls it, per the
earlier suggestion that a function should be defined before it is called.

Here is an example of two functions, where the second function calls the

first one:

Notice that the update_alert() function is where all the real action happens.
Everything else is a function call. The call_alert() function does nothing more
than call the update_alert() function so that it is executed. Finally, you see the
command that starts the entire sequence, which is the call to the call_alert()
function. Since this is the first JavaScript statement outside a function, it is
executed first. When it is executed, it just calls the update_alert() function,
which does the work of displaying the alert.

NOTE

Most browsers would execute the preceding example without a
problem even if you defined the update_alert() function after you
called it, due to function declaration hoisting.

Now suppose that you want to create three functions to perform three
tasks. To make sure that they occur in the correct sequence, you can call them
in order from within another function. Here is an example of this technique
with three functions that call alerts for various purposes:

The code begins by defining the three functions to show each alert. Then it
defines the get_messages() function, which just calls the previous three
functions. Of course, the get_messages() function must be called to actually
put this into action. This call happens as the first statement outside of a
function.

Of course, creating a script that pops up message after message is not
something you typically want to do. Although the example demonstrates the
correct use of function calls, a script that does this would likely annoy your
viewers! You’ll see examples of practical uses of functions as you progress
through this book.

Calling Functions with Arguments
The previous example used three different functions to show three alerts.
Although it works, it would be nice if you did not need to write a new
function for each alert. You can avoid doing this by using arguments. You
can create a function to be used multiple times to do the same thing, but with
the new information from the arguments each time.

As mentioned earlier in the chapter, variables are commonly used as
arguments. However, you can also use a value as an argument. You’ll learn
about the different types of variable arguments first, and then take a look at
value arguments.

The main rule is that if you have more than one argument, you need to
separate each argument with a comma, so that the browser knows what to do.

Also, arguments are read in order, so if you send one argument to a function
that can take two arguments, it will always be used as the first argument.

NOTE

If a function takes two arguments and you only want to send the
second one, you can use null for the first value, provided the function
is able to handle a null value for that argument properly. For this
reason, you should be careful when doing this to ensure things don’t
break if the function cannot handle a null value for that argument.

If you want to send the values of certain variables to the function, you
must first declare the variables and then be sure that they have the values you
need before you send them. Here, the scope of a variable becomes important.
The scope of a variable determines where it is and is not defined. JavaScript
has both global and local variables.

Using Global Variables
Global variables are the variables that you learned about in Chapter 3.
Because they are defined outside any functions, they can be changed
anywhere in the script—inside or outside of functions. A global variable is
declared anywhere outside of a function, as in the following code:

The variables in this example can be changed anywhere in the script. This
means that they can even be accidentally overwritten or changed by a
function.

To understand how global variables can be affected by a function,
consider an example that shows two alerts. You want one alert to tell you
how much money you need to get a certain car, and you want the other one to
tell you how much money you currently have and what type of car you now
own. What would happen if you used the following code?

It may look as if you created new variables inside the function, even
though they had the same name. However, the script would output the
following text in the two alerts:

You need $3500 to get a Ferrari

You make $3500 and have a Ferrari

Obviously, this isn’t right.
This example demonstrates why you need to use the var keyword when

declaring variables. Without the var keyword, you are not creating new
variables inside the function (which would make them local). Instead, you are
changing the value of your global variables—you are issuing a reassignment
command rather than a new variable command. If the variable is not already
defined, then declaring it without the var keyword creates a global variable
with that name—which can also cause problems. To clear this up, you need
to either change one set of variable names or, better yet, use local variables
instead.

Using Local Variables
A local variable can be used only within the function in which it is declared.
It does not exist outside that function, unless you pass it along to another
function by using an argument.

The key to creating a local variable in a function is to be sure that you
declare it using the var keyword. Otherwise, any global variables by that
name could be changed, as you saw in the previous example. To declare a
local variable, you must place it inside a function and use the var keyword, as
shown in this code:

The mycar and paycheck variables are now local variables, which can only be
seen and changed by the new_car() function.

Therefore, to correct the script in the previous section, you just need to
add the var keyword to declare the local variables inside the function, like
this:

Now the alerts should appear as you intended:

You need $3500 to get a Ferrari

You make $1200 and have a Honda

As you can see, the scope of a variable may be important when you send
certain variables as arguments to a function.

Using Variables as Function Arguments
The following example uses variable arguments. It sends a global variable
along to the function.

The script begins with the check_alert() function, which takes the
argument pcheck. The function is then used to display an alert that uses the

value of the argument sent to it (pcheck). After the function, in the outside
script, the global variable paycheck is assigned a value of 1200. Then the
code calls the check_alert() function and sends it the value of the paycheck
variable.

When this code calls the check_alert() function, it sends that function the
value of the paycheck variable. This is pulled into the function using the
argument name within the parentheses: pcheck.

It is important to note that the pcheck variable becomes a local variable
inside the check_alert() function. Since it is an argument, the var keyword is
not needed within the parentheses to make it a local variable. Since the code
sends a value of 1200, pcheck will be 1200 when beginning the function.
Also, changing the value of pcheck will not change the value of paycheck
since pcheck is a local variable.

Using Value Arguments
You can also send a value as an argument directly. Instead of needing to
declare a global variable in order to send an argument, you can just send a
value that will be turned into a local variable inside the function. This allows
you to send a value on the fly and eliminates the need to have a global
variable handy.

The important thing to remember is that if you send a string value, you
need to enclose it in quotes. The following function call sends a string value
of “something” to a function named text_alert():

text_alert("something");

For example, the last example in the previous section can be modified to add
more information while using one less line by using value arguments:

In this example, the function call sends two arguments to the function. The
first one is a numeric value and does not need quotes. The second value is a
string and needs to be enclosed in quotes. These values are then sent to the

function, where they are read in as the local variables pcheck and car,
respectively. They can now be used in the function to display this sentence in
an alert:

You make $1200 and have a Corvette

Arguments can also be sent using expressions, such as the following:

check_alert(500+700, "Cor" + "vette");

JavaScript will evaluate each expression and send the results as arguments to
the function. Thus, the preceding code would have the same end result
(adding 500 and 700 gives 1200, and concatenating “Cor” and “vette” gives
“Corvette”):

You make $1200 and have a Corvette

Arguments Are Optional
Another thing that should be mentioned is that sending arguments to a
function is optional. The function will do its best to do its work without the
argument values that are not sent. You could call the function check_alert()
without any arguments:

Your result would be something like the following text:

You make $undefined and have a undefined

Thus, it is a good idea to set up some code to handle a situation where an
argument is not sent. This can be done using conditionals. Here is one way to
check if the arguments were sent to check_alert():

This essentially tells JavaScript to see if the arguments exist before writing
the statement to the page. If they do exist, the statement is written on the page
with the argument values. If they do not exist, then the viewer gets an alert
that says “My arguments are missing!” The logical operator && will be
discussed in more detail in Chapter 5, and the if/else statement will be
discussed in more detail in Chapter 6.

Calling Functions with Return Statements
You can assign the result of a function as the value of a variable. In this way,
the variable gets the value returned from the function and can be used later in
the script. This is the format for declaring a variable that has the value
returned by a function:

var variablename = functionname();

Consider this example, which has a function that returns the value of two
text strings added together:

As you can see, the function returns the value of the added text variable to
the script. By assigning the result of the get_added_text() function to the
alerttext variable, you can use the added text later in the script. The variable
is used to send an alert to the user with the result of the added text. The alert

message reads

This is fun!

Now, isn’t this fun? You’ll see some more practical applications of return
statements as you progress through this book.

One final thing to remember is that if you assign the result of a function
that does not return a value to a variable, the variable will have a value of
undefined. For example, look at the following code:

Given this, be careful when assigning the result of a function to a variable to
ensure that a value is returned from that function. Otherwise, unexpected
results like this could happen!

Other Ways to Define Functions
There are several ways to define functions that you may come across while
looking at scripts or may find useful in coding new scripts: the function
declaration (already discussed), the function expression, the function
constructor, and arrow functions.

The Function Declaration
This is the method you have been using up to this point and one that will be
used often in this book. As you will recall, you simply declare the function as
follows:

You can also add arguments and/or return statements as mentioned earlier in
this chapter.

The Function Expression
The function expression is very similar to a function declaration, and uses
this format:

Notice that there is a semicolon (;) after the closing curly bracket. Since the
function is being assigned to a variable, the semicolon is required in order to
complete the variable assignment statement. Note that the function itself is
assigned to the variable in this case, and not the result of the function (as you
have done previously). Also, the function is not being executed here, just
assigned.

The main differences between a function declaration and a function
expression are as follows:

• A function expression assigns the function to a variable and requires a
semicolon to complete the statement.

• Since it has no name assigned after the function keyword, it is considered
an anonymous function. The variable name can be used to call the
function.

• A function expression does not make use of function declaration hoisting,
so it cannot be called before it is defined in the code.

As an example of the final point, take a look at the following code. It will
cause an error:

Notice that the function is called before it is defined. Since the function is

defined as a variable assignment, it cannot be used until after the assignment
is complete (it cannot make use of function declaration hoisting). Figure 4-1
shows the error that results from trying to run this in Mozilla Firefox.

Figure 4-1 The function expression cannot make use of declaration
hoisting, so calling it before it is defined caused an error.

In order to make this work, the function call must be moved to a point
after the function is defined:

Now that the function call is after the function definition, the code will work
as expected. This is an important difference to remember when using
function expressions, as they cannot execute until they are defined. Figure 4-
2 shows the alert that is displayed now that the function is called after being
defined.

Figure 4-2 The alert now displays as expected.

Anonymous functions are quite useful when dealing with JavaScript
events. For example, to react to a user clicking the mouse while on a Web
page, you could write a simple function for a click event on the document and
then call it, as in the following code:

This declares the function, then calls it afterward (without parentheses) to
handle the click event.

However, you could combine these two steps into one using an
anonymous function, as follows:

Since the reaction to this event will only be in one place in the JavaScript
code, the anonymous function is a handy way to handle the event without the
need to declare the function elsewhere and then call it. This technique and the
type of code used for event handling (such as in the previous code listings)
will be discussed in more detail in Chapter 10.

The Function Constructor
The function constructor creates a function object in the same way you would
create a new instance of an object (this will be discussed in Chapter 9):

var functionname = new Function (arguments, code for function);

This will work like other functions, but the main drawback to this method is
that it has poorer performance than the other methods (it is evaluated every
time it is used rather than only being parsed once). It is recommended that
you use one of the other two methods for defining functions.

Arrow Functions
Arrow functions were introduced in ES6 and provide a way to shorten the
syntax of the function expression as well as provide for some simpler syntax
to return object. You will see the basics here, and we’ll cover these functions
in more detail later in the book.

The basic syntax for an arrow function looks like this:

This coincides with the function expression. For example, the following
code does the same thing with the function expression:

As you can see, the arrow function (named for the arrow after the
arguments) shortens the amount of typing you need to do. You will see a

number of arrow functions in node modules or code on the Web, so it is good
to be familiar with them. We will look at them in more detail as you progress
through this book.

Ask the Expert
Q: What if I put a function into my script but decide not to call it

in the script? Will it matter?

A: The function won’t be executed unless it is called. However,
having unused functions makes the code more difficult to maintain
and will increase the download time for viewers (which could
make a difference on a slow connection such as dial-up or in
situations where optimization of the download time of the code is
desired). Also, if the function contains syntax errors, it could send
the viewer JavaScript errors and keep other things on the Web page
from working correctly.

Q: What happens if I decide to remove a function from my script
later?

A: This can cause trouble if you do not also remove any calls you
made to the function. The script may cause a JavaScript error; or it
may run but give you unexpected results. Also, before you remove
a function, make sure that it does not perform a necessary task
somewhere in the script.

Q: So, what happens if I call a function that doesn’t exist?

A: Either you will get a JavaScript error, or the browser will do
nothing when the function is called, since it cannot find the
function.

Q: What is the best way to determine when to use a function and
when to just code what I want right into the script?

A: For the most part, you want to use a function if the code within the
function will be reusable in some way. For instance, a function that
performs a specific calculation might be useful in more than one

spot in the script. Also, if you want to avoid using global variables,
functions provide you a way to keep things out of the global
context. You will see more about this as you progress through this
book.

Try This 4-1 Create an HTML Page with Functions

pr4_1.html

prjs4_1.js

In this project, you create an HTML page with two JavaScript functions. One
function uses arguments sent to it to pop up an alert box with a message. The
other function uses a return statement to send a value back to the script. That
returned value then is used in an alert message to the viewer.

Step by Step
1. Create an HTML page, leaving the space between the <body> and

</body> tags.

2. Create an external JavaScript file and save it as prjs4_1.js.

3. Add the script tags necessary between the <body> and </body> tags of
the HTML document to include the external JavaScript file. Save the
HTML file as pr4_1.html.

4. Open the prjs4_1.js external JavaScript file and do steps 5–10.

5. Create a function named car_cost() that takes two arguments, mycar and
paycheck. Create a window.alert() command that will display an alert
with the following message:
You have a <mycar variable here> and make $<paycheck

variable here>

6. Create a function named get_added_text() that returns the value of two
strings added together inside the function. The two strings to add are
these two separate strings:
This project<space here>

is almost fun!

7. In the main script (after the function definitions), call the car_cost()
function, and send it the values of “Mustang” and 1500 as arguments.

8. In the main script (after the function definitions), assign the result of the
get_added_text() function to a variable named alerttext. Create an alert
that pops up with the value of that variable.

9. When you have finished, your external JavaScript file should look like
this:

10. Save the external JavaScript file.

11. Open the pr4_1.html file and view it in your browser to see the result.

12. When you open the Web page, you should see two alert messages:
You have a Mustang and make $1500

This project is almost fun!

Try This Summary
In this project, you created a script that uses two JavaScript functions. The
first function uses arguments and creates an alert box with a message based
on the arguments that are sent to the function. The second function returns a
value to the script after adding two strings together. The result of the script in
the browser is two alert messages based on the information sent to the first
function and the information returned to the script from the second function.

Scope/Context Basics
In JavaScript, there are some key things to remember when it comes to scope
(the context in which a variable or function is usable and valid). For instance,
you were able to create local variables earlier in this chapter by declaring
them with the var keyword within a function. These local variables were only
valid within the function in which they were defined, which kept them from
being changed by something in the main script (the global context). The two
main execution contexts in JavaScript are the global context and the function
context. In addition, the new keyword let allows for block context.

Global Context
The global context in JavaScript includes any code that is not within a
function. Consider this code:

As you can see in the example, the global variable myname is usable
anywhere in the code after it is defined. The say_name() function is defined
in the global scope, so it can be called from anywhere in the code. The
mydog variable, however, is only available within the say_name() function
and cannot be used anywhere outside of this context. The attempt to use it
within an alert at the end of the script will cause a JavaScript error.

In general, the more complex your script becomes, the better it is to move
things out of the global context, since global variables can be accidentally
overwritten from any other context.

Function Context
In JavaScript, a function creates a new context. As you have seen, any
variables declared with the var keyword inside a function are not available
outside the function. A new thing for you to learn about functions is that they
can have other functions nested inside them. Consider the following code:

This creates the say_food() function within the say_name() function. The
say_food() function can make use of any variables defined either in the
say_name() or global contexts. As you can see, this creates a scope chain
based on the nested functions. The innermost function in the chain will have
variables that are most well-protected from being altered, while the global
context will have the least protected variables (they are public and can be
used even in the innermost function).

Each context from the example and the variables/functions the context can
use are shown here:

Notice that myname can be used in all three contexts, mydog can be used in
two (say_name() and say_food() contexts), and myfood can be used only in
one (the say_food() context).

It is important to remember how this works, as JavaScript only uses
functions to create a context if you use the var keyword. Other block-level
structures, such as conditional statements and loops, are not used for this
purpose unless you use the let keyword, which is described in the next
section.

NOTE

A fourth type of execution context can be created by calling the eval()
method; however, the eval() method can cause numerous problems
(for example, speed and security issues) and should almost never be
used.

Block Context
Block context is created for variables if they are defined using the let
keyword in place of var. Functions provide a block context between curly
brackets, {}. Other block contexts are created by conditional statements and
loops, which are described further in Chapter 7.

The let keyword will work the same way as var if used in the function
context, as you have seen already. Its advantages come with being able to
create a block scope for a variable. For example, a simple conditional
statement is shown in the following code (this concept is discussed further in
Chapter 7):

First, a global context variable (myname) is created with the let keyword. The
“if” statement creates a block context between the curly brackets. The let
keyword can take advantage of this context to create its own myname
variable with its own value within this context. As a result, the block context
myname has a value of “Jane”, which is sent in an alert within the block
context. Once this block context has ended, another alert is sent. The value of
myname in the context is “John”, so that is the value sent in the final alert.

Another advantage of the let keyword is that if you declare a variable with
the same name twice in the same scope, the JavaScript interpreter will give
you an error. This also helps to keep your code clean and free of any potential
bugs!

Since the scope of a variable is much clearer using the let keyword, it is
recommended to use it in place of var going forward. This way, any block
such as a function, conditional, or loop will be the proper context for
variables defined within the blocks, so you won’t run into potentially
defining global variables in the block types that are not functions.

The const Keyword
The const keyword can be used for values that will remain constant. This
helps to keep other code from changing its value. For example, if you declare
a const value and try to change it, the interpreter will throw an error, as
shown next:

Unfortunately, I was unable to grant myself a bunch of extra money here.
Since the value was defined with the const keyword, it must remain constant.

The const keyword, like let, uses block scope. For this reason, it is a good
idea to use let and const rather than var when defining values, since the scope

of these values will be clearer. If you mix in the var keyword, you must
remember that it only has function scope, so it is best to simply use let and
const to ensure you are always clearly referring to the block scope for these
values.

Try This 4-2 Write Your Own Functions

pr4_2.html

prjs4_2.js

In this project, you again create an HTML page, but for this project, you will
use a function to keep as much information out of the global context as
possible (you will have a single global function that is called in the global
context).

Step by Step
1. Create an HTML file, leaving the content of the body section empty, and

save it as pr4_2.html.

2. Create an external JavaScript file and save it as prjs4_2.js. Use this file
for steps 3–6.

3. Create a function named display_HTML().

4. Within the function, create a variable using the let keyword named
myheading, and use it to hold this code:
<h1>Hello, World!</h1>

5. Create a variable named mytext using the let keyword, and use it to hold
the following code:
<p>While it is nice to know you world, there are only some things that I
am comfortable sharing in a global context. You can’t alter the variable
that holds this text outside of the block that contains it! Ha!</p>

6. Create a document.write() statement that will write both of the variable
values on the page and end the function.

7. Insert code that will call the function.

8. When you are done, the JavaScript file should look like this:

9. In the body section of the HTML page, place the script tags in the
document (pointing to the prjs4_2.js file) so that the script displays the
HTML code on the page.

10. When you have finished, save the HTML and JavaScript files and view
the HTML page in your browser to see how it works.

The results should be a heading saying “Hello, World!”, followed by the
long paragraph where the script explains its desire to keep some of its
information from being altered by outside influences.

Try This Summary
In this project, you used your knowledge of functions and context to create a
script. The result of the script is that the HTML page displays the information
while protecting the variable values from being altered by anything that could
potentially change in the global context.

 Chapter 4 Self Test

1. In general, a function is a little __________ within a larger __________
that is used to perform a single __________ or a series of __________.

2. What are two reasons why a function can be useful?

A. They make simple scripts more complex, and they make it harder
for noncoders to read the script.

B. They provide a way to organize the various parts of the script into

the different tasks that must be accomplished, and they can be
reused.

C. They make simple scripts more complex, and they can be reused.
D. They provide a way to organize the various parts of the script into

the different tasks that must be accomplished, and they make it
harder for noncoders to read the script.

3. On the first line of a function, you __________ it as a function,
_________ it, and indicate whether it accepts any __________.

4. To declare a function, you use the keyword __________.

A. var
B. switch
C. function
D. for

5. What surrounds the code inside a function?

A. {} (curly brackets)
B. :: (colons)
C. [] (square brackets)
D. Nothing

6. Function names are case sensitive.

A. True
B. False

7. JavaScript keywords can be used as function names.

A. True
B. False

8. Which of the following would be a valid function name in JavaScript?

A. function my function()
B. function var()
C. function get_text()
D. function 24hours()

9. __________ are used to allow a function to import one or more values
from somewhere outside the function.

10. Arguments are set on the first line of a function, inside a set of
__________.

A. {} (curly brackets)
B. () (parentheses)
C. [] (square brackets)
D. nothing

11. Multiple arguments are separated by what symbol?

A. Period
B. Colon
C. Semicolon
D. Comma

12. Which of the following is a valid use of the window.alert() method?

A. win.alt("This is text");
B. window.alert("This is text);
C. window.alert('This is text");
D. window.alert("This is text");

13. Which of the following correctly calls a function named some_alert()
and sends it two string values as arguments?

A. some_alert();
B. some_alert("some", "words");
C. some_alert("some", "words);
D. SOME_alert("some", "words");

14. Which of the following correctly assigns the result of a function named
get_something() to a variable named shopping?

A. var shopping = get_something();
B. var shopping = "get_something";
C. var Shopping = get_Something;

D. shopping = getsomething;

15. A __________ variable can be used anywhere in JavaScript.

16. The __________ and __________ keywords create values in the current
block context.

O

Chapter 5
JavaScript Operators

Key Skills & Concepts
• Understanding the Operator Types

• Understanding Arithmetic (Mathematical) Operators

• Understanding Assignment Operators

• Understanding Comparison Operators

• Understanding Logical Operators

• Understanding Order of Operations

perators do much of the work in scripts. In the previous chapters, you
have seen examples of the use of the assignment (=) and addition (+)
operators. JavaScript offers many other types of operators to perform

various operations.
This chapter begins by giving you an introduction to the different types of

JavaScript operators. Then, you will learn about each operator and its use in
scripts. Finally, you will learn about the order of precedence for operators,
which determines which operations are performed before others.

Understanding the Operator Types
An operator is a symbol or keyword in JavaScript that performs some sort of
calculation, comparison, or assignment on one or more values. In some cases,

an operator provides a shortcut to shorten the code so that you have less to
type.

Common calculations include finding the sum of two numbers, combining
two strings, or dividing two numbers. Some common comparisons might be
to find out if two values are equal or to see if one value is greater than the
other. A shortcut assignment operator might be used to assign a new value to
a variable so that the variable name does not need to be typed twice.

JavaScript uses several different types of operators:

• Arithmetic These operators are most often used to perform mathematical
calculations on two values. The arithmetic operators will probably be the
most familiar to you. They use symbols such as +, –, and *.

• Assignment These operators are used to assign new values to variables.
As you learned in Chapter 3, one of the assignment operators is the
symbol =.

• Comparison These operators are used to compare two values, two
variables, or perhaps two longer statements. They use symbols such as >
(for “is greater than”) and < (for “is less than”).

• Logical These operators are used to compare two conditional statements
(or to operate on one statement) to determine if the result is true and to
proceed accordingly. They use symbols such as && (returns true if the
statements on both sides of the operator are true) and || (returns true if a
statement on either side of the operator is true).

• Bitwise These are logical operators that work at the bit level (ones and
zeros). They use symbols like << (for left-shifting bits) and >> (for right-
shifting bits).

• Special These are operators that perform other special functions of their
own.

In this chapter, you will learn about each of these types of operators. This
will be a general overview of the function of each type of operator, so that
you will better know the purpose of all the operator types when you put them
to use later. To begin, you’ll look at the arithmetic operators in JavaScript.

Understanding Arithmetic Operators
For a mathematical calculation, you use an arithmetic operator. The values
that you use can be any sort of values you like. For instance, you could use
two variables, two numbers, or a variable and a number. A few of these
operators are able to perform a task on a single value.

As a quick example, you will remember that you used the addition
operator (+) to add two strings together in previous chapters. Here is an
example of two string values being combined with the addition operator:

You can also use the addition operator when one of the values is a variable,
as in this example:

The addition operator also works when both values are variables, as in the
next example:

These examples illustrate how you can use many of the arithmetic
operators with a number of values and/or variables. This allows you some
flexibility in the way you code your scripts.

The operators that work on single values are the increment, decrement,
unary plus, and unary negation operators. The increment and decrement
operators are actually shortcuts to adding or subtracting 1, so learning how to
use them could save you some coding time.

The arithmetic operators and their functions are summarized in Table 5-1.
The following sections discuss each operator in more detail.

Table 5-1 The Arithmetic Operators

The Addition Operator (+)
As you have seen, the addition operator can be used to combine two strings.
It is also used to add numbers in mathematical calculations.

Variables for Addition Results
One use of the addition operator is to add two numbers to get the
mathematical result. When adding numerical values, you often assign the
result to a variable and use the value of the variable later. For example, to
calculate the value of 4 plus 7 and show the result, you could code it like this:

The result is an alert that says 11.
To make the example a little more complex, you could change one of the

numbers to a variable:

The result is the same as the previous example’s code: an alert that says 11.

Taking the example one step further, you could make both of the numbers
variables:

This example allows for the most flexibility, since you can change the
values of the two number variables and get a new result without needing to
dig deeper into the script to make the change.

Operands
Each value that is used with an operator is called an operand. Most operators
in JavaScript work with two operands at a time. For instance, the following
code contains two operands: 7 and 4.

let thesum = 7 + 4;

The values on either side of the operator are operands. This is also true when
using other data types or when using variables:

When using operators that take two operands in a statement multiple
times, JavaScript will use the order of operations (this will be explained in
the “Understanding Order of Operations” section in this chapter) and perform
the tasks with one operator and two operands at a time. In the case of the
addition operator, if no other operators or parentheses are present, then the
order of operations will proceed from left to right. Consider the following
code:

let thesum = 2 + 3 + 1;

First, the 2 + 3 portion of the expression will be calculated to get a result of 5.
This result is then used as the first operand to complete the calculation, 5 + 1,

which will give the final result of 6.
Some operators (called unary operators) use only one operand. The

operator is placed directly before or after the lone operand. For example, take
a look at this code:

In this case, the increment operator is used, and the only operand is the
mymoney variable. You will see more about the increment operator and the
remaining unary operators as you move through this chapter.

Type Coercions in Calculations
It is important to note that JavaScript performs type coercion (attempting to
change the data type of a value if it is deemed necessary) when working with
the arithmetic operators. When you use the addition and other arithmetic
operators, you need to be aware that JavaScript automatically coerces
different values, like an integer (a nondecimal numeric value) and a float (a
decimal numeric value) to the appropriate type. For instance, you might have
the following code:

When the script is run, you will see an alert with the result.

JavaScript added the integer and the float together and gave back a float:
11.73. JavaScript does this automatically, so you need to make sure that the

values you use are going to give you the results you expect.
For example, if you add a number and a string, the result will come out as

though you had combined two strings. Look at this example:

This looks as if it would be adding the numbers 4 and 7, since they both
appear to be numbers. The trouble is that the 7 is a string in this case, not a
number, because it has quotes around it. This causes the 4 to be converted to
a string, and then the two strings are added together (concatenated). The
result that appears in the alert box may surprise you.

Rather than the expected answer of 11, you get 47. When the two values
are added as strings, they are run together rather than added mathematically.
With strings, “4”+“7”=47.

The other arithmetic operators also do conversions, much like the addition
operator, so be aware of this possibility if you get unexpected results in a
script.

Special Rules
The addition operator has some special rules it uses when trying to perform a
calculation or concatenation. Here are some of the situations most commonly
encountered:

• If one operand has the special value of NaN (Not a Number), and the other
operand is a number, then the result will be NaN.

• If one operand is a string, the other operand is coerced into a string and the
strings are concatenated.

• If both operands are strings, the strings are simply concatenated.

NOTE

If you have two numbers and then a string, the numbers will be added
first and then converted. For example, 35 + 5 + “th Avenue” will first
add 35+5 as numbers (since operators are evaluated from left to
right), and then the result (40) will be concatenated as a string with
“nth Avenue,” resulting in “40th Avenue.”

As an example of these rules in action, if NaN is added to a number, the
result is NaN. If it is added to a string, the string value “NaN” will be
concatenated to the other string value:

• 4 + NaN will be NaN

• “Hi” + NaN will be “HiNaN”

As you proceed through this chapter, you will see that the other operators
also have special rules that may be helpful to understand if you should come
across unexpected results in your scripts.

The Subtraction Operator (–)
The subtraction operator is used to subtract the value on its right side from
the value on its left side, as in mathematics. Here is an example:

This code simply subtracts 3 (the number on the right of the operator) from
10 (the number on the left of the operator). The result is 7.

Special Rules
As with the addition operator, there are some special rules:

• If one of the operands is NaN, the result will be NaN.

• If one of the operands is of a data type other than number (for example,
string, Boolean, and so on), then JavaScript attempts to coerce that value
into a number and perform the subtraction. If it cannot coerce the value,
the result will be NaN. For example, “7” – “3” will evaluate to 4, since
these string values will be coerced into the numbers 7 and 3, respectively.

The Multiplication Operator (*)
The multiplication operator is used to multiply two operands. The next
example shows this operator in action:

Special Rules

• If one of the operands is NaN, the result will be NaN.

• If one of the operands is of a data type other than number, it attempts to
coerce that value and perform the multiplication. If it cannot coerce the
value, the result will be NaN.

The Division Operator (/)
The division operator is used to divide the value on its left side by the value
on its right side. For example, the code 4 / 2 means 4 divided by 2 and gives
the result of 2. For a JavaScript example of this in action, take a look at this
code:

The result is 5, dividing 10 by 2.

Special Rules

• If one of the operands is NaN, the result will be NaN.

• If the number zero is divided by the number zero, the result will be NaN.

• If any other finite number is divided by the number zero, the result will be
the special value of Infinity.

• If one of the operands is of a data type other than number, it attempts to
coerce that value and perform the division. If it cannot coerce the value,
the result will be NaN.

Division by Zero
When you use the division operator, you need to be careful that you do not
end up dividing by zero in some way. If you do, the result is going to be
Infinity. The code that follows shows an example of this happening (although
it is unlikely to occur exactly in this way):

If you placed this code in a document, you might see an alert box like this:

To avoid dividing by zero, be careful about what numbers or variables you
place on the right side of the division operator.

The Modulus Operator (%)
The modulus operator is used to divide the number on its left side by the
number on its right side, and then give a result that is the integer remainder of
the division. Think back to when you learned long division and used
remainders as part of the answer rather than converting to decimals or
fractions. Dividing 11 by 2 gives 5 with a remainder of 1. The remainder of 1
is what the modulus operator gives you when you write 11 % 2.

The following is an example in JavaScript:

The result is an alert box that shows the value of the remainder, which is 1. If
the calculation had no remainder, the result would be 0.

This is the last of the arithmetic operators that work on two values at the
same time. The unary operators, which work on only one value at a time, are
next.

The Increment Operator (++)
The increment operator is unary and increases the value of its lone operand
by 1. The effect of using it depends on whether the operator is placed before
or after the operand.

The Increment Operator Before the Operand
When the increment operator is placed before the operand, it increases the
value of the operand by 1, and then the rest of the statement is executed. Here
is an example:

In this case, the variable num1 begins with a value of 2. However, when the
code assigns the value to the variable theresult, it increments the value of
num1 before the assignment takes place. The increment occurs first because
the increment operator is in front of the operand. So, the value of num1 is set
to 3 (2+1) and is then assigned to the variable theresult, which gets a value of
3.

The Increment Operator After the Operand
If you place the increment operator after the operand, it changes the value of
the operand after the assignment. Consider this example:

As in the previous example, num1 begins with the value of 2. On the next
line, the increment operator is used after the operand. This means that the
code assigns the current value of num1 to the variable theresult, and after that
is done, it increments the value of num1. So, only after this assignment is
complete do you have a new value for num1. The variable theresult is given a
value of 2, and then num1 is changed to 3. If you use num1 after this, it will
have a value of 3.

Another way to see how the increment operator works before and after the
operand is to run the following script in your browser. Notice what the values
are in the first alert and what they are in the second alert.

In the first alert box, you will see num1= 3 result= 3. Since the ++
operator is used before the operand here, the value of num1 is increased by 1
and then assigned to the result variable. In the second alert box, you will see
num1= 3 result= 2. This is because the ++ operator is used after the operand,
so the value of num1 is increased after it has been assigned to the result
variable. The result variable gets a value of 2, but num1 will be increased to
3.

Note also that you do not have to perform an assignment to use this
operator. You can simply type num1++; or ++num1; and the value of num1
will be changed accordingly for later use.

The Decrement Operator (– –)
The decrement operator works in the same way as the increment operator, but
it subtracts 1 from the operand rather than adding 1 to it. As with the
increment operator, its placement before or after the operand is important.

If you place the decrement operator before the operand, the operand is
decremented, and then the remainder of the statement is executed. Here is an
example:

Here, the variable num1 is given a value of 2. In the next line, the code
subtracts 1 from num1 and then assigns the result to the variable theresult.
Thus, the variable theresult ends up with a value of 1 (2–1).

When you place the operator after the operand, as in the next example, the
rest of the statement is executed and the operand is decremented afterward:

This time, the variable theresult is assigned a value of 2, and then num1 is
decremented to 1. If you use num1 after this line, it will have a value of 1.

The Unary Plus Operator (+)
The unary plus operator is used to try to coerce a value into a number. If it
cannot coerce the value, then the result will be NaN. This is a handy operator
to use when you run into the situation mentioned earlier in the chapter:

As you recall, this returned the string “47”. The unary + operator could be
used on the num2 variable to coerce the string “7” into its numeric value,
which would then allow mathematical addition to take place rather than string
concatenation.

Notice the parentheses around the +num portion of the statement. As in math,
you can use parentheses to set the order of operations (as you’ll learn later in
this chapter) or just to clarify the order visually. Here, the parentheses aren’t
necessary, but they help organize that code so that you can see that it is

adding num1 to the result of using the unary plus operator on num2. You
could have written this code as well:

let thesum = num1 + +num2;

This doesn’t look as nice, but it still works. The updated code will return a
result of 11 rather than “47”, since the string “7” was able to be coerced into
a numeric 7.

The Unary Negation Operator (–)
Unary negation is the use of the subtraction sign on only a single operand.
This operator creates a negative number or negates the current sign of the
number (positive or negative).

Here is an example of assigning a negative value to a number:

let negnum = -3;

This defines a variable with a value of negative 3. Basically, the operator tells
the browser that the 3 is “not positive,” because it negates the default sign of
positive by placing the negation operator ahead of the number.

You can also use the unary negation operator to help show the addition or
subtraction of a negative number, as in this example:

let theresult = 4 + (-3);

Notice the parentheses around the –3 portion of the statement. As mentioned
with the unary plus operator, this is optional and merely provides additional
clarity.

You may be thinking that an even easier way to write the same thing looks
like this:

let theresult = 4 - 3;

You’re right, this is the simplest way to write it; but it uses subtraction rather
than unary negation.

You can also use this operator on a variable value, which simply negates
the sign on the number represented by the variable:

let x = 4;

let y = 3;

let z = -y;

This assigns the variable z the unary negated value of y, which is –3.
Now that you’ve learned about the arithmetic operators, it’s time to turn to

the assignment operators.

The Exponentiation Operator
The exponentiation operator allows you to define an exponent for a number,
which means that the result will be the value of raising the first operand (on
the left side) to the power of the second operand (on the right side). For
example, to calculate two squared, or 22, you would use the following code:

var square = 2 ** 2;

In this case, the value of square will be 2 * 2, which is 4. If you want to get
the cube, you can do the following:

var cube = 2 ** 3;

This time, the value will be 2 * 2 * 2, which is 8. You can do this for any
power you need to get for a number.

Understanding Assignment Operators
Assignment operators assign a value to a variable. They do not compare two
items, nor do they perform logical tests.

When you learned about variables in Chapter 3, you saw how the basic
assignment operator, the single equal sign (=), is used to give an initial value
or a new value to a variable.

The other assignment operators also give new values to variables, but they
do so in slightly different ways because they perform a simple calculation as
well. Table 5-2 summarizes the assignment operators, which are discussed in
more detail in the following sections.

Table 5-2 The Assignment Operators

The Assignment Operator (=)
You have been using the direct assignment operator since Chapter 3. It
assigns the value on the right side of the operator to the variable on the left
side, as in this example:

let population = 4500;

This assigns the value of 4500 to the variable population.

The Add-and-Assign Operator (+=)
The += operator adds the value on the right side of the operator to the
variable on the left side and then assigns that new value to the variable. In
essence, it is a shortcut to writing the type of code shown here:

let mymoney = 1000;

mymoney = mymoney + 1;

Here, the variable mymoney is created and assigned a value of 1000. The
code then changes the value by assigning it a value of itself plus 1. The value
assigned to the mymoney variable is 1001.

Instead of writing the variable name an extra time, you can use the add-
and-assign operator to shorten the code. The following code gives the same
result as the previous example, but saves a little typing:

let mymoney = 1000;

mymoney += 1;

Using the add-and-assign operator, this code adds 1 (the value on the right) to
mymoney (the variable on the left), assigning the new value of 1001 to the
variable mymoney.

This operator can be used to add any value, not just 1. For example, you
could add 5 in the assignment, as in this example:

let mymoney = 1000;

mymoney += 5;

This time, mymoney ends up with a value of 1005.
You can even use a variable rather than a plain number value on the right

side, as in this example:

let mymoney = 1000;

let bonus = 300;

mymoney += bonus;

Here, bonus has a value of 300, which is added to the variable mymoney, and
then mymoney is assigned the result of 1300. In this way, the value of the
bonus variable can be changed to affect the result of the assignment.

This assignment operator, like the addition arithmetic operator, also allows
you to concatenate strings. Thus, you could add on to the end of a string
value using this operator:

let myname = "Bob";

myname += "by";

This adds the string “by” to the end of the string “Bob”, which yields the
string “Bobby”.

The Subtract-and-Assign Operator (–=)
The –= operator works like the += operator, except that it subtracts the value
on the right side of the operator from the variable on the left side. This value
is then assigned to the variable. Here is an example of this operator in action:

let mymoney = 1000;

let bills = 800;

mymoney -= bills;

This example subtracts the value of the bills variable (800) from the
mymoney variable and assigns the result to mymoney. In the end, mymoney
has a value of 200.

The Multiply-and-Assign Operator (*=)
The *= operator multiples the value on the right side of the operator by the
variable on the left side. The result is then assigned to the variable. The next
example shows this operator at work:

let mymoney = 1000;

let multby = 2;

mymoney *= multby;

Here, the variable mymoney is multiplied by the value of the multby variable,
which is 2. The result of 2000 is then assigned to the variable mymoney.

The Divide-and-Assign Operator (/=)
The /= operator divides the variable on the left side of the operator by the
value on the right side. The result is then assigned to the variable. Here is an
example:

let mymoney = 1000;

let cutpayby = 2;

mymoney /= cutpayby;

In this example, the variable mymoney is divided by the value of the variable
cutpayby, which is 2. The result of 500 is then assigned to the mymoney
variable.

The Modulus-and-Assign Operator (%=)
Like the other assignment operators that also perform math, the %= operator
does a calculation for the variable assignment. It divides the variable on the
left side of the operator by the value on the right side, takes the integer
remainder of the division, and assigns the result to the variable. Here is how
you might assign a value to the mymoney variable using the modulus-and-
assign operator:

let mymoney = 1000;

let cutpayby = 2;

mymoney %= cutpayby;

Here, the variable mymoney is divided by the value of the variable cutpayby,
which is 2. The result of that is 500 with no remainder, meaning that the end
result of the calculation is 0. Thus, 0 is the value that gets assigned to the
variable mymoney. (If they start cutting pay like this anyplace, it is probably
time to leave!)

The Exponent-and-Assign Operator (**=)
This operator raises the variable value to the power of the value on the right
side of the operator and assigns the new value to the variable. Here are some
examples:

let mymoney = 1000;

let exponent = 2;

mymoney **= exponent;

This time, mymoney starts out at 1000 and is raised to the power of 2. The
result will be 1000 * 1000, which is 1,000,000. Now the money is looking
exponentially better!

Try This 5-1 Adjust a Variable Value

pr5_1.html

prjs5_1.js

In this project, you create a page that uses some of the arithmetic and

assignment operators and writes the results on an HTML page.
There is more than one solution that can be used for many of these steps,

so feel free to use the method you prefer. You can also try to see which
method requires the least typing. Be sure to write the results of each change
to the page by using the document.write() command.

Step by Step
1. Create an HTML page and save it as pr5_1.html. Place script tags inside

the body section to point to a script named prjs5_1.js.

2. Create an external JavaScript file and save it as prjs5_1.js. Use this file
for steps 3–10.

3. Create a variable named paycheck and give it an initial value of 2000.

4. Use an operator to increase the value of paycheck to 4000.

5. Use an operator to decrease the value of paycheck to 3500.

6. Use an operator to decrease the value of paycheck to 0.

7. Use an operator to increase the value of paycheck to 500.

8. Finally, use an operator to decrease the value of paycheck to 420.

9. After you perform each action, write the value of the paycheck variable
on the page.

10. Save the HTML and JavaScript files and view the HTML file in your
browser to see the results.

11. A possible solution for the JavaScript file is shown in the following
code, but keep in mind there are several ways to achieve the same
results:

Try This Summary
In this project, you were able to use your knowledge of arithmetic and
assignment operators to display the results of several calculations on a Web
page. This project could have been completed in numerous ways, depending
on your preferences on the use of the various operators.

Understanding Comparison Operators
Comparison operators are often used with conditional statements and loops in
order to perform actions only when a certain condition is met. Since these
operators compare two values, they return a value of either true or false,
depending on the values on either side of the operator. In later chapters, you
will learn how to create a block of code to be performed only when the
comparison returns true.

Table 5-3 summarizes the comparison operators, which are discussed in
more detail in the following sections.

Table 5-3 The Comparison Operators

The Is-Equal-To Operator (==)
For the == operator to return true, the values or statements on each side must
be equal. If the values do not return as equal, the == operator returns false.
Note, however, that when using this operator, type coercion is still in place,
so a statement such as “4”==4 will return true because JavaScript will
convert the string “4” to a number for you. If you want this statement to
return false, you should use the strict is-equal-to operator (===), discussed
later in this section.

Special Rules
Since this operator performs type coercion, there are some special rules:

• If one operand is a number and the other is a string, it will try to convert
the string into a number before testing for equality.

• If an operand is a Boolean, then it will convert it into a numeric value
before testing for equality. In such cases, true is converted to 1 and false is
converted to 0.

• If one operand is null and the other is undefined, the comparison will
return true.

• If one or both of the operands is NaN, the comparison will return false.

The following table shows examples of statements that use the is-equal-to
operator, their return values, and the reason why they return true or false.

NOTE

You will notice the addition of parentheses around some of the
statements in the previous table, as well as in some of the tables that
come later. Here, they are used mainly for readability. You will learn
more about parentheses and the order of operations near the end of
this chapter.

As with the other operators, you can use variables with comparison
operators. If the values of the variables are equal, the comparison will return
true. Otherwise, it will return false. Suppose that you have declared the
following variables:

The following comparison would return true:

num2 == num3

The next comparison would return false:

num1 == num3

CAUTION

Remember that the is-equal-to operator (==) is for comparison. Be
careful not to accidentally use the assignment operator (=) in its place,
because that will perform an assignment instead of a comparison and
it will return the result of the assignment, so you may get some
unexpected results.

The Is-Not-Equal-To Operator (!=)
The != operator is the opposite of the == operator. Instead of returning true
when the values on each side of the operator are equal, the != operator returns
true when the values on each side of it are not equal. This operator returns a
false value if it finds that the values on both sides of the operator are equal.

As with the == operator, type coercion is in place for the != operator, and
there are some special rules:

• If one operand is a number and the other is a string, it will try to convert
the string into a number before testing.

• If an operand is a Boolean, then it will convert it into a numeric value
before testing (true is converted to 1 and false is converted to 0).

• If one operand is null and the other is undefined, the comparison will
return false.

• If one or both of the operands is NaN, the comparison will return true.

The following table shows some examples of statements that use the !=
operator, their return values, and the reason they return true or false.

The Strict Is-Equal-To Operator (===)
For the === operator to return true, the operands on each side must be equal
and must be of the same type (no type coercion is performed). This means
that if you use a statement such as 3 === “3”, the operator will return false
because the value on the left is a number and the value on the right is a string.

The following table shows examples of statements that use the ===
operator.

The Strict Is-Not-Equal-To Operator (!==)
For the !== operator to return true, the values or statements on each side must
not be equal or must not be of the same type (no type coercion is used). This
means that if you use a statement such as 3 !== “3”, the operator will return
true because the value on the left is a number and the value on the right is a
string.

The following table shows some examples of statements that use the !==
operator.

The Is-Greater-Than Operator (>)
When the is-greater-than operator is used, the comparison returns true if the
value on the left side of the operator is greater than the value on the right
side. Type coercion is used, so there are some special rules:

• If both operands are strings, then the strings are compared by checking the
character code of each character in both of the strings.

• If one operand is a number, then it will attempt to coerce the other operand
into a number and perform the comparison.

• If an operand is a Boolean, then it is converted to a number (1 for true and
0 for false).

NOTE

The remaining comparison operators (<, >=, <=) also use these same
rules.

In the case of strings, the character code of each character is used. The
result is a situation where a lowercase letter is greater than an uppercase
letter, and an uppercase letter is greater than a number. To look up the
character code, you can use the tool at
www.scripttheweb.com/js/ref/javascript-character-codes.html.

When comparing strings, JavaScript first checks the first letter of the
string for a difference. If there is no difference, it moves on to the next
character, then the next one, and so on, until it finds a difference or reaches
the end of the string.

The following table shows some examples of statements that use the >
operator.

http://www.scripttheweb.com/js/ref/javascript-character-codes.html

The Is-Less-Than Operator (<)
The is-less-than operator works in reverse from the is-greater-than operator.
Rather than returning true when the value on the left is greater, the < operator
returns true when the value on the left side of the operator is less than the
value on the right side of the operator.

You can see some examples of the < operator by looking at the following
table.

The Is-Greater-Than-or-Equal-To Operator (>=)
The >= operator is slightly different from the comparison operators you’ve
read about so far. This operator adds an option for the values on both sides to
be equal and still have the comparison return true. So, to return true, the value
on the left side of the operator must be greater than or equal to the value on
the right side. The following table shows some examples of statements that
use the >= operator.

The Is-Less-Than-or-Equal-To Operator (<=)
Much like the >= operator, the <= operator adds the possibility for the values
on each side to be equal. With the is-less-than-or-equal-to operator, a value of
true is returned if the value on the left side of the operator is less than or
equal to the value on the right side of the operator. The following table shows
examples of statements that use the <= operator.

You’ll get some practice using the comparison operators when you learn
about conditional statements and loops in Chapter 6. Next up are the logical
operators, which can be helpful to you when checking conditions.

Understanding Logical Operators
The three logical operators allow you to compare two conditional statements
to see if one or both of the statements are true and to proceed accordingly.
The logical operators can be useful if you want to check on more than one
condition at a time and use the results. Like the comparison operators, the

logical operators return either true or false, depending on the values on either
side of the operator.

Table 5-4 summarizes the logical operators, which are discussed in the
following sections.

Table 5-4 The Logical Operators

The AND Operator (&&)
The logical operator AND returns true if the comparisons on both sides of the
&& operator are true. If one or both comparisons on either side of the
operator are false, a value of false is returned. Some statements that use the
AND operator are shown in the following table.

The OR Operator (||)
The logical operator OR returns true if the comparison on either side of the
operator returns true. So, for this to return true, only one of the statements on
one side needs to evaluate to true. To return false, the comparisons on both
sides of the operator must return false. The following table shows some
examples of comparisons using the OR operator.

The NOT Operator (!)
The logical operator NOT can be used on a single comparison to say, “If this
is not the case, then return true.” Basically, it can make an expression that
would normally return false return true, or make an expression that would
normally return true return false. The following table shows some examples
of this operator at work.

Now that you have the regular logical operators down, take a quick look at
the bitwise logical operators.

The Bitwise Operators
Bitwise operators are logical operators that work at the bit level, where there
is a bunch of ones and zeros. You will not be using them in the examples
presented in this book, but you may see them in some scripts on the Web.
The following table lists some of the bitwise operators and their symbols,
which should help you spot a bitwise operator if you see one.

Special Operators
There are a number of special operators in JavaScript that are used to perform
specific tasks, or to aid in shortening code. Table 5-5 lists the special
operators and their purposes.

Table 5-5 Special Operators

Don’t be discouraged if many of the terms used in this table look
unfamiliar. Objects, arrays, and other unfamiliar terms are discussed in later
chapters. Many of these operators will be reintroduced at the appropriate
point in the later chapters, where their purpose can be expressed more clearly.

Ask the Expert
Q: Why are there so many assignment operators? If I can write

x=x+1 instead of x+=1, why do I need to know about the extra
assignment operators?

A: They are provided as shortcuts, so that you don’t need to type the
variable name a second time in the same line. They also cut down
the overall size of the script a bit, which helps with the loading
time of the Web page. You can use either method; it just depends
on how much you want to trim the script size or avoid extra typing.
Also, it is good to know what these assignment operators do, so
that you can recognize their purpose in scripts.

Q: Can I use more than one operator at a time in a statement?
What will happen if I do that?

A: Yes, you can use multiple operators in a single statement. The
operators will be executed according to their precedence in the
order of operations, which is covered in the next section.

Q: What is with all of the parentheses? Why are they used in some
cases but not in others? Is there a reason for them?

A: The parentheses used so far have been added for the readability of
the statements. In some cases, it is necessary to use parentheses to
get a desired result. This is something else that is covered in the
next section.

Q: Are there any common typos that are made with all of these
operators?

A: Often, the assignment operator (=) gets used in place of the is-
equal-to operator (==) because the second equal sign is left off by
accident. Also, forgetting to use && and typing just & is another
common typo that can cause trouble in a script. The same sort of
mistake can occur with the logical OR (||) and bitwise OR (|)
operators.

Understanding Order of Operations
In JavaScript, the operators have a certain order of precedence. In a statement
with more than one operator involved, one may be executed before another,
even though it is not in that order in the statement. For instance, look at this
example:

let answer = 8 + 7 * 2;

If you remember how this works in mathematics, you will know that the
multiplication is performed first on the 7*2 part of the statement, even though
it does not look like that is the right order when you read from left to right.
The reason the multiplication is performed first is that the multiplication
operator has a higher precedence in the order of operations than the addition
operator. So, any multiplication done within a statement will be performed
before any addition, unless you override it somehow.

As with math problems, in JavaScript, the way to override the order of
operations is through the use of parentheses to set off the portion of the
statement that should be executed first. Thus, if you wanted to be sure the
addition was performed first in the preceding example, you would write it as
shown here instead:

let answer = (8 + 7) * 2;

If you use more than one set of parentheses or operators of the same
precedence on the same level, then they are read from left to right, as in this
example:

let answer = (8 + 7) - (4 * 3) + (8 - 2);

Since the parentheses are all on the same level (not nested), they are read
from left to right. The addition and subtraction operators outside the
parentheses have the same precedence, and thus are also read from left to
right.

The precedence of the JavaScript operators is shown in Table 5-6, ranked
from highest precedence (done first) to lowest precedence (done last).

Table 5-6 Operator Precedence, from Highest to Lowest

As you can see in Table 5-6, parentheses override the other operators.
Parentheses are handy when you are unsure of the precedence of various
operators or if you want to make something more readable.

Try This 5-2 True or False?

pr5_2.html

prjs5_2.js

This project will allow you to experiment with some of the comparison
operators to see how they work. You will create a script that shows an alert
stating whether or not a statement or comparison will return true. The script
will use a conditional if/else statement, which is explained in detail in the
next chapter.

Step by Step

1. Create an HTML file and save it as pr5_2.html.

2. Create an external JavaScript file and save it as prjs5_2.js. Use this file
for editing in steps 3–13.

3. Insert the code that follows into your JavaScript file:

4. Open the HTML page in your browser. You should instantly see an alert
saying “True.”

5. Change the value of the variable num1 to 5. Resave the JavaScript file
and refresh your browser. You should now get an alert saying “False.”

6. In the following line of code, change the == operator to the > operator:
if (num1 == num2) {

7. Resave the JavaScript file and refresh your browser. You should get
"True" again.

8. Change the value of the variable num2 to 7.

9. Resave the JavaScript file and refresh your browser. You should now
get "False" again.

10. In the following line (which you changed in step 4), change the operator
to the < operator:

if (num1 > num2) {

11. Resave the JavaScript file and refresh your browser. You should get
“True” again.

12. Try to change the value of the num1 variable so that you get an alert that
says “False” instead.

13. Try your own tests with the other comparison operators to see what the

results will be.

Try This Summary
In this project, you were able to use your knowledge of the comparison
operators to create an alert that displayed “True” or “False” depending on
whether the comparison statement would return true or false. You were also
able to try testing your own variations of values and operators if you desired.

 Chapter 5 Self Test

1. A(n) __________ is a symbol or word in JavaScript that performs some
sort of calculation, comparison, or assignment on one or more values.

2. __________ operators are most often used to perform mathematical
calculations on two values.

3. The __________ operator adds two values.

4. When the increment operator is placed __________ the operand, it
increases the value of the operand by 1, and then the rest of the
statement is executed.

5. Which of the following is not a JavaScript operator?

A. =
B. ==
C. &&
D. $#

6. What does an assignment operator do?

A. Assigns a new value to a variable
B. Gives a variable a new name
C. Performs a comparison
D. Nothing, because assignment operators are useless

7. The add-and-assign (+=) operator adds the value on the __________
side of the operator to the variable on the __________ side and then
assigns that new value to the variable.

8. What does a comparison operator do?

A. Performs a mathematical calculation
B. Deals with bits and is not important right now
C. Compares two values or statements, and returns a value of true or

false
D. Compares only numbers, not strings

9. Which of the following comparisons will return true?

A. 4 != 3
B. 4 == 3
C. 4 < 3
D. 4 <= 3

10. Which of the following comparisons will return false?

A. 4 != 3
B. 3 == 3
C. 4 > 3
D. 4 <= 3

11. The __________ operators allow you to compare two conditional
statements to see if one or both of the statements are true and to proceed
accordingly.

12. Which of the following statements will return true?

A. (3 == 3) && (5 < 1)
B. !(17 >= 20)
C. (3 != 3) || (7 < 2)
D. (1 == 1) && (2 < 0)

13. Which of the following statements will return false?

A. !(3 <= 1)

B. (4 >= 4) && (5 <= 2)
C. (“a” == “a”) && (“c” != “d”)
D. (2<3) || (3<2)

14. __________ operators are logical operators that work at the bit level.

15. In JavaScript, the operators have a certain order of __________.

N

Chapter 6
Conditional Statements and Loops

Key Skills & Concepts
• Defining Conditional Statements

• Using Conditional Statements

• Defining Loops

• Using Loops

ow that you have seen how the various operators work in JavaScript,
this chapter will instruct you in how to put them to good use. This
chapter begins by introducing you to conditional statements and why

they are useful to you in scripts. Then, you will learn about all the conditional
statement blocks and how to use them. After that, you will learn what loops
are and learn how to use the various types of loops within your scripts.

Defining Conditional Statements
In order to use conditional statements, you need to know what they are and
why they are useful to you in your scripts.

What Is a Conditional Statement?
A conditional statement is a statement that you can use to execute a bit of
code based on a condition or to do something else if that condition is not met.
You can think of a conditional statement as being a little like cause and

effect. Perhaps a good way to parallel it would be to use something a parent
might say, as in the following text:

"If your room is clean, you will get dessert. Otherwise, you will

go to bed early."

The first cause would be a clean room, which would have the effect of getting
dessert. The second cause would be an unclean room, which would have the
effect of an early bedtime.

In your scripts, you may want to create a similar statement. Perhaps
something more like the following line:

"If a variable named mymoney is greater than 1000, send an alert

that says my finances are OK. Otherwise, send an alert saying I

need more money!"

In this case, the first cause would be a variable having a value greater than
1000, which would have the effect of an alert that says things are OK. The
second cause is the variable being 1000 or less. If this happens, you get an
alert saying you need more money.

As you can see, if you can create statements like these in your scripts, you
will be able to do quite a bit more than you have with your scripts in the past.

Why Conditional Statements Are Useful
As you saw in the previous section, a conditional statement can be quite
useful to you. Rather than executing every single line of code in the script as
is, you could have certain sections of the script only be executed when a
particular condition is met. You could even expand that single condition into
a combination of conditions that need to be met for parts of the code to run.

With conditionals, you can tell JavaScript to do things like the following:

• If a variable named yourname is equal to John, then write a line to the page
that says hello to John. Otherwise, write a line to the page that says hello
to Unknown Surfer and have it be in bold type.

• If a variable named mycar is equal to Corvette or Mustang, then send an
alert saying “Cool Car” to the browser. If a variable named mycar is equal
to Corvette, then if a variable named yourname is equal to Marty, send an
alert that says “Marty is cool and drives a cool car” to the browser.

Otherwise, send an alert that says “Unknown Surfer drives a car of some
sort” to the viewer.

I don’t really drive a Corvette or a Mustang, so that leaves me out of the
cool crowd here; however, these examples do show how you can make your
scripts more useful by adding a way to check for certain conditions before an
action takes place in the script. These types of statements provide what is
known as “flow control” to your scripts.

Using Conditional Statements
Now that you know what conditional statements are, it’s time to look at them
in more detail and learn how to code them. You will be looking at the two
types of conditional statement blocks used in JavaScript: the if/else statement
and the switch statement. You will also learn about the use of the conditional
operator.

Using if/else Statements
While using conditional statements, you will see that they have a familiar
syntax. Most notable are the curly brackets ({}) that surround the sections of
code that will be executed based on a given condition.

The if/else Statement Block Structure
The first thing you must deal with in an if/else statement is the first line,
which tells the browser to continue or move along. You begin an if/else
statement with the JavaScript keyword if, followed by a comparison in
parentheses. The following line shows a sample of the format of the if
statement:

You replace the comparison here text with an actual comparison. To do this,
you need to remember the comparison operators from the previous chapter.
Suppose you want to see if a variable named boats is equal to 3 and to send

an alert “Yes, there are 3 boats” if the condition is true. You could use the
following code:

Remember that a comparison will return a value of true or false. This is
where the return value becomes useful. If the comparison of boats === 3
returns true, the code within the curly brackets will be executed. If it returns
false, the code inside the brackets is ignored and the line of code after the
closing curly bracket is executed.

If you wish to use an else block to execute a different set of statements
when the comparison returns false, you place the else keyword on the next
line and then follow it with its own set of curly brackets, as in the following
code:

This code will send an alert that says “You have the right number of boats” if
the variable boats is equal to 3. If it is not, it will send an alert that says “You
do not have the right number of boats” instead.

Now that you have the statements set up, you need to know whether or not
the comparison returns true so that you can determine which block of code is
executed. To do so, you need to declare the boats variable and assign it a
value before the comparison takes place. This will give you the value to
determine what happens in the script. See if you can guess which block of
code is executed (first or second) if you use the following code:

If you guessed the first code block would be executed, you got it! Since the
variable boats is equal to 3, the comparison boats === 3 returns true. Since it
returns true, the first code block is executed and the code block after the else
keyword is ignored. You get the alert that says “You have the right number of
boats” and nothing else.

CAUTION

Be careful when typing variable assignments (=), is-equal-to
comparisons (==), and is strictly equal to comparisons (===), as they
can be easily mistyped by accident and cause problems or unexpected
results in your scripts.

Now take a look at how to set up the statement so that you have the
opposite result. The following code will cause the comparison to return false:

With the value of the variable boats at 0, the comparison boats === 3 will
return false; thus, the first code block is ignored and the code block after the
else statement is executed instead. This time you get the alert that says “You
do not have the right number of boats,” while the alert in the first block is
ignored.

Now that you know the basic structure of the if/else statement block, you
are ready to look at the technique of nesting one block within another.

Note that JavaScript ignores non-quoted whitespace. For example, you

could write the following code:

if (boats === 3) {window.alert("You have the right number of

boats");}

else {window.alert("You do not have the right number of boats");}

Although you will come across code written like this, it’s not recommended
because you want the code to be readable by future coders who may work on
it (including future you!)

Block Nesting
If you nest something, you are basically putting one structure inside another
structure of the same or a similar nature. With the if/else statement blocks,
you are able to nest other if/else statements within the first block after the
comparison (the “if block”) or within the second block after the else keyword
(the “else block”).

For example, maybe you would like the browser to execute a statement
such as the following: “If a variable named havecookbook is equal to yes,
and if a variable named meatloafrecipe is equal to yes, send an alert that says
‘Recipe found’ to the browser. If havecookbook is equal to yes, but
meatloafrecipe is not equal to yes, then send an alert ‘Have the book but no
recipe’ to the viewer; otherwise, send an alert that says ‘You need a
cookbook’ to the browser.”

This is a somewhat long and complex statement, but you can accomplish
what you are after by nesting an if/else statement within the if block of
another if/else statement.

To see how this works, consider the following example, which puts the
previous statement into JavaScript form:

Oh no, nesting an if block requires curly brackets all over the place! To
help you figure out what is going on with this piece of code, I will break it
down into its individual parts.

The first thing you get is the main (first, or outermost) if block. You use it
to find out whether the variable havecookbook is equal to yes or not. If this
comparison returns true, you move along into the if block; however, the next
thing you find is another if block! This is the nested if block, which means it
is inside the outside if block. In the nested block, you check whether the
variable meatloafrecipe is equal to yes or not. If this returns true, you finally
are able to do something, which is to send the “Recipe found” alert.

When the nested if block is finished, you see that it has an else block to go
with it in case the comparison meatloafrecipe === “yes” returned false. If it
had returned false, the browser would have gone to this else block and
executed the code within it. In the preceding code example, the comparison
on the outside block (havecookbook === “yes”) returned true, but the
comparison on the nested block (meatloafrecipe === “yes”) returned false.
So, the nested else block is executed, sending the “Have the book but no
recipe” alert.

After this nested else block, you see what looks like an extra closing curly
bracket; however, this closing bracket is actually used to close the outside if
block that contains all of this nested code. Looking at how the code is
indented will help you see which brackets are closing which blocks. This is
where using indentions or tabs can be helpful in your code, because—as
opposed to the code being all in a straight line up and down—indentions can
make the code easier to read.

TIP

When it comes to indenting your code, some will recommend using
four spaces, some two spaces, and others recommend using the TAB
key. The most important thing to do is to choose an indention method
and to use it consistently in your code. This will help you if you need
to read through the script or debug it later. For more information on
spaces versus tabs in programming, see the following page:
en.wikipedia.org/wiki/Indent_style.

Finally, you get to the outside else block. This is the block that is executed
only if the first comparison (havecookbook === “yes”) returns false. If that
comparison returns false, all the code within that outside if block is ignored
(you never get to the nested if/else block) and the browser moves on to this
outside else block. In this case, you get the “You need a cookbook” alert sent
to the viewer.

The following example uses the same if/else code used in the preceding
code example, but this time the variables are defined differently: both
variables are given a value of yes. See if you can follow the code and name
the alert that will show up on the screen when it is executed.

The alert you should have chosen is the “Recipe found” alert. When the
first comparison returns true, you are sent to the nested if block. Since the
comparison for the nested if block also returns true, you execute the code
within that block, which sends the “Recipe found” alert to the browser.

http://en.wikipedia.org/wiki/Indent_style

The last thing you should know about nesting is that you can nest as many
blocks as you want inside other blocks. Rather than just nesting one if/else
statement inside another, you could have a second nesting inside that
statement, a third, or as many as you can track without going insane. For
example, consider the following code:

Now there is an if/else block within an if block within an if block. As you
can see, yet another variable, ismomsmeatloaf, was added to check for an
even more specific recipe. You could keep going on and on like this, until
you cannot take it any more; however, this should be enough to allow you to
build on it later if you need to do so.

Another thing to note is that if you use a value that is already Boolean as
the comparison, you just need the value as the comparison. This is shown in
the following code:

Although you can write out the comparison directly as if (havecookbook ===
true), you don’t need to when the value you need is already Boolean, as is the
case here. Instead, you can use the shortcut if (hascookbook) to shorten up
the code a bit.

Complex Comparisons
In addition to making a simple comparison such as x === 2 or y < 3, you can
also build more complex comparisons using the logical operators discussed in
Chapter 5. As you may recall, that chapter presented some of these
comparisons in a form similar to the following example:

(2===2)||(3<5)

In Chapter 5, the only concern was whether the comparison would return true
or false, and not with how to add it to an if/else statement. Notice the
parentheses around each comparison. They are there mainly for organization;
but given the order of operations, you could write the comparison as:

2===2||3<5

The problem here is that this is harder to read, so it would be difficult to
determine whether there is a problem with the code if you need to debug it
later.

Recall that the first line of the if/else statement uses parentheses to enclose
the comparison. If you write your complex comparisons without the
organizational parentheses, as in the previous example, you could have the
first line look like the line of code shown here:

if (2===2||3<5)

Although this is easy to type, it’s pretty difficult to read because you are not

sure if it should be read as “if 2 is equal to 2 or 3 and is less than 5” or as “if
(2 is equal to 2) or (3 is less than 5).” The first thing you can do is add
spacing, which can help the readability of the comparison:

if (2 === 2 || 3 < 5)

If you add the parentheses for organization, it becomes even easier to read;
but you must be careful that you nest them correctly. The following example
code shows the addition of parentheses for organization:

if ((2 === 2) || (3 < 5))

Which form you use will come down to personal preference. For now, this
chapter uses the method with the extra parentheses for organization. It should
make reading the code from the book easier for you.

Now you can create scripts that allow for more values to be included or
allow a specific range of values that will return true. Suppose you want to
show an alert when a variable named num1 is greater than 2 but less than 11,
and another alert when num1 is not in that range. You could use the
following code:

Your comparison is saying, “If num1 is greater than 2 and num1 is less than
11.” If that comparison returns true, then you see the “Cool number” alert. If
it returns false, you get the “Not a cool number” alert instead.

Of course, you can make the comparison line as complex as you want it to
be. You can add and and or logical operators in one long line until you get
what you need … or have a nervous breakdown. The following example adds
an extra stipulation to the comparison to see if num1 is equal to 20:

Now, the comparison allows the numbers greater than 2, the numbers less
than 11, and the number 20 to give the “Cool number” alert. The comparison
now reads, “If num1 is greater than 2 and num1 is less than 11 or num1 is
equal to 20.” You could keep adding information to create more numbers that
will return true, or even additional number ranges that will return true.

Of course, to see the preceding code in action, you would need to declare
the num1 variable and assign it a value. See if you can figure out which alert
will show up if the following code is used:

Yes, you are stuck with the “Not a cool number” alert because the number 1
just doesn’t cut it here (1 is not within the accepted range of numbers for the
condition to return true). Of course, you can change it to something that fits
to get the “Cool number” alert instead.

CAUTION

Complex expressions using && and || can cause unintended results in
your script if not grouped correctly. For instance, the comparison
((u===v && w===x) || y===z) is going to be different than if it were
grouped as (u===v && (w===x || y===z)). The first one will return
true if u is equal to v and w is equal to x, or if y is equal to z. The
second one will return true if u is equal to v and if either w is equal to
x or y is equal to z.

Curly Brackets Shortcut
The if statement allows for a shortcut where curly brackets are not required if
only one statement will be executed within an if or an else block. For
example, consider the following code:

Since the if and else blocks each contain only one statement, JavaScript
allows them to be written without the curly brackets, as in the following
code:

While this does shorten the code in a situation like this, this technique is
not recommended since it can cause confusion about what code is being
executed for a condition. It is also best for forward compatibility to keep the
curly brackets, since it makes it simpler to add a statement to one of the
blocks at a later time. Consider this code:

Given the formatting of the code, it appears that the “Ha Ha” alert is meant to
display only when num1 is not equal to 1. However, the alert displays
regardless of whether the condition is true or false. Since the brackets have
been left off, the “Ha Ha” alert is not part of the else block, but is simply the
first statement that follows the if/else statement and is always executed.

To fix this, you simply add the curly brackets to clarify what the code

should do. The following code will work as intended:

With the brackets in place, the “Ha Ha” alert will only display if num1 is not
equal to 1.

Chaining if/else Statements
In some cases, you will want to set up an “elseif” type of statement. While
JavaScript doesn’t have an “elseif” keyword, it does allow you to create this
type of statement by chaining if/else statements together, as in the following
code:

This allows you to perform any number of tests before having to execute the
final else statement as a final option. This can often be shortened further by
using the switch statement, which is discussed later in this chapter.

Block Scope
The addition of the let keyword (introduced in Chapter 3) allows values to
have block scope in JavaScript. The traditional var keyword has function
scope, which means it is available within the entire function in which it is
declared, regardless of whether or not it’s declared within a block. The
following code shows an example of this:

Here, the value of message is still available outside of the if block, and the
message will be displayed (had another number been sent, it would be
undefined since the if block would be skipped).

On the other hand, using the let keyword would make the value undefined
outside of the if statement regardless of the value sent as the argument, even
if the result of the condition would be true. For example, look at the
following code:

This time, the console will log an error that message is undefined. Since the
let keyword restricted the value to the block scope within the if statement, it
is not defined outside of it.

The block scope of let can be useful if you need to restrict the use of a
variable to a particular block. In this case, the variable is more useful to have
the scope of the function, so you can move the declaration to the top of the
function so that the variable is scoped to the function block rather than just
the if statement, as in the following code:

Here, the let keyword is used to scope the message variable to the function
block. It also provides a default value. If the number sent causes the
comparison to return false, this default message will be displayed in the
console. If the comparison returns true, the value of message is changed to
“That is a lucky number!” and is displayed in the console.

Note that it is still preferable to use let over var, even if you want to use
function scope. By doing so, you know that let is always scoped to the block
that contains it. If you use var, it will only be scoped to the function scope,
even if it is used within a block, and this can make the code less clear if you
intend to use block scope other than function scope anywhere.

Using the switch Statement
The switch statement allows you to take an expression and execute a different
block of code based on whether a case is equal to the value of the expression.
If you wish to check for a number of different values, this can be an easier
method than using of a set of chained if/else statements.

The first line of a switch statement would have the following syntax:

switch (expression)

You can replace expression with a value, a variable, or some other sort of
expression (for example, the addition of numeric values or the concatenation
of string values). For the first example, you will just use a variable that has
been assigned a value before the switch statement begins.

Now, you need to see the general syntax for a full switch statement. The
following code is an example of how a switch statement looks:

First, this example declares and assigns a variable named thename; it is
given a value of Fred. Next, the switch statement begins, using the variable
thename as the basis for comparison. Then, the block is opened with a curly
bracket, followed by the first case statement. Written like this, it is saying, “If
thename is equal to George, then execute the commands after the colon.” If
thename were equal to George, you would get an alert.

Next you see the break statement, which tells the browser to exit the code
block and move on to the next line of code after the block. You use the break
statement in the switch block to be sure only one of the case sections is
executed; otherwise, you run the risk of having all the cases executed
following the one that returned true, because, by default, the browser would
continue to the next statement (called fall through) rather than exit the block
entirely, even though it finds one of the cases to be true. To be sure that the
browser exits the block, you add the break statement.

If you get back to the script, you see that thename is not equal to George,
so this case is skipped; however, the next comparison returns true because
thename is equal to Fred in the script. Thus, the set of statements in this case
block will be executed. Note that two lines of JavaScript code appear before
the break statement here. This shows that you could have any number of lines
within a case.

Finally, you see the keyword default. This is used in the event that none of
the case statements returns true. If this happens, the default section of code
will be executed. Notice that you don’t need the break statement after the
default section of code, because it is at the end of the switch block anyway,
so the browser will exit the block afterward, eliminating the need for the
break statement.

Falling Through
Sometimes you want to execute the following case. This is called falling
through, which will allow you to proceed to the next case statement. One use
of this technique is when multiple cases would be suitable for a particular
section of code. You could allow these cases to fall through until you get to
the code to be executed:

This allows all cases where the name is some variation of “Fred” to be
handled by the statements placed in the last case, rather than repeating them
in each case with a break. When using a fall through, it is a good idea to note
it using a comment, as shown in the example code.

You can still execute code on any case before falling through. The
following code shows an example of this:

This time, if name is equal to “Fred”, then the “Your name is Fred” alert will
display. The case will then fall through and also display the “Any version of
Fred is a cool name” alert. If name is equal to “Frederick” or “Freddie”, then
only the “Any version of Fred is a cool name” alert will display.

Using Expressions
Up to this point, you have used a variable value as the expression in the
opening line of the switch statement. JavaScript allows you to use any type of
expression, and this can be very useful when you use a Boolean value for the

expression. Doing so allows you to write conditions that return a Boolean
value, allowing you to test for more than a single value at a time. For
example, consider the following code:

By using the Boolean value of true as the expression, each case can in turn be
a condition. If a case condition returns true, then it is a match and that case
will be executed. In the previous code, the first case will be executed because
the condition num1 < 20 will return true, creating a match with the initial
expression.

NOTE

You can do anything with a switch statement using an if/else instead,
but sometimes a switch is more convenient and readable.

Using the Conditional Operator
The conditional operator (also called the ternary operator) is one that can be
used as a short way to assign a value based on a condition. For instance, you
might decide you want to assign a value to a variable based on the result of a
conditional statement. You could do it using the following code:

This works, and gives mymessage a value of “You win!” since mynum is
equal to 1. However, the conditional operator allows you to shorten the
amount of code required for this type of test. It allows you to place a
condition before the question mark (?) and place a possible value on each
side of the colon (:), like this:

JavaScript evaluates the conditional statement and if the statement returns
true, the value on the left side of the colon (value1 here) is assigned to the
variable. If the statement returns false, the value on the right side of the colon
(value2 here) is assigned to the variable. As you can see, this operator takes
three operands (the condition and the two values), which is why it is also
sometimes called the ternary operator.

To apply this to our previous example, we could rewrite the entire piece of
code as follows:

This works the same way as the previous if/else block, but allows you to
write the code with a lot less typing (lessening the size of the script).

NOTE

Conditional operators can technically be nested, but this is
discouraged since code can quickly become unclear and more difficult
to debug with nested conditional operators. If you need more
complexity, it is typically better to use an if/else structure so that any
nesting can be seen more easily.

The conditional statements you have learned in this chapter will allow you
to do much more with your code now that you know how to use them. You
will be using these extensively in later chapters to create more complex
scripts.

User Input from a Prompt
One way to obtain input from a viewer is to use the window.prompt()
method. This method takes two arguments: the prompt text to be displayed
and the default value for the text box that grabs the viewer’s reply. For
example, you could use the following code.

let username = window.prompt("Give me your name!", "");

In this case, the prompt text will be “Give me your name!” and the default
value of the text box will be empty. The following illustration shows how the
prompt dialog would look when this is run in Mozilla Firefox.

The window.prompt() method returns the contents of the text box if the
user clicks OK or presses the ENTER key. If the Cancel button is clicked or the
prompt is otherwise closed, then the value returned will be null. The returned
value is stored in the variable the window.prompt() method is assigned to, if a
variable is used. In this case, the returned value will be stored in the
username variable.

To make use of this, suppose you want to display the viewer’s name on
the page to personalize it a bit. You want to display the viewer’s name if it is
entered, or display a default message if nothing is entered or the user
cancels/closes the prompt in some way. The following code shows how this
can be done:

The value returned by the prompt is stored in the username variable. The
value of this variable is checked using the if statement. If the value of
username is null or an empty string, then the page displays the “Hello,
Random Nameless Person!” message. Otherwise, the viewer is greeted with
his/her typed name. Figure 6-1 shows the result of entering “Brent” in the
prompt text box.

Figure 6-1 A greeting is displayed to the viewer.

As you can see, the if/else conditional statement allowed you to perform
some basic testing on the user input. This kept you from displaying a
message with null or an empty string as the viewer’s name. Technically, the
user could still enter blank spaces, but you can prevent this by using regular
expressions with your conditional statements. Regular expressions will be
covered in more detail in Chapter 13.

Ask the Expert
Q: Do I need to use curly brackets on every if/else block? I have

seen them used in code on the Web without the brackets. Why?

A: There is a shortcut that allows you to omit the curly brackets if you
are only going to execute a single JavaScript statement in the if
block and the else block (see the “Curly Brackets Shortcut” section
of this chapter), and this may be used in free scripts on the Web. As
explained earlier, this technique is not recommended as it can
cause confusion when you are looking over or debugging the code.

Q: Why am I bothering with conditional statements if all I can do
is assign the variable a value and then test it? If I already know
what the value of the variable is, why use a conditional?

A: In the next section, you will get to the point where you are getting
information from the viewer. This information can vary depending
on the viewer (for example, if the viewer needs to enter his/her
name into a text box or a prompt), thus making the conditional
blocks more useful since you will be able to perform one action for
one viewer, and another task for a different user. With user input,
you won’t know the value of the variable beforehand, and you will
need to handle the possibilities using conditional blocks. Also, you
will recall that functions can be passed different values as
arguments, which you may need to test with conditionals before
executing certain sections of code.

Q: Do I need to use the switch statement or the conditional
operator?

A: While it is not absolutely necessary to use them (you could use
if/else statements instead), it is a good idea to learn them since they
can help you save time and optimize your code. It is also helpful to
know them when you are reading through other scripts to see what
the code is doing.

Q: I tried entering a number into a prompt and adding it to
another number, but it ran the two numbers together instead
of adding them. Why?

A: Data entered into the prompt text box is returned as a string,

regardless of what type of data was entered. You can use the unary
plus operator (refer to Chapter 5) to coerce the string into a
numeric value:

let num1 = window.prompt("Enter a number","");

num1 = +num1 + 5;

If the value can be coerced, it will become numeric and the
addition will take place as expected. You will learn more about
validating input in Chapter 13.

Try This 6-1 Work with User Input

pr6_1.html

prjs6_1.js

This project will help you work with the window.prompt() method, if/else
statements with nesting, and the switch statement. Suppose you just started an
online store that offers a product for sale. Unfortunately, you are on a tight
budget and only able to deliver products to certain cities. You want to prompt
the customer for a city name and display a message stating whether or not
delivery is available to the customer.

Step by Step
1. Create an HTML page and save it as pr6_1.html. Add script tags to point

to an external JavaScript file named prjs6_1.js.

2. Create an external JavaScript file and save it as prjs6_1.js. Use this file
for steps 3–6.

3. Create a variable named msg with an initial value of an empty string
(“”). This will be used to hold the message that will be displayed to the
customer.

4. Create a variable named city and assign it the return value of a prompt
that asks “What is the name of your city?”

5. If the value of city is null or an empty string (“”), then assign the value

“No city entered. Cannot determine delivery availability.” to the msg
variable. Otherwise (else), create a switch statement (this will be nested
within the else block).

6. In the switch statement, assign the following values to the msg variable,
depending on the name of the city:
“We can have items delivered to you in 3 days.” if the city is Johnstown.
“We can have items delivered to you in 1 week.” if the city is Donville.
“We can have items delivered to you in 2 weeks.” if the city is
Danieltown or Martyville.
“Sorry! We do not deliver to your city yet.” for any other city name that
is entered.

7. Write the value of the msg variable on the page.

8. When you are done, your JavaScript file should have the following code
(other solutions are possible as well):

9. Save the JavaScript file and the HTML file and view the HTML page in
your browser.

10. Try entering one of the named cities. You should get the appropriate

message written on the page. You can reload the page to try out different
city names.

Try This Summary
In this project, you used your new skills with the window.prompt() method,
if/else statements, and switch statements to create a script that allows the user
to enter a city name and then see whether delivery is available to that city.

Defining Loops
To begin using loops, you will want to know what loops are, what they can
do, and why they can be useful to you in your scripts.

What Is a Loop?
A loop is a block of code that allows you to repeat a section of code a certain
number of times, perhaps changing certain variable values each time the code
is executed. By doing this, you can often shorten certain tasks into a few lines
of code, rather than writing the same line over and over again within the
script and tiring your fingers.

Why Loops Are Useful
Loops are useful because they allow you to repeat lines of code without
retyping them or using cut and paste in your text editor. This not only saves
you the time and trouble of repeatedly typing the same lines of code, but also
avoids typing errors in the repeated lines. You can also change one or more
variable values each time the browser passes through the loop, which again
saves you the time and trouble of typing a line that is only slightly different
than the previous line.

As a simple example, suppose you wanted to write a sentence onto a Web
page ten times in a row using JavaScript. To do this normally, you might
have to write something like the following:

Ouch! Cut and paste can make the task easier, but it would still be a bit
tedious, especially if you decide to write the sentence 50 times instead. With
a loop, you could write that document.write() statement just one time and
then adjust the number of times you want it to be written. It would be
something like the following example. This is not actual code, but you will
see the actual code needed to repeat a statement multiple times when you
look at the loop structures in more detail in the next section, “Using Loops.”

Of course, you will replace the “Do this block 10 times” text with an actual
statement that JavaScript will understand. You will see what statements you
can use to form loops in the following section.

Using Loops
In order to see how loops can really be helpful to you, you need to take a look
at the different loop structures that you can use in JavaScript. The loop
structures covered in this section are the for, while, and do while loops.

for
To use a for loop in JavaScript, you need to know how to code the basic
structure of the loop and how to nest a for loop within another for loop. To
begin, take a look at the basic structure of a for loop.

Structure of a for Loop
The structure of a for loop is very similar to that of the conditional blocks.
The only major differences are that a loop serves a different purpose and, as a
result, the first line is different. After that, you use the familiar curly brackets
to enclose the contents of the loop.

The first line of a for loop would look similar to the following line:

The first thing you see is the for keyword. This is followed by a set of
parentheses with three statements inside. These three statements tell the loop
how many times it should repeat by giving it special information.

The first statement (let count = 1) creates a variable named count and
assigns it an initial value of 1. This initial value can be any number. This
number is used as a starting point for the number of times the loop will
repeat. Using the number 1 will help you see more easily the number of times
the loop will repeat. The preceding code begins the loop with count having a
value of 1. Note that if the count variable had been initialized earlier in the
script, the let keyword would not be needed here.

The next statement (count< 11) tells the loop when to stop running. The
loop will stop running based on this conditional statement. The condition
here is to stop only when the variable count is no longer less than 11. This
means that if you add 1 to the value of count each time through the loop, the
loop’s last run-through will be when count is equal to 10. When 1 is added to
10, it becomes 11; and that doesn’t pass the conditional test, so the loop stops
running.

The last statement in the set (count ++) determines the rate at which the
variable is changed and whether it gets larger or smaller each time. In the
preceding code, you add 1 to the variable each time you go back through the
loop. Remember, the first time through, the variable has been set to 1. Since
you add 1 each time, the variable will have a value of 2 the second time
through, 3 the third time through, and so on, until the variable is no longer
less than 11.

To finish the structure, you insert the curly brackets to enclose the code
that you wish to use within the loop. An example of the full structure of a for
loop is shown in the following code:

Now, you just need to add a real variable and some JavaScript code to be
executed, and you will have a full for loop put together. To do this, you’ll
begin with a script to write a sentence to the page ten times. Now that you
can use a loop, you need to write the sentence itself only once, rather than ten
times in a row. The following example code shows how this can be done
using a for loop:

The count variable is going to begin counting at 1, since it is assigned an
initial value of 1. You are adding 1 to it each time through the loop. When the
count variable has a value that is no longer less than 11, the loop will stop. In
this case, the count will run from 1 to 10, thus running the loop ten times.

When 1 is added the next time the for statement is hit, the value of the
count variable is 11, which is no longer less than 11; thus, the browser will
skip over the loop and continue to the next line of code after the closing curly
bracket for the loop. The
 tag is used in the document.write command to
be sure that each sentence will have a line break after it and will not write the
next sentence on the same line.

To see this work on a page, you can add the script tags and insert an
external JavaScript file into the body section of an HTML page. Create a
JavaScript file named loops01.js, add the following code, and save the file.
Add the necessary script tags to an HTML document and save it as
loops01.html.

Here, a slight change was made to increment the count variable. Rather than
typing count += 1, the increment operator (++) was used. When you are

simply adding one to the variable, the increment operator can be a handy way
to shorten the code. However, if you wanted to increment the variable by 2 or
more, the add-and-assign operator would still need to be used (that is, count
+= 2).

NOTE

In this case, count++ is the same as ++count. It is common to think
that ++count will happen before the contents of the loop, but the last
statement for the for loop is run after all the other code, no matter
what.

The page represented by the preceding code has a short line of text that is
followed by your repeating line of text. The page ends with a note, “Now we
are back to the plain text.” Figure 6-2 shows how this will appear in the
browser window when viewed. Notice that the sentence “I am part of a
loop!” is repeated ten times.

Figure 6-2 The loop displays the line of text ten times.

Now that you can do a basic loop, you are ready to add something to it
that will make the loop even more useful. Within the loop, you can use the
value of the count variable (or whatever variable is used) to do various
things.

One thing you can do (this will become more apparent when you get to
arrays later) is to make use of the fact that the variable is changing each time.
With the variable going up by 1 each time through, you could use a loop to
number the sentences from 1 to 10 and make the lines more readable. The
following code does this:

In the preceding code, you just added the value of the count variable to your
string at the beginning. The period before the sentence will make the line of
text appear with a period after the number, a space, and your sentence on
each line. Figure 6-3 shows how the script would look in the browser with
this addition.

Figure 6-3 Now the repeated lines are numbered from 1 to 10.

The Comparison
When making the comparison, you are not limited to only the < operator. For
example, you have been looping through ten times thus far. There are a
number of ways to make a loop execute ten times, though some will change
what values the count variable uses (which can be handy when you do not
want 1–10 as the count numbers). Some examples are shown here:

Keep this in mind, as this type of flexibility can help to save you time or

additional calculations based on the count variable. The second method
shown in the example, for instance, is used often with arrays. You will learn
more about this in Chapter 7.

Another thing to note is that the initial and comparison values can be
variable values as well, as shown in the following code:

Block Nesting
Yes, you now have to deal with nested loops. As with if/else blocks, you can
nest as many levels deep as you can handle. For now, you will just nest one
loop within another. The following example shows a for loop within a for
loop:

CAUTION

Be careful when you nest loops to be sure that each nested loop has its
own counter on its first line, such as for (count = 1; count < 11; count
++). A counter will need to be unique to its own loop in most cases.
Also, errors may occur if the curly brackets are not included or paired
correctly.

Now you get a loop that interrupts your outer loop text with text of its
own. Each time you go through the outer loop, you write out the “I am part of
a loop!” line. Then, you encounter another loop that writes out “I keep
interrupting in pairs!” to the screen.

The inner loop is set up to repeat twice; so each time you have one
sentence from the outside loop, it is immediately followed by two sentences

from the inside loop. In order to see this more clearly, consider the following
example, which updates the code you used earlier in the loops01.js file:

Figure 6-4 illustrates how this nested loop affects the appearance of the
page in the browser. You can now see how nested loops are useful to add
even more information along the way if you need to do so.

Figure 6-4 The nested loop inserts text within the outside loop’s text.

When you are nesting loops, you can use the count value from the outer
loop inside the inner loop, but not the other way around. For example, look at
the following code:

As you can see, the count value is available in the outer loop, while nestcount
is not. Within the inner loop, both count and nestcount are able to be used.
Keeping this in mind when using nested loops can save you some headaches
along the way!

To further complicate matters, you can also nest different types of blocks
inside one another. For example, you can put an if/else statement block inside
a loop, or a loop inside the if block or the else block of an if/else statement.
The following example creates an if/else block within a for loop:

In this case, the browser will check whether or not the count variable has a
value of 5. If it does, the browser will print a different message to the screen
than the browser would otherwise. You can best see the effects of this by
adjusting your JavaScript file to have the following code:

Figure 6-5 shows the result of this code when run in the browser. Notice
how the fifth line is different based on the conditional statement within the
loop.

Figure 6-5 The nested if/else block causes the fifth line to be different
from the other lines.

As you can see, you can do quite a bit with nesting. Using the same

techniques you just learned, you can nest all the other statement blocks
covered in this book; therefore, I won’t be as detailed about the nesting
techniques with the rest of the statements that are covered.

Infinite Loops
When writing any type of loop, it is possible to create what is known as an
infinite loop, which is a loop that never completes. Such a loop can
potentially continue to run until it crashes the user’s computer. Though most
modern browsers can detect this after a time and prompt the user to stop the
execution of the script, it is not guaranteed and could cause issues for those
running the script.

To avoid programming an infinite loop, you will need to be sure that the
condition you set will at some point return false. For example, the following
for loop creates a condition that never returns false when the loop runs,
creating an infinite loop:

As you can see here, the variable i is assigned an initial value of 25 and is
incremented by one each time through the loop. This means that i will always
be greater than 10 and the condition i > 10 will never return false, creating an
infinite loop.

To fix this, be sure to make an adjustment in the loop so that the condition
will eventually return false. Here are two examples of how this loop can be
fixed:

Here, i is decremented rather than incremented, which will eventually bring
the value of i down to 10 to make the condition false.

In this case, the condition is altered to i < 50 while keeping the increment in
place. When i reaches 50, the condition will return false and end the loop.

Multiple Statements
A for loop can also contain multiple statements when it is initialized. This
gives you the ability to have more than one variable for counting that can be
altered through the loop. For example, if you want to count by tens, you
could use the following code to go from 10 to 100.

Here, both i and j variables are initialized (i is 0 and j is 10) and incremented.
The value of i is incremented by one, while j is incremented by 10. The
condition i < 11 will stop the loop after it runs ten times. The end result is
that the numbers 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100 will be displayed
on the page.

while
A while loop tests a comparison and repeats until the comparison is no longer
true. The following code shows the general structure of a while loop:

First, notice that the value of 1 is assigned to the variable count before the
loop begins. This is important to do, since you cannot declare the variable
when initializing a while loop as you can with a for loop. This loop is set up
to repeat five times, given the initial value of the variable and the increase in
the value of the variable by 1 each time through (count++).

In a while loop, you must also remember to change the value of the
variable you use so that you do not get stuck in a permanent loop. If the
previous sample loop had not included the count++ code, the loop would
have repeated indefinitely, and you do not want that to happen. So, the main
things you must remember with a while loop are to give a counting variable
an initial value before the loop and to adjust the value of the variable within
the loop itself.

For an example of the while loop in action, you can recode your sentence-
repeat script to work with a while loop:

The preceding code will produce the same result as your for loop did, just
with a different look, as shown in Figure 6-6. In many cases, you can choose
to use a for loop or a while loop based on personal preference, since they can
perform many of the same tasks.

Figure 6-6 A line of text is repeated ten times using a while loop.

As far as nesting with while loops, it works the same as with the for loops.
You can insert another while loop, a for loop, or an if/else block within a
while loop. You can also insert a while loop within the other statement blocks
if you wish.

do while
The do while loop is a special case because the code within the loop is
performed at least once, even if the comparison used would return false the
first time. A comparison that returns false in other loops on the first attempt
would cause them never to be executed. In the case of a do while loop, the
loop is executed once, and then the comparison is checked each time
afterward to determine whether or not it should repeat.

The following is an example of a do while loop that will run five times:

Notice that the keyword do and the opening curly bracket are the only things
on the first line of the block in the preceding code. Then, when the block is
complete, you see the while statement and comparison. The do keyword is
how you ensure the code block is executed at least once.

After that, the browser checks to see that the comparison returns true
before repeating. In this case, the loop repeats five times since the variable
count starts at 1 and is increased by 1 each time through. When the value of
count reaches 6, the loop is skipped and no longer executed. Also notice that
there is a semicolon at the end of the loop to end the statement, unlike with
other types of loops.

To see an example of a do while loop that gets executed at least once even
though the initial comparison would return false, look at the following
example code:

The loop in the preceding code will only run the first time. When the
comparison is checked (count will be 12 by this time, since 1 is added to it in
the execution of the loop), it returns false and the loop is no longer run.

A do while loop is most useful when you have some code that you need to
have executed at least once but need repeated only if certain conditions are
met; otherwise, one of the other two loops would be sufficient for the task.

for in, for each in, and for of
The for in loop allows you to loop over all the names of the properties of an
object, the for each in loop allows you to loop over the value of each of the
properties, and the for of loop allows you to loop through various types of

iterable objects. These loops will be covered in more detail in Chapter 8.

Using break and continue
The break and continue statements allow you to stop what a loop is currently
doing, but they work in different ways. As you will recall from the use of a
break statement within a switch block earlier in the chapter, the break
statement stops the loop at that point and completely exits the loop, moving
on to the next JavaScript statement after the loop. For instance, break could
be used in this manner:

This loop will go through normally until count is equal to the value of
stopnumber (in this case, 5). When this happens, a special message is written
to the page and the break statement is used to end the loop entirely. Thus,
rather than going through the loop ten times, the loop will only be executed
five times.

If you decided that you did not want to completely leave the loop when
that condition occurs, you could modify the loop to use the continue
statement. The continue statement will stop the loop from executing any
statements after it during the current trip through the loop. However, it will
go back to the beginning of the loop and pick up where it left off, rather than
exiting the loop entirely. For example, you could use the following code:

This time, nothing is written to the page when count is equal to the value of
skipnumber (in this case, 5). Instead, the loop is told to go back to the
beginning and continue from there. The result is that the “I am part of a
loop!” message will be written to the page only nine times (effectively
skipping the fifth time the text would be written and going on to the sixth).
Figure 6-7 shows how this would look when run in a browser.

Figure 6-7 The fifth iteration is skipped, so only 1–4 and 6–10 are
displayed.

The break and continue statements will prove helpful to you when special
situations come up that require you to stop the loop entirely or to stop the
loop and restart it at the beginning.

Ask the Expert
Q: Are loops useful for anything other than writing a line of text

to the page repeatedly?

A: Yes, you will see their usefulness more as you progress through
the chapters. You will see in Chapter 7 that they can be especially
useful when dealing with arrays.

Q: Is it really okay to use the variable I have counting the loop
inside the loop? Couldn’t that lead to problems?

A: It is okay to use that variable within the loop, as long as you do not
somehow assign it a new value when using it. If you are worried
that you might do this, assign its value to another variable and use
that one in the code instead. For example, take a look at the
following code:

Here, you assign the value of the count variable to a variable
named thenum. You then use the thenum variable in the code
instead of the count variable.

Note, however, that it is okay to assign a new value to a count
variable if that is what you intend to do. The preceding idea is only
a method you can use if you do not intend to change the count
variable and want to be sure you don’t accidentally do so.

Q: Should I use a for loop or a while loop when I want to use a
loop? Which one is better?

A: Use the type of loop you personally prefer. Often, the type of loop
used depends upon the situation at hand. One type of loop might
seem to make more sense than the other type under different
circumstances.

Q: Will the do while loop ever be useful to me?

A: Although the do while loop does have its usefulness, it is unlikely
that you will use it often unless you use scripts that need to have a
loop run at least once before it is checked. However, the
knowledge you gained about the do while loop in this chapter will
help you if you should encounter a script that uses it on the Web or
elsewhere.

Try This 6-2 Work with for Loops and while Loops

pr6_2.html

prjs6_2.js

In this project, you will make use of a for loop to add another feature to the
script from Try This 6-1. Suppose your online store also could only deliver a
certain number of items to each of the available cities. Unfortunately, you are
still on a tight budget and do not have online ordering in place yet. The
customer must print out a form, fill in each item number, and snail mail it to
you. You want to display a printable form for the customer with enough lines
that the customer can order up to the maximum amount of items for the city
entered.

Step by Step
1. Create an HTML page and save it as pr6_2.html. Add the script tags to

point to a script named prjs6_2.js.

2. Create an external JavaScript file and save it as prjs6_2.js. Use it to
complete steps 3–5.

3. Copy and paste your JavaScript code from prjs6_1.js into your
prjs6_2.js file.

4. Add a new variable named items to the script and assign it a value of 0.

5. In the switch statement, add code to assign the following values to the
items variable, depending on the name of the city:

10 if the city is Johnstown.
5 if the city is Donville.
2 if the city is Danieltown or Martyville.
0 for any other city name that is entered.

6. After the document.write(msg) statement, add additional code so that if
the value of the items variable is greater than 0 (an if statement), then
the following document.write() statements are executed.

7. Right after these statements (still inside the if statement), create a for
loop that will display a number followed by a series of underscores (_)
to create a place to fill in an item number. The loop will run enough
times to allow the maximum number of items to be ordered for the city
that was entered.

8. When you are done, your JavaScript file should have the following code
(other solutions are possible as well):

9. Save the JavaScript file again and view the HTML page in the browser.
Enter a city and view the results. You can reload the page to try different
city names.

Try This Summary
In this project, you used your knowledge of loops and if statements to
enhance your previous project by adding a customized “snail mail” order
form for customers in different cities.

 Chapter 6 Self Test

1. A conditional statement is a statement that you can use to execute a bit
of code based on a __________, or do something else if that

__________ is not met.

2. You can think of a conditional statement as being a little like
__________ and __________.

3. Rather than executing every single line of code within the script, a
conditional statement allows certain sections of the script to be executed
only when a particular condition is met.

A. True
B. False

4. Which of the following would be valid as the first line of an if/else
statement?

A. if (x=2)
B. if (y<7)
C. else
D. if ((x==2 &&)

5. What do you use to enclose the blocks of code in conditionals and
loops?

A. Parentheses
B. Square brackets
C. Curly brackets
D. Less-than and greater-than characters

6. The __________ statement allows you to take a single variable value
and execute a different line of code based on the value of the variable.

7. A __________ is a block of code that allows you to repeat a section of
code a certain number of times.

8. A loop is useful because it forces you to type lines of code repeatedly.

A. True
B. False

9. Which of these would be valid as the first line of a for loop?

A. for (let x = 1; x < 6; x += 1)

B. for (x==1; x<6; x+=1)
C. for (int x=1; x=6; x+=1)
D. for (let x+=1; x<6; x=1)

10. A __________ loop looks at a comparison and repeats until the
comparison is no longer true.

11. Which of these would not be advisable as the first line of a while loop (it
creates an infinite loop)?

A. while (x<=7)
B. while (x=7)
C. while (x<7)
D. while (x!=7)

12. A do while loop is special because the code within the loop is performed
at least once, even if the comparison used would return false the first
time.

A. True
B. False

13. The first line of a do while block contains the keyword do and a
comparison.

A. True
B. False

14. The last line of a do while block contains only a curly bracket.

A. True
B. False

15. How many times can you nest a code block within another?

A. None
B. Once
C. Three times, but no more
D. As many times as you like (though enough nesting could make the

browser run out of memory)

I

Chapter 7
JavaScript Arrays

Key Skills & Concepts
• Defining and Accessing Arrays

• Array Properties and Methods

• Using Arrays with Loops

• Nesting Arrays

n this chapter, you are going to learn about JavaScript arrays and what
they can do to help you improve your scripts. You will begin with a basic
overview of what arrays are and why they are useful, and you will learn

how to define and access arrays in JavaScript. After that, you will learn about
helpful properties and methods that can be used with arrays. Finally, you will
learn how to nest arrays to provide additional levels of organization.

What Is an Array?
An array is a way of storing a list of data (for example, a list of favorite
colors or favorite foods). These values are accessed through the use of an
index number.

To get an idea of how an array works, suppose you have a class full of
students and you want to be able to quickly display the name of every
student. You could use regular variables to hold the name of each student, but
typing each variable name into a document.write() statement would take a

long time. Instead, you could store each student’s name in an array, which
will allow you to access it more easily with a few lines of code using a loop.

The array would allow you to put together a number and a name, such as
in the following example:

• Student 0: Thomas

• Student 1: Roger

• Student 2: Amber

• Student 3: Jennifer

By storing it in a manner like this, you could use the numbers to get the name
of each student. This is where arrays become useful as a way to store
information and access it later.

NOTE

Notice that the first student in the array is Student 0 rather than
Student 1. This is because arrays begin storing values with the
number 0 rather than 1. This will be discussed in more detail as you
move through this chapter.

Why Arrays Are Useful
Why would the use of numbers make it easier for you to access the stored
information? Because, with the use of numbers, you can easily use a loop to
cycle through the information instead of manually typing each entry. If the
list of students in the example becomes long, the loop would save you quite a
bit of typing when you want to have all the names displayed in the browser.

For instance, if you assigned the name of each student in your example list
to a variable and then wrote the names to the screen, you would need to
rewrite each variable name in the document.write() statements. The following
code shows an example of this:

If you were able to use a loop to repeat a single document.write()
statement for each student, you could avoid writing four separate variable
names. An array is a handy way to store the values (student names), because
you can cycle through the values with a loop instead of writing out each
value—even if you don’t know the number of students beforehand (by using
the length property of the array). You will see more on this as you move
through this chapter.

Defining and Accessing Arrays
Now that you know what arrays are, you are ready to see how to name,
define, access, and use arrays in JavaScript.

Naming an Array
You can name an array using the same rules you have already learned about
naming variables. Refer to Chapter 3 for a list of these naming rules.

Defining an Array
JavaScript arrays are very versatile. You can choose whether or not to specify
the number of items within an array, and you can use values of any data type
in any position within an array (for example, you could have the first element
be a number, the second a string, and so on). To see how this all works, you
will first learn the two ways you can define arrays in JavaScript: the array
constructor and array literal notation.

The Array Constructor
The array constructor defines an array using the following format:

You replace arrayname with the name you wish to give to the array. You will
notice that the keyword new is used with Array(). This code creates an empty
array, but you can also place arguments within the parentheses to provide
either the length of the array or the values of each of the individual array
items.

To specify the length of the array, you place a single numeric value within
the parentheses, as shown in this code:

This array is named students and contains four items. All four values are set
to undefined initially, but each item can be defined later in your code.
Though you can do this, it is not necessary to set the array length, as it can
vary as needed during your script execution.

To specify the values of each item in the array, you provide them as
arguments, just as you would with a function:

This array has four defined items: “Thomas”, “Roger”, “Amber”, and
“Jennifer”.

As you have read, JavaScript allows you to have various data types within
the same array. The following code also produces a valid array:

In this way, you have a great deal of flexibility, since you are not limited to
one data type in an array.

CAUTION

When using the array constructor, providing a single numeric value as
the argument will always create an array with that length, rather than
an array with one item of that value. Thus, let students = new
Array(4); will create an array with four items rather than an array with
one item having a value of 4. If more than one argument is provided
(whether numeric or not), then all arguments will be used as item
values as expected.

Array Literal Notation
Array literal notation provides a shorter method for defining arrays, using
square brackets ([]) rather than the constructor syntax. For example, you can
create an empty array using the following code:

You can add items by simply providing them in a comma-separated list, as
you do with arguments. The following examples all create valid arrays using
array literal notation:

As with the array constructor, any data type is allowed as a value for an item.
In this book, I will most often use array literal notation when defining arrays.

CAUTION

When using array literal notation, a single numeric value creates an
array with that value as the only item, whereas the array constructor
would create an array of that length. Thus, let students = [4]; will
create an array with one item with a value of 4, rather than an array
that contains four items.

Accessing an Array’s Elements
To access the elements of an array, you use what is called an “index” that
allows you access to each item in the array by its position. For instance,
consider the following example code:

You can access “Thomas” using the syntax students[0], “Roger” using
students[1], and so on. Notice that square brackets are used immediately after
the array name and that they contain the index of the item you wish to access
in the array. You will also see that the first item is accessed using 0 as the
index. This is because arrays begin counting at 0 instead of 1; thus, you need
to be careful that you do not get confused about the index of an item in an

array. The first item has an index of 0, the second has an index of 1, the third
has an index of 2, and so on.

You can use an array item in your code just as you would a variable. For
example, take a look at this code:

This code would send an alert saying “Thomas” to the viewer. You could
display each student name in the array if needed, as in this code:

This will display the list of students on the Web page, in order.
Unfortunately, as this list grows, you will have to continue adding lines of
code for each new item. This is where the length property and the use of a
loop can help you work with an ever-growing array.

Using the length Property and Loops
A very handy value to have is the number of items in an array. In JavaScript,
this can be obtained by using the length property. To access the value of the
length property, you use the name of the array, followed by a dot (.),
followed by length, as in the following code:

This will send an alert with the number 4 to the viewer, since there are four
items in the array.

Since your array could have more items added to it or removed from it at
any time, the length property provides a way to find out how many items are

currently in the array. One advantage of this is that you can create a loop to
cycle through each item in the array.

Recall from the previous section that you had the following code:

This code works, but it would be much better if you did not need to include a
new line of code each time an item is added to the array. Since you now have
the length attribute, you can use it to create a loop that will write each array
item on the page, regardless of the length. The following code shows an
example of this:

Notice that the for statement initializes a variable named i and gives it a value
of 0. It is then compared to the value of students.length (which in this case is
4) each time through the loop, and is incremented by one each time. This
allows the loop to cycle through each array item by its index, starting at 0 and
running through the last item in the array (in this case, students[3], the fourth
item in the array). Note that < is used and not <=, which would try to access
students[4], which does not exist since counting starts at 0.

The result of this code when run in a browser is shown in Figure 7-1.

Figure 7-1 The name of each student is displayed using a loop.

Now, we can add any number of items to the array and the script will still
write all of the items on the page. For example, suppose you added some
items to the array, as in the following code:

This time, students.length will be 6, and the names of all six students will be
written on the page. Figure 7-2 shows the result of this change when viewed
in a browser.

Figure 7-2 The added array items are written on the page.

As you can see, arrays and loops work extremely well together, giving you
a way to access all of the items in an array and to perform any needed tasks
without the need to repeat similar lines of code numerous times. Since the
number of items and the values of items can be altered at any time, this
technique can be an especially useful tool.

Changing Array Values and Changing the Length
You can alter arrays in a number of ways. Here, you will look at two things
you can do to make changes to an array: changing values and changing the
length.

Changing Values
Each array item can have its value changed at any time in the script. Much
like variables, the value of array items can be changed simply by assigning a
new value, as in the following code:

This changes the value of the third array item (index 2) from “Amber” to
“Dawn”. You can also loop through the array and change every item as
desired. For example, the following code will make the same alteration to the
value of each array item:

This assigns all of the students a last name of “Doe”: students[0] now has a
value of “Thomas Doe”, students[1] now has a value of “Roger Doe”, and so
on.

Changing the Length
Not only can you access the value of the length property, you can also change
it. Doing so will either remove items from the end of the array or add items to
the end of the array. For example, the following code would remove the last
two items from the students array:

The array originally had four items, but now has only the first two: “Thomas”
and “Roger”.

If you change the length value to a number that is greater than the array’s
current length, then items will be added to the end of the array. The following
code shows an example of this:

The array will now have seven elements, adding three elements to the end.
The last three elements (students[4], students[5], and students[6]) will have a
value of undefined until they are explicitly given a value.

One additional way to increase the length of an array is to assign a value
to an index that is greater than any index currently in the array. For example,
consider the following code:

Defining an item at index 6 forces the array to expand in order to include the
new item. The elements in between the end of the original array and the
newly defined index will have a value of undefined until they are given a
value. In this case, students[4] and students[5] will be undefined, while
students[6] will be “Marty” as defined in the code.

If you are not sure where the last element is and want to add to the end of
the array, you can use the length of the array in the brackets to do so, as in the
following code:

Here, students[4] is added to the array and assigned a value of “Marty”. This
works because the array starts at 0, so it ends at length – 1.

Other ways of adding or removing items are available using array
methods, which you will learn about later in this chapter.

Try This 7-1 Use Loops with Arrays

pr7_1.html

prjs7_1.js

This project allows you to practice using loops with arrays. Suppose your
company is selling specific computer parts and you want to display each part
that you have for sale. All of your part names are stored in an array.

Step by Step
1. Create an HTML page with a heading with the text “Computer Parts

Available”. Add script tags that include an external JavaScript file
named prjs7_1.js. Save the HTML file as pr7_1.html.

2. Create an external JavaScript file and save it as prjs7_1.js. Use it for
steps 3–6.

3. Create a new array named computer_parts and assign the following list
of parts as values for the items in the array:

Monitors
Motherboards
Chips
Hard Drives
DVD-ROMs
Cases
Power Supplies

4. Display each computer part on its own line in the browser window (use
a loop).

5. When complete, your JavaScript file should have the following code
(more than one correct answer is possible):

6. Save the JavaScript file and load the HTML file in a browser to view the
results. You should see the current list of parts.

Try This Summary
In this project, you used your knowledge of loops, arrays, and Array object
properties to create two different results. One result lists the elements of an
array, while the other adds some elements to the array and lists the elements
in alphabetical order.

Array Properties and Methods
Arrays have a number of properties and methods available for use in your
scripts. These allow you to do things such as add items, remove items, sort
items, combine arrays, and more. Arrays have these properties and methods
because arrays are objects in JavaScript (you will learn about objects in

Chapter 8). To begin, you will take a look at the array properties, followed by
the array methods.

Properties
Table 7-1 lists the properties of the Array object and provides a short
description of each. Each property is discussed in more detail in the sections
that follow.

Table 7-1 Properties of the Array Object

The constructor and prototype Properties
The constructor property contains the value of the function code that created
the array’s prototype. It simply returns this value:

The prototype property allows you to add properties and methods to all
instances of an object that already exists, such as the Array object. Adding to
the array prototype would affect all arrays used in the script, and is best to
avoid for now. You will learn more about how constructor functions and
prototypes work in Chapter 8.

The index and input Properties
To understand the index and input properties, you first need to understand
regular expressions (which are used to match text strings), which requires a
lengthy explanation, as provided in Chapter 13. Discussion of the index and
input properties will be saved for that chapter.

The length Property
The length property, as you have seen, returns a number that tells you how
many elements are in an array. Since you have already been using this, you
can refer to previous sections in this chapter for more information.

Methods
Now that you know the properties of the Array object, this section presents
the methods that you can use to do different things with your arrays. Table 7-
2 lists the methods and provides a description of what each method does.
Following the table, the commonly used methods are described in more
detail. For more details on any of the methods, see developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global_Objects/Array.

http://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array

Table 7-2 Methods of the Array Object

The join() Method
The join([separator]) method is used to combine the items of an array into a
single string, with each item separated by a comma (default) or a string sent
to it as an argument.

To see how this method works, take a look at a bit of code. The following
example defines an array and then calls the join() method on the array name:

This code assigns the result of the join() method to the variable fruit_string.
Notice that the method is called by using the name of the array (fruits),
followed by a dot (.), followed by the method name. The fruit_string variable
will have the following string value:

oranges,apples,pears

You can see this result by writing the string variable into a Web page. The
following code will do this for you:

Now you can see the string that is returned from the join() method. Figure 7-3
shows what this code produces when run in a browser.

Figure 7-3 The new string is written on the page.

If you want to separate the items in the new string with something other
than a comma, you can send the string you want to use as an argument. The
following code uses a colon as a separator:

This time the string will be a little different from the previous one, because it
has colons in place of the commas in the previous example. Figure 7-4 shows
how this string would display in the browser window.

Figure 7-4 The new string is written on the page with colons as separators.

The pop() Method
The pop() method is used to remove the last item from an array. If you assign
the result of the method to a variable, the popped element will be returned
and assigned to the variable.

The following code creates an array and then removes the last item from
the array using the pop() method:

This creates an array named fruits with three items (“oranges”, “apples”,
“pears”). Then, the last item is removed using the pop() method, shortening
the array to have only the first two items (“oranges”, “apples”).

If you want to remove an item but still use it in some way later, you can
assign the result of the method to a variable. The variable will be assigned the
value of the item that was popped. The following example removes the last
item of an array and then sends the popped item as an alert to the viewer:

This will pop up an alert that says “You picked my pears” to the viewer.

The push() Method

The push(item) method is used to add items to the end of an array. The
arguments sent to the method are the new items you wish to add to the array.
If assigned to a variable, this method will return the new length of the array.

As an example, look at some code that adds one item to the end of an
array:

This code creates an array named fruits with two items (“oranges”, “apples”)
and then uses the push() method to add a third item, “pears”. The array now
contains three items (“oranges”, “apples”, “pears”), with “pears” being the
last item in the array.

You can add more than one element by sending more than one argument.
The items will be added in the order in which they are sent in the argument
list. The following code adds two elements to the fruits array:

This code adds two items to the fruits array. In the end, the array contains
four elements (“oranges”, “apples”, “pears”, “grapes”).

If you want the new length that is returned by the method, you can assign
the result to a variable. The following code does this and then sends the
viewer an alert with the returned value:

Since two items were added to the end of the array, the new length of the
array will be four, and an alert saying “The array now has 4 items” will be
sent to the viewer.

NOTE

For those who have programmed in other languages, push() and pop()
treat an array like a stack (last in, first out). Combining these with the
shift() and unshift() methods allows an array to work like a queue.

The shift() Method
The shift() method is used to remove the first item of an array. It returns the
value of the item that was removed from the array.

The following code uses the shift() method to remove the first array item:

This code creates an array with three items and removes the first item with
the shift() method. This causes the array to have only two items remaining
(“apples”, “pears”).

To use the value of the element that was removed, you can assign the
result of the method to a variable. The following code assigns the removed
element to a variable and then alerts the viewer about what was removed:

This code displays the alert “You picked my oranges” in the browser
window.

The unshift() Method
The unshift([item]) method is used to add items to the beginning of an array.
The items you wish to add to the array are sent as arguments. The value
returned by the method is the new length of the array.

The following example adds one new item to the beginning of an array:

This creates an array with two items and then adds an item to the beginning
using the unshift() method. The array then contains three items (“oranges”,
“apples”, “pears”).

If you want to add more than one item at a time, you send them as
arguments in the order in which you wish to add them. The following
example adds two items to the beginning of the array:

This takes the initial array and adds two elements to the beginning. The array
ends up containing four elements (“oranges”, “grapes”, “apples”, “pears”)
after the unshift() method is called.

The reverse() Method
The reverse() method is used to reverse the order of the items in an array. To
demonstrate how to use this method, the following code creates an array and
then reverses the order of the items:

The initial order of the array is “oranges”, “apples”, “pears”. When the
reverse() method is called, the order of the items changes to “pears”,
“apples”, “oranges”. Note that this changes the original array, rather than
returning a new array.

The sort() Method
The sort([sort_function]) method converts each array item into a string value,
and then arranges the items in ascending order based on the string values.
The following code shows an example of this method in action:

This will reorder the array so that the elements will be in alphabetical order:
“apples”, “grapes”, “oranges”, “pears”.

Recall, however, that strings are compared based on their character codes
(refer to the “The Is-Greater-Than Operator (>)” section in Chapter 5). If
there is a difference in capitalization, this can cause an unexpected order to be
returned:

With the last item capitalized, the order of the array after the sort is “Grapes”,
“apples”, “oranges”, “pears”. To fix this, you can use a method for strings
named toLowerCase() to ensure all values are compared in lowercase and
return in the order expected after the sort:

With this in place, the order will now be “apples”, “grapes”, “oranges”,
“pears”.

Since the sort() method changes all values to strings, even an array
containing only numeric values will be sorted based on their conversion to
strings:

Instead of the expected order (numeric), the order is 1, 2, 20, 3 after the sort
since the values are compared as strings. To work around this type of issue,
JavaScript allows you to specify a comparison function as an argument of the
sort() method.

A comparison function is a function with two arguments, which returns a
positive number, negative number, or zero based on the result of comparing
the two argument values. For example, a simple comparison function is
shown here:

Basically, a comparison function should return a positive number if the first
argument is greater than the second, a negative number if the first argument is
less than the second, or zero if the two arguments are equal. This will sort the
items in ascending order. Using the function shown in the preceding code as
the argument to the sort() method will place the numbers in the expected
numerical order, since the greater-than operator will compare the numbers as
numerical values instead of converting them to strings. Here is an example of
this in action:

With this in place, the sort will place the items in the expected order: 1, 2, 3,
20.

The concat() Method
The concat([array]) method will concatenate the array with the arguments
sent to it and return a new array containing all of the items. It does not affect
the original array. You use array names or individual values as arguments and
provide them in order.

The first example combines the elements of two arrays. To do this, only
one argument needs to be used—the name of the array to be concatenated
with the array that calls the method:

This code creates an array named fruits with two elements, and an array
named veggies with two elements. Next, it defines fruits_n_veggies, which

will receive the array returned by the concat() method. In this case, the
fruits_n_veggies array will consist of “oranges”, “apples”, “corn”, “peas”.

If you instead want to have the items in the veggies array listed first, you
can call the method using the veggies array name and send the fruits array
name as the argument:

Now the items of the veggies array are listed first, and the new
fruits_n_veggies array has the following items: “corn”, “peas”, “oranges”,
“apples”.

If you combine three arrays, the items of the array with which you call the
concat() method will come first, and then the items of each array sent as
arguments will be added in the order in which they are sent:

Now you are combining three arrays, and the following are the items in the
new three_groups array: “oranges”, “apples”, “corn”, “peas”, “fish”,
“chicken”.

If you code it in the following way instead, you will get an array with the
same elements, but in a new order:

The following is the order of the elements in the new three_groups array
when using this code: “fish”, “chicken”, “corn”, “peas”, “oranges”, “apples”.

In addition to concatenating arrays, you can also concatenate strings,
numbers, or other data types. These can all be done together if desired:

This concatenation creates an array named big_array. It adds the veggies
array, a string, a number, and another array to the fruits array. The final items
in big_array are: “oranges”, “apples”, “corn”, “peas”, “cat”, 4, “house”,
“car”.

If you use concat() without any arguments, it will make a copy of the
original array. So, the following code would simply give you a copy of the
fruits array:

The slice() Method
The slice(start, [stop]) method is used to slice a specified section of an array
and then to create a new array using the elements from the sliced section of
the old array.

The following is the general syntax for using this method:

arrayname.slice(start, stop);

You replace start with the index where you will start the slice and replace
stop with the index that comes after the last item you wish to slice.

For an example, the following code slices two items from an array and
creates a new array with those items:

This slices the second item (index 1) and third item (index 2) of the array. It
does not pull out the fourth item (index 3). The new array named somefruits
contains the sliced items (“apples”, “pears”).

NOTE

If the second argument is not included, then the slice method will
continue to the end of the array. This makes it a common solution to

copy an array using slice(0), for example, let same_fruits =
fruits.slice(0);

The splice() Method
The splice(begin, num_items, [add_item]) method allows you to remove or
replace items in an array. The arguments that can be sent include the index at
which to begin the splice, the number of items to remove, and the option to
add new items to the array.

If you want to remove a single item from an array, you could use code
such as the following:

This begins removing items at index 2. The next argument is 1, so only one
item will be removed; thus, only the element at index 2 (“pears”) is removed
here. After the splice, the array contains only three items: “oranges”,
“apples”, “grapes”.

To remove more than one item, you increase the value of the second
argument. The following code removes two items, starting at index 2:

This time the array is cut down to two items (“oranges”, “apples”), since the
last two items are removed by the splice() method.

You can also use the splice() method to replace spliced items in an array
or to add items to an array. The following code replaces the spliced item at
index 2 with a new item by sending an additional argument:

This time, the item at index 2 is removed. Since the second argument is 1,
only one item is removed. The next argument is added to the array at the
index specified in the first argument (2). This value (“watermelons”) replaces
the value that was removed (“pears”). The array will now contain the
following items: “oranges”, “apples”, “watermelons”, “grapes”.

If you want to use the splice() method to add one or more items to an array
but not remove anything, you can set the second argument to 0 (thus
removing zero elements). You set the first argument to the index at which
you wish to begin adding elements. For example, take a look at the following
code:

The addition of items begins at index 2, as specified in the first argument, and
nothing is removed, as specified in the second argument. Two items are
added, after which the array will have six items: “oranges”, “apples”,
“watermelons”, “plums”, “pears”, “grapes”.

The indexOf() and lastIndexOf() Methods
The indexOf([string]) and lastIndexOf([string]) methods were added in
ECMAScript 5 and provide a way to search for an item in an array. The
indexOf() method searches the array from front to back, while lastIndexOf()
searches from back to front. If the item is found, the index of the item is
returned. If the item is not found, –1 is returned.

The following code shows how both methods can be used:

Here, searching for the item “apples” from the front using indexOf() returns
1, since it will find the first instance of “apples” at index 1. If you use
lastIndexOf() to search for “apples” from the back, then 3 will be returned,
since the first instance of “apples” lastIndexOf() will detect is the last one in
the array at index 3. Searching for “grapes” using either method will return –
1, since “grapes” is not an item in the array.

Note that when the item is not in the array, –1 is returned instead of 0
since 0 is a valid index. Thus, you will want to avoid a construct such as: if

(!fruits.indexOf(“grapes”)). Rather, you should use if
(fruits.indexOf(“grapes”) === –1) to see if an item is not in the array.

A second argument can be provided to either method to specify an index
from which to begin searching. This allows indexOf() or lastIndexOf() to
skip previous instances of an item and only return the index of the first item it
finds starting from the specified index. For example, consider this code:

In this case, calling fruits.indexOf(“apples”, 2) begins the search from front
to back at index 2 rather than index 0. This means that it will bypass the first
instance of “apples” at index 1, start the search at index 2, and return 3, since
the next instance of “apples” is at index 3. Calling lastIndexOf(“apples”, 1)
begins the search from index 1 and proceeds toward the front. In this case,
the “apples” at index 3 is skipped and the search begins at index 1, where it
finds “apples” and returns 1.

Finally, it is important to note that both methods use the === operator
rather than the == operator to determine whether an item was found. As a
result, no type coercion is performed and there must be an exact match for a
successful search. For example, consider the following code:

Since “2” and 2 are not strictly equal, the item is not found and –1 is
returned. Keep this in mind when making use of these methods in order to
avoid unexpected results.

The every(), filter(), forEach(), map(), and some() Methods
The every(), filter(), forEach(), map(), and some() methods were added in
ECMAScript 5 to provide a way to call a function as an argument to be run
on each item in an array. These functions return a value based on the results
of running the function called in the argument on each item in the array.

These are called iterative functions, meaning that they cycle through (or
iterate over) each item in an array. Here is what each of the iterative methods
will do when called:

• every() Executes the function provided for every array item and returns
true if the function returns true for all of the items

• some() Executes the function provided for every array item and returns
true if the execution of the function returns true for any of the items

• filter() Executes the function provided for every array item and returns
an array of items for which the function returns true

• map() Executes the function provided for every array item and returns an
array of the results of calling the function on each item

• forEach() Executes the function provided for every array item. No value
is returned.

To use one of these methods, you would call it and provide a function name
as an argument, as in the following example:

The result returned after the every() method iterates over all of the array
items running the named function (pass_grades) will be stored in the variable
named the_result.

For example, suppose the function named pass_grades() is used to
determine whether a student has made 70 or above on all recorded grades, as
in the following code:

This will return a Boolean value based on whether or not the grade is greater
than or equal to 70. You will notice that the function takes three arguments.
The first is the value of the current array item, the second is the current array
index, and the third is the array itself. These values are sent as arguments to
the function specified (pass_grades here) when any of the iterative methods is
called.

The pass_grade() function returns the following five results during the
course of the iterations: true, false, true, true, true. Since the every() method
requires all of the return values to be true in order to itself return true, it will
return false in this case due to the single low grade at index 1 (65).

Calling each of the other methods in place of every() in the previous code
will produce the following results:

• Calling some() will return true, since it only requires one of the return
values to be true (four out of five are true in this case).

• Calling filter() will return an array with all of the items that returned true.
In this case, the array would be [94, 71, 84, 99]. The item at index 1 in the
original array (65) is left out since it returns false. The new array is
assigned to the variable the_result.

• Calling map() will return an array with the result of each of the function
calls. In this case, the array would be [true, false, true, true, true]. This
new array is assigned to the variable the_result.

• Calling foreach() will not return anything. It will simply run the function
for each item in the array.

CAUTION

If you need something to be done to each item in the array, you
should not count on some() or every(), as some() will stop as soon as
there is a matching condition and every() will stop as soon as there is
a failing condition.

The reduce() and reduceRight() Methods
The reduce() and reduceRight() methods were also added in ECMAScript 5.
These methods also iterate over the items in an array, but they build toward a
final value that is returned. These methods, much like the iterative methods,

use a function as an argument. The argument function itself is passed two
arguments: the accumulated value and the current value. The first iteration
passes the first item and second item as accumulated and current,
respectively.

As an example, consider the following code:

When reduce() is called, the values are iterated from front to back, which in
this case will create a negative number (–58). The first time through, 2 and 4
are sent as arguments, and 2–4 = –2. The next time through the result (–2) is
sent as prev_value and 8 is sent as next_value, and –2–8 = –10. This pattern
continues until a final result of –58 is reached.

When reduceRight() is called, the same process occurs, but moving back
to front. In this case, 32 and 16 are sent as arguments first, and 32–16 = 16.
Next, 16 (the result) and 8 are sent as arguments, and 16–8 = 8. This pattern
continues until a final result of 2 is reached.

The toString(), toLocaleString(), and valueOf() Methods
The toString(), toLocaleString(), and valueOf() methods effectively combine
the elements of an array into a single string with a comma as a separator
character (much like using the join method with a comma separator). The
toLocaleString() method can be adjusted to return a localized version of an
item value if desired. You will learn more about the toLocaleString() method
when strings are discussed in Chapter 13.

The find(), findIndex(), includes(), and keys() Methods
ECMAScript 6 added a number of new methods for finding items, indexes,
and array keys in an array. Now you have options in addition to indexOf()

that can be more helpful to you when you are looking for specific
information.

First, the find() method can be used to find the value of the first array item
that returns true for the provided test function. If there are no matching items,
it returns “undefined.” Here is an example of this in action:

Next, the findIndex() is very much like find() but returns the index of the
first item where the provided test function returns true (as opposed to
returning the item’s value). If no matching items are found, –1 is returned.
The following code shows an example of this:

The includes() method searches the array for the provided value. If the
value is found, the method returns true; otherwise, the method returns false.
You can also provide a starting index from which to begin searching if you
do not want to search the entire array. The following code shows an example
of this:

The keys() method will return the keys in an array, which are simply the
iterator numbers (0, 1, 2, and so on). The following code shows an example
of this:

The flat() and flatMap() Methods
The flat() and flatMap() methods can be used to flatten nested arrays into an
array that does not have the nested arrays. In the next section, you will learn
about nested arrays, and these methods will be clearer. An example of using
flat() is shown in the following code (refer back here after reading the nested
arrays section):

The Array.isArray(), Array.from(), and Array.of() Methods
These array methods are called via the Array keyword since the items they
operate on may or may not be arrays at the time these methods receive them.

For instance, the Array.isArray() method tests whether or not a specified
value is an array. An example of this is shown in the following code:

The Array.from() method can be used to create an array from various
types of data, such as strings or array-like objects. A quick example of
creating an array from a string is shown in the following code:

One thing to note here is that if you send Array.of() a single argument, it
behaves differently than new Array() does. Whereas new Array(3) would
create an array with three empty items, Array.of(3) creates an array with one
item whose value is 3.

Ask the Expert
Q: Among all the properties, are there any that are specifically

useful for arrays?

A: The length property, as you have seen, is probably the most often
used property. The index and input properties are handy when
working with regular expressions, which will be discussed in
Chapter 13.

Q: Is there an easy way to remember all of these methods?

A: As with other lists, how well you remember them depends on how
often you use the methods. One helpful thing is to look for the pairs
that complement each other, like pop() and push(), or shift() and
unshift().

Q: So, the reverse() method just turns everything around
backward? Why would I want to do that?

A: You may want to reverse the order for numbers to create a list with
the highest numbers displayed first (for example, grades or
temperatures). You may also decide to have strings listed in reverse
alphabetical order in some situations.

Q: Which is better to use, the array constructor or array literal
notation?

A: Typically, array literal notation is preferred in modern JavaScript,
as the syntax tends to be simpler and it avoids some potential
confusion:

The first example creates an array with five items, which can be
confused with having 5 as the lone item. The second example
creates an array with one item (5). The third example looks as if it
might create an array with the lone value of 4.225, but this causes
an error because a floating-point number cannot be used as an array
length. The final example works as expected.

Nesting Arrays
Arrays can be nested, allowing you to use an array as an item within another
array. Doing this provides the ability to create arrays of more than one
dimension. To get an idea of how this might be used, go back to the students
array used previously:

Suppose that you also want to keep track of the last test grade and current
average grade for each of the students. You could add them directly to the
array, but this makes it more difficult to get the proper information from the
array when needed:

As you can see, looping through the array will put Thomas at index 0, his
last test grade at index 1, and his current average at index 2. Roger uses
indexes 3, 4, and 5; Amber 6, 7, and 8; and Jennifer 9, 10 and 11. Trying to
associate the values with the proper students can be difficult, especially if you

want to loop through the array. Trying to deal with which value is a student
versus a grade can become tedious, as you would need to try to calculate
based on every third position being a new student while the two indexes that
follow are grades.

It would be nice if each student could be grouped with his/her own grades
in separate arrays, each accessible through the main students array. This is
where the ability to nest arrays can make life easier for you as a coder.

Defining Nested Arrays
Using array literal notation, you can nest arrays easily by using additional
square brackets for each new array. The following code shows an example of
this:

Here, the outer array (students) includes four inner arrays. The first array is at
index 0 in the students array (students[0]). You can access items in the inner
arrays by adding a second set of square brackets immediately following the
first. For example, students[0][0] will have the value “Thomas” and
students[2][1] will have the value 81.

Note that this can also be done using the array constructor, though the
syntax is a bit longer:

This does the same thing, but you do have to be careful not to add arrays with
a single numeric item with the constructor syntax. Remember that trying to
do so will create an array with that number of items rather than an array with
that number as the lone item (for example, new Array(3) will create an array
with three items, not an array with one item that has a value of 3).

Loops and Nested Arrays
To loop through all of the arrays within an outer array, you need to create a
nested loop: an outer loop to cycle through the outer array items and one to
cycle through the inner array items. For example, the code shown next
creates a nested for loop that will iterate over the nested array structure and
display the value of each item within the inner arrays:

As you can see, the length property is used to determine how many times
each loop will be executed. The outer loop gets executed four times (for
students[0], students[1], students[2], and students[3]), and the inner loop gets
executed three times in every iteration of the outer loop (a total of twelve
iterations). Figure 7-5 shows the result of running this script in a browser.

Figure 7-5 Each item of each inner array is displayed.

With the information organized and loops at your disposal, you can now
generate any number of reports based on the data in the arrays. For example,
you could display each student’s name along with the most recent grade
earned (the last item in each of the inner arrays). The following code shows
an example of this:

Here, you are using the inner loop to gather the data you wish to display. The
if statement is used to determine if the current index is one that contains
needed data. The first thing needed is the student’s name, which is at index 0
in each inner array. The other item needed, which is the most recent grade,
will be the last item in the array. This is determined by checking whether the j
variable is equal to the length of the array minus one (which will always be
the last index in an array). At this point, you could simply use students[i][2]
instead, but that would not account for the addition of new grades to the
array. Using students[i].length–1 ensures that the most recent grade added to
the array is used. You will also see that the final else statement simply tells
the loop to continue to the next iteration, since you do not require any other
data for this report. Figure 7-6 shows the result of running this in a browser.

Figure 7-6 Each student and his/her most recent grade is displayed.

As you can see, arrays are very helpful for storing and retrieving data, and

you will find many uses for them as you continue coding.

Try This 7-2 Nested Arrays Practice

pr7_2.html

prjs7_2.js

This project allows you to practice using nested arrays. Suppose, in your
online store, you decide to display the features of each of your computer parts
along with the part names. A nested array would help keep your information
organized.

Step by Step
1. Create an HTML page with a heading with the text “Computer Parts

Available”. Add script tags to include an external JavaScript file named
prjs7_2.js. Save the HTML file as pr7_2.html.

2. Create an external JavaScript file and save it as prjs7_2.js. Use it for
steps 3–6.

3. Create a nested array named computer_parts with the inner arrays
having these values:

Inner array 0: Monitors, LCD Screens, Vibrant Colors
Inner array 1: Motherboards, Fast
Inner array 2: Chips, Pentium, Very Fast
Inner array 3: Hard Drives, 100-500 GB, Fast Reading
Inner array 4: DVD-ROMs, Burn CDs, Burn DVDs, Listen to both!
Inner array 5: Cases, All Sizes, Choice of Colors
Inner array 6: Power Supplies, We can get one for any computer!

4. Use nested loops to display each part and its features on one line. After
the part name, display a colon and a space. Between part features,
display a comma and a space. At the end of the last part feature, insert a
line break.

5. When your JavaScript code is complete, you should have the following:

6. Save the JavaScript file and view the HTML file in your browser. You
should see the list of parts and features.

Try This Summary
In this project, you used your knowledge of nested arrays and loops to create
a page that displays the items within nested arrays.

 Chapter 7 Self Test

1. An array is a way of storing a __________ of data.

2. In JavaScript, there are __________ ways to define an array.

3. In an array, access to an element is achieved through the use of a(n)
__________.

4. You can use a __________ to cycle through all of the items in an array.

5. You can use JavaScript keywords as array names.

A. True
B. False

6. Which of the following does not correctly create an array?

A. let myarray = new Array();
B. let myarray = [3, 4, "Cool", 7];
C. let myarray = new Array("hello","hi","greetings");
D. let myarray = new Array[10];

7. To correctly access the fifth item of an array named “cool”, you can
write cool[5].

A. True
B. False

8. What does the following code do?
let s_list = new Array(5);

A. Creates an empty array named s_list
B. Creates an array named s_list with a single item that has a value of

5
C. Creates an array with five items
D. The code is invalid

9. What property of the Array object will return the numeric value of the
length of an array?

A. The length property
B. The getlength property
C. The constructor property
D. The lengthOf property

10. Array __________ notation allows you to create an array using square
brackets, without the need to write out “new Array”.

11. The __________ method is used to combine the items of two or more
arrays and return a new array containing all of the items.

12. The join() method is used to combine the items of an array into a single
__________, with each item separated by a specified character.

13. The __________ method is used to remove the last element from an
array.

14. By default, how does the sort() method sort the contents of an array?

A. It reverses the contents of the array.
B. It sorts the contents numerically.
C. It sorts the contents using string character codes.
D. It sorts it based on a random algorithm.

15. __________ arrays provide the ability to create arrays of more than one
dimension.

O

Chapter 8
Objects

Key Skills & Concepts
• Defining Objects

• Creating Objects

• Using Prototypes

• Object Statements

• Understanding Predefined JavaScript Objects

bjects provide you with even more flexibility in your scripts. They can
be used as another way to store data, or can be used to create reusable
structures. In this chapter, you will learn what JavaScript objects are,

how to create objects, and how to make use of some of the predefined
objects.

Defining Objects
Since JavaScript is a prototype-based language, objects work differently than
they do in class-based languages.

JavaScript objects are basically a collection of properties and values, what
is called a hash table in programming. It is the values that give JavaScript a
great deal of flexibility—a value can be any data type, including functions,
arrays, and other objects.

You can use objects to pass multiple values around from one place to

another (you will see that this can be quite handy when passing data between
JavaScript and another language using JSON, discussed later in this book).
You can also use them to describe a general type of object, which can have
many specific instances. For example, you could have a general car object,
which could be used to build specific car types (for example, sports car, work
car, family car). Each car type could inherit property names from the general
car object and then have its own specific property values.

Creating Objects
Now that you understand what objects are and their usefulness, you can begin
creating your own JavaScript objects. To do this, you will learn about naming
conventions, the structure of an object, and how to include methods in your
objects.

Naming
As with variables and functions, there are certain rules you have to follow
when naming your objects in JavaScript. They are the same rules you follow
for naming variables and functions, which you can review in Chapter 3.

Single Objects
There are two ways to create single objects in JavaScript: by using the object
constructor function or by using object literal notation. Single objects are
good for specific purposes, such as creating name-value pairs or for creating
unique objects that won’t need to share code with other objects, where you
might prefer to create a reusable structure instead. Also, you can use single
objects to pass configuration parameters to functions.

The Object Constructor
The object constructor looks much like the array constructor. You simply
give the object a name and define it as a new object. The following code
shows an example of this:

This creates an empty object to which properties and values can be assigned,

as in the following code:

Here, a property named “seats” is defined and assigned a value of “cloth”.
Notice the object name, followed by a dot, followed by the property name. In
this way, you can define any number of properties. You can also assign a
function to a property. This creates what is called a method (recall that you
have already been using methods such as document.write() and
window.alert() in your code). A method is a function that is part of an object
and must be called using the name of the object. For example, the following
code will create two properties (“seats” and “engine”) and one method
(“show_features”):

As you can see, a function expression is used to define the
car.show_features() method. The last line shows how the method is called
using the object name, the dot, and the method name. Notice that the method
accesses the value of each property by using the object name, a dot, and the
property name. When the method is called, it sends an alert saying “car: cloth
seats, V-6 engine”.

You can also assign a named function as a method if desired, as in the
following code:

If you use this method, be sure not to use parentheses in the assignment, as
you want the function itself assigned as the method rather than its execution.

Object Literal Notation
Object literal notation uses curly brackets to enclose an object’s properties
and values. The syntax for this looks like this code:

You can have as many property-value pairs as needed; just be sure to separate
each one with a comma. The last property-value pair does not have a comma
afterward. Notice also that each property name is followed by a colon to
separate it from its value.

Given the car object used in the previous section, you could rewrite it in
object literal notation using the following code:

As you can see, this time all of the properties and values are separated by a
colon (:), including the method function. Also, note that values of properties
follow the same rules as normal assignments. For example, strings have
quotes, but numbers and Boolean values do not.

Object literal notation provides a straightforward way to create single
objects and allows the properties and values to be contained within curly
brackets ({}), which creates a good visual separation from other code in the
script.

Accessing Property Values
JavaScript provides two ways to access the values of properties in objects:

dot notation and bracket notation.

Dot Notation As you have seen previously, you can use dot notation to
access object property values. You use the object name, followed by a dot,
followed by the property name, as in the following code:

The value of the seats property is accessed by using the object name (car),
followed by a dot (.), followed by the property name (seats). The viewer is
shown an alert saying “cloth”.

Bracket Notation Bracket notation allows you to access property values by
using square brackets ([]). This notation is similar to the notation used for
arrays, but uses string values rather than numbers in the brackets. You use the
object name, followed by the opening bracket ([), followed by the property
name as a string, and end with the closing bracket (]).

The following code shows an example of bracket notation:

Here, the value of the seats property is accessed and alerted to the viewer.
Notice that this notation requires that the property name be inserted as a

string value (using the quote marks in this case). Since the property name is
inserted within the brackets as a string value, it can be put together via
concatenation and/or using variables. For example, consider the following
code:

As you can see, each of these will produce the same result and get the value
of the seats property from the car object. Four alerts saying “cloth” will be
issued, since each combination evaluates to car[“seats”].

This feature of bracket notation becomes quite useful when you need to
use a property name, but it is stored in a variable (for example, when a value
is sent as an argument to a function). Since dot notation only allows the use
of the bare property name, it cannot use a variable value:

Here, rather than using the value of sts, a search for a property named sts
within the car object ensues, which results in a value of undefined being
returned when the property is not found. Using bracket notation, you can get
this working:

This time, the value of the variable sts is used, which is the string “seats”, and
“cloth” is alerted to the viewer.

Which Notation to Use? The method to use depends on the situation. Dot
notation is used most often, but when you need to put the property name
together, use the value of a variable, or use a value that is not JavaScript-
friendly such as seat-type, then bracket notation should be used in order to
successfully access the property value.

Try This 8-1 Create a Computer Object

pr8_1.html

prjs8_1.js

In this project, you create objects on your own and develop the skills
involved in object creation. The script will create a computer object and then
use properties, methods, and instances of the object to create feature lists and
price lists for the different types of computers.

Step by Step
1. Create an HTML page and save it as pr8_1.html. Add the necessary

script tags to point to an external JavaScript file named prjs8_1.js.

2. Create an external JavaScript file and save it as prjs8_1.js. Use it for
steps 3–5.

3. Create an object named computer that has three properties: speed with a
value of “4GHZ”, hd with a value of “500GB”, and ram with a value of
“8GB”. Use object literal notation.

4. Display the value of each of the properties on the page in this format:

Computer Speed: speed value
Computer Hard Disk: hd value
Computer RAM: ram value

When complete, your JavaScript file should look like this:

5. Save the JavaScript file and view the HTML file in your browser. You
should have a list of the properties of the computer object you created.

Try This Summary
In this project, you were able to use your new knowledge of objects to create
an object with properties using object literal notation. You were able to create
a Web page that displays the properties of the computer in the browser.

Object Structures
When you program objects in particular ways, you can build an object that
acts as a structure, or model, for other objects. To get an understanding of
how this works, you will look at constructor functions and learn how
prototypes are used.

Constructor Functions
A constructor function can be used to create reusable code for objects. For
instance, you could have a Car object created by a constructor function that
would allow its code to be reused for any number of car types. You could
have a work car, a family car, and a fun car that all have the same property
and method names that are defined in the car constructor function while
sending them different values.

For example, to create a car constructor, you would create a function
named Car() and then add your properties and/or methods within the
function. The following example shows an outline of a Car() constructor
function:

Note that the function name begins with a capital letter (C). While this is not
required, it is customary to begin the name of a constructor function with an
uppercase letter to help distinguish it from other types of functions.

To complete the preceding function, you need to add your properties to the
function. Suppose you want to create an object named car with the properties
seats, engine, and radio. The following code shows how this is done:

In this code, on the first line, you see that the function takes three arguments.
The next thing you see is that the values of the arguments are assigned as the
property values; however, there is a new keyword named this. The keyword
this in JavaScript is used to represent the current object being used, or “this
object,” so to speak. You will see how this works to create the structure for
other objects. Note that a return statement is not needed as part of the
constructor function.

Once you have the object’s properties set with the constructor function,
you need to create what is called an instance of the object in order to use it,
because a constructor function creates only the structure of an object, not a
usable instance of an object. To create an instance of an object, you use
another JavaScript keyword: new. You have used this previously with the
array constructor. Arrays are also objects in JavaScript, so using new Array()
creates an instance of the JavaScript Array object.

The use of the new keyword to create an instance of your Car object is
shown in the following code:

The first thing you see is that you are creating a new variable named
work_car. This variable will be assigned as a new instance of the Car object
that uses the arguments provided as its property values. These are the values
you want to use for this instance of the Car object. Given the order, you are
saying that you want the seats to be cloth, the engine to be V-6, and the radio
to be Tape Deck.

You can now access the work_car instance of the Car object. If you want
to know what type of engine the work_car has, you can access it with dot
notation like this:

This assigns the value of the engine property of the work_car instance of the
Car object to the variable engine_type. Since you sent V-6 as the engine
parameter to the constructor function, the engine_type variable is assigned a
value of V-6.

Putting the Pieces Together
To help you visualize this process, it’s time to put all these parts together so
that you can see how it works. The following code combines all the code of
the previous examples to make things easier to see:

Now you can see the constructor function, the creation of an instance of the
Car object, and the assignment of one of the properties of the object to a
variable. When the work_car instance of the Car object is set, it gets the
values of cloth for the property work_car.seats, V-6 for the property
work_car.engine, and Tape Deck for the property work_car.theradio.

In order to see how an instance of an object works, you will add another
instance of the Car object to your code. The following code uses two
instances of the Car object, one named work_car and a new one named
fun_car:

Notice how the new instance of the object uses the same constructor function,
but with different values. You could now access any of the features from
either type of car. For example, take a look at the following code:

The results of this script are shown in Figure 8-1.

Figure 8-1 The features you like from each type of car are displayed in the
browser.

Property Values
While this isn’t real estate, you can alter your property values. In your scripts,
you can change the value of an object property on-the-fly by assigning it a
new value, just like a variable. For example, if you wanted to change the
value of the work_car.engine property from the previous examples, you could
just assign it a new value of your choice. The following example shows the
assignment of a new value to the work_car.engine property:

While perhaps not a good change, it could save you money on insurance (and
gas)!

It is important to note that the preceding assignment will change the value
of the work_car
.engine property for any calls made to it after the change. Anything you do
with its value before the change would not be affected.

For example, the following code gives a new assignment to the
work_car.engine property:

The work_car.engine property was originally set to “V-6”, but it is
changed to “V-4”. When it is assigned to the original_work_car_engine
variable, it was still “V-6” and that variable retains that value. After it is
changed, the new value is assigned to the new_work_car_engine, which uses
the new value of “V-4”. Figure 8-2 shows the result of running this script in a
browser.

Figure 8-2 The change in the property value affects the statements that use
it after the change, but not those that use it before the change.

Adding Methods
To add a method to a constructor function, you can assign a function
expression to a property name, as in the following code:

As you can see, you can call the method once you have an instance of the
object using the instance name, dot, and method name. When the method is
called for the work_car instance, the string “This amazing car has these
features: cloth seats, V-6 engine, Tape Deck” is displayed on the page.

While adding a method to the constructor is straightforward, there is a
drawback to including methods within the constructor function. For each new
instance of the object, a new method function that does the same thing is
created. Effectively, the method is reproduced numerous times, even though
it is not seen in the code directly.

As you have seen, a method within the constructor is simply another
property. Since each property is unique to each instance, method functions
are also unique to each instance. If you have 50 instances of the Car object,
then 50 functions will be created, using up resources.

To make it a single function that is simply reused, you could move the
method function outside of the constructor function, as in the following code:

Here, a function named describe_car is defined outside of the constructor,

allowing it to be assigned to the describe property inside the constructor to
make it a method function. Notice that when it is assigned, no parentheses ()
are used. This is so that the function itself, rather than the result of the
function, is assigned to the describe property. When the instance is created
and the method is run, you get the same result you did before, so the move
was successful.

However, there is a downside to this technique as well: method functions
are now global, which can clutter the global scope with a lot of functions that
should really be within the local scope of the Car structure. To fix this issue,
you will need to learn about prototypes.

Using Prototypes
Every function in JavaScript has what is known as a prototype property,
which is an object that contains the properties and methods that are always
available for each instance of an object created using that function. This
allows code to easily be reused across instances for shared properties and
methods.

Working with Prototypes
To see how prototypes work, you will make use of the prototype property
with your Car object. Consider the following code:

Notice how the function Car has a prototype property (Car.prototype). Since
the prototype is an object itself, you can add a property to the prototype as
you could with any other object. Here, a property named locks is added to the
Car prototype using Car.prototype.lock and assigning it a value.

So, what exactly does this do? If you add instances of the Car object, you
will find that each instance can access the locks property:

Both alerts will display the value “automatic”, which is not in the Car
constructor, but is found in Car’s prototype.

How does this happen? In JavaScript, calling a property or method of an
object will first check the object that tried to use it. If it does not find the
property or method, it does not simply give up at this point. Instead,
JavaScript will search the object’s prototype to see if there is a match. If so,
then the property or method is available to the object that is trying to use it.
For example, Figure 8-3 shows how the search for the locks property for the
work_car instance is performed.

Figure 8-3 Looking for the locks property

As you can see, it simply checks the work_car instance for the locks
property. When it is not there, the prototype is searched, where the locks
property is found and then is available to the work_car instance. Notice that
the prototype has a property named constructor that points back to the
constructor function.

The constructor function and any instances created by that constructor will
point to the prototype. In this case, Car, work_car, and family_car all point to
the Car prototype, and can make use of any properties or methods within the
Car prototype.

When creating an instance, you can actually add a property to the instance
that is the same as the name of a property in the prototype. This will
effectively hide the value of the property by the same name in the prototype
for that instance of the object, since the property will always be found in the
object and the prototype will not be searched. For example, take a look at the
following code:

Here, assigning a value to work_car.locks ensures that the locks property is
found in the work_car instance and the prototype will not be searched. Thus,
work_car.locks will have a value of manual. Since this does not affect other
instances, family_car.locks still must search the prototype to find a value, and
thus it still has a value of “automatic”.

The hasOwnProperty() Method
There are times when you will want to know whether the property being used
was found in the object instance rather than the prototype. The
hasOwnProperty() method of an object will return true if the property is
found in the instance, and return false otherwise. In the previous example, the

work_car instance had a locks property, while the family_car instance did not
(it only had a locks property in the prototype). Consider the following code:

Here, the first alert displays true, while the second displays false. You will
see later in this chapter that this can be useful when you are using a for-in
loop when you only want to use properties that are in the instance of the
object, rather than its prototype.

Using Prototypes for Methods
Since the prototype is outside of an object’s constructor function and not in
the global scope, it provides a good location for method functions that will be
shared among each instance of an object. You can now give each instance of
an object its properties (if they will have unique values) in the constructor
function and place its methods in the prototype for reuse in all instances. For
the reasons mentioned, this is a common pattern for custom object creation,
typically called the combination constructor/prototype pattern.

As an example, the following code will continue to add the properties to
the Car constructor, but will add a method to the Car prototype:

With the combination constructor/prototype pattern in place, the code now
will allow for instance properties and methods as well as shared properties
and methods. As you continue through this book, you will see more on
prototypes and how they can be used for inheritance for object-oriented
programming.

The class Keyword
ECMAScript 2015 brought in the class keyword so that you can define an
object to look more like a traditional class. The underlying prototype-based
structure is still in place, but the class keyword allows you to organize your
code so that properties and methods are all within the block for the class
(rather than having the methods appear outside of the object definition).

For example, to create the last example with the constructor and method
function, you can use the following code:

Notice that a class can be defined using a class declaration, which is similar
to a function definition. One key difference is that whereas functions
declarations are hoisted (allowing the function to be called even if the call is
before the function declaration in the code), class declarations are not hoisted.
This means that you will need to be sure to place any class declarations in
your code before you create instances of those classes.

You can make this lack of hoisting a little clearer if you wish by defining
classes using the class expression (which will work more like a function
expression). Since both function and class expressions are not hoisted, it will
be plain to see for anyone not accustomed to the new class keyword. An
example of using the class expression for the same code is shown in the
following code:

Aside from the syntax difference, the remainder of the code works in the

same way. If the environments your users will be using support ECMAScript
2015 or better, you can use class as a handy way to organize your Object
code in one place if you wish. Just keep in mind that this is just a difference
in syntax—the underlying code still uses the constructor function and places
any methods on the prototype.

Helpful Statements for Objects
JavaScript allows you to use the for-in loop to help you iterate through object
properties and the with statement to access particular objects more easily.

The for-in Loop
The for-in loop allows you to cycle through the properties of an object. The
following code shows the structure of a for-in loop:

Suppose you wanted to cycle through the properties of a work_car instance of
a Car object in order to display the values of each property on the page. The
for-in loop allows you to do this without the need to type each property name,
as in this code:

This will display each property name and its value (note the use of bracket
notation so that the prop_name variable can be used to access the property
value).

Note, however, that this loop will grab all available properties, including

those found in the object’s prototype. If you want to be sure that the
properties that you are using belong to the instance of the object rather than
the prototype, you can use the hasOwnProperty() method you learned earlier
to check each property before using it, as in this code:

Here, the code will ensure that you are getting the property from the object
instance rather than the prototype before displaying it on the page.

The with Statement
The with statement allows you to access the properties and methods of an
object more easily if you plan to use a large number of statements that use the
object. For instance, if you want to write a number of statements using an
object named work_car on a Web page, you might grow weary of typing the
object name (work_car), the dot operator, and then the property name.

CAUTION

The use of with is often discouraged because of performance
drawbacks and because a global variable could accidentally be
assigned or overwritten when using this statement. It is also not
supported when the “use strict” option is enabled.

Now that you have seen how to create objects, properties, and methods of
your own, you can better understand how some of the predefined JavaScript
objects work. A number of predefined JavaScript objects are discussed as you
move through the rest of this chapter and through several other chapters in
this book.

Ask the Expert
Q: Do I really have to create an instance of an object every time I

want one when I use a constructor function?

A: Yes. The constructor function only gives the browser the structure
of an object. To use that structure, you need to create an instance of
the object. You need to create instances with some of the
predefined JavaScript objects as well.

Q: So what about single objects? I don’t have to create instances
with them?

A: Single objects don’t need to have instances created. Each one is
unique and does not reuse code among instances.

Q: Can I use the combination constructor/prototype pattern to
share properties as well as methods?

A: Yes, if you have properties that you do not want unique values for
in each instance, you can add them to the prototype instead to share
them with other object instances.

Try This 8-2 Practice with the Combination
Constructor/Prototype Pattern

pr8_2.html

prjs8_2.js

Suppose you decided to sell certain types of computers: work computers,
home computers, and gaming computers. For each computer, there will be
different properties and a method to display the properties of each computer.

Step by Step
1. Create an HTML page and save it as pr8_2.html.

2. Create an external JavaScript file and save it as prjs8_2.js. Use it for
steps 3–8.

3. Create a Computer constructor and give it the properties type, processor,
ram, and hd.

4. Create an instance of Computer named work_computer. The value of
type will be “Work”, the value of processor will be “2GHZ”, the value
of ram will be “8GB”, and the value of hd will be “1TB”.

5. Create an instance of Computer named home_computer. The value of
type will be “Home”, the value of processor will be “2GHZ”, the value
of ram will be “4GB”, and the value of hd will be “500GB”.

6. Create an instance of Computer named gaming_computer. The value of
type will be “Gaming”, the value of processor will be “4GHZ”, the
value of ram will be “16GB”, and the value of hd will be “2TB”.

7. Create a method named describe on the Computer prototype. Use it to
display each of the property values on the page.

8. When you are done, your JavaScript file should look like this:

9. Save the files and open the HTML file in a browser. The properties of
each instance should be displayed.

Try This Summary
In this project, you used your knowledge of constructors and prototypes to
create a reusable object that has a method on its prototype to display the
property values in any instance of the object.

Understanding Predefined JavaScript Objects
In JavaScript, there are many predefined objects you can use to gain access to
certain properties or methods you may need. You can make your scripts even
more interactive once you learn the various objects and what you can do with
them.

This book will be covering a number of the major predefined objects. In
this chapter, you are going to look at the navigator and history objects, and
what you can do with them.

The Navigator Object
The navigator object gives you access to various properties of the viewer’s
browser, such as its name, version number, and more. It got its name from the
Netscape Navigator browser, which preceded Mozilla Firefox.

The navigator object is part of the window object, which means you can
access its properties using window.navigator.property, but it can also be
shortened to simply navigator.property. This is true even for direct properties
or methods of the window object as well (for example, window.alert(“Hi”);
could be shortened to simply alert(“Hi”); and it would still be valid). You’ll
commonly see such properties and methods of the window object shortened
in this way to save extra typing or to help shorten the source code. You will
see more about the reasons for this in Chapter 11.

First, take a look at the properties of the navigator object.

Properties
The properties of the navigator object cannot be changed, because they are
set as read-only. Table 8-1 shows the properties of the navigator object and
the values returned by each property. When browser names are shown in
parentheses afterward, it means that the property was only known to work

with the specified browsers at the time of this writing.

Table 8-1 Properties of the Navigator Object

The following sections take a look at some of the more useful properties in
more detail.

The appName Property This property allows you to determine the name of
the browser the viewer is using. If you want to know the value for a particular
browser, you can use the following code and open the page in your selected
browser:

This property was often used in the past to create a simple browser-detection
script, such as the one shown in this code:

While this was usable for a time, there are better methods for working with
the various browsers you may encounter, such as feature detection and
progressive enhancement, which you will learn more about as you proceed
through this book.

The cookieEnabled Property This property returns a Boolean value of true
if cookies are enabled in the browser, and returns a Boolean value of false if
cookies are not enabled in the browser. You can use it to avoid running code
to set a cookie if the user does not have cookies enabled:

This allows you to set a cookie for viewers that can make use of it, or to
continue with further code if not. You will read about cookies in more detail
later in this book.

The plugins Property This array holds the values of all the plugins
installed in the viewer’s browser. This can be used to detect whether the
viewer has a particular plugin available before running code that will use it.

Methods
The navigator object also has a number of methods you can use to perform
various tasks. Table 8-2 shows the methods available in the navigator object.

Table 8-2 Methods of the Navigator Object

The following section looks at the javaEnabled() method and how it can
be used.

The javaEnabled() Method This method returns a Boolean value of true if
the viewer has Java enabled in the browser; otherwise, it returns false. The
javaEnabled() method could be useful if you want to display a Java applet to
the viewer, but only if the viewer has Java enabled in the browser. The
following code would allow you to do this:

This tests the value returned by the navigator.javaEnabled() method and
either displays the Java applet or a message informing the user that Java is
not enabled.

The History Object
The history object, which is also part of the window object, provides
information on the browser history of the current window.

Property
The history object has only one property, named length (in Firefox, a few

more are available, but they do not work with Web content). This property
returns the number of pages in the session history of the browser for the
current window, which includes the currently loaded page. It could be used in
a manner similar to this:

This simply sends an alert to the viewer to say how many pages have been
visited in the current browser window.

Methods
There are three useful methods of the history object, listed in Table 8-3.

Table 8-3 Methods of the History Object

The following sections discuss each of these methods in more detail. You
can see details on additional properties and methods at
developer.mozilla.org/en-US/docs/Web/API/History.

The back() Method The back() method sends the browser to the last page
visited in the history list before the current page, which is like using the
browser’s “back” button. To use it, you simply call the method in your script
where desired:

history.back();

The forward() Method The forward() method sends the browser to the
page visited in the history list after the current page, which is like using the
browser’s “forward” button. To use it, YOU SIMPLY CALL THE METHOD IN YOUR
SCRIPT WHERE DESIRED:

history.forward();

The go() Method The go() method takes an integer as a parameter. The

http://developer.mozilla.org/en-US/docs/Web/API/History

integer can be a negative number to go back in the history list or a positive
number to move forward in the history list. For instance, the following code
would go back two pages in the window’s history:

history.go(-2);

The following code would go three pages forward in the history list:

history.go(3);

As with the other two methods, if the page the viewer is attempting to access
does not exist (for example, something like history.go(15) may not exist in
the window’s history), then the method will simply do nothing.

The predefined JavaScript objects can be quite helpful. As you’ll see in
the next chapter, the document object gives you access to a number of
additional properties and methods for working with an HTML document.

 Chapter 8 Self Test

1. An object is a collection of __________ and __________.

2. When creating single objects, you can use the object __________ or
object literal notation.

3. When using object literal notation, the properties and values are
enclosed within curly brackets ({}).

A. True
B. False

4. In JavaScript, you typically access object properties through the use of
the

A. addition operator (+)
B. dot operator (.)
C. multiplication operator (*)
D. You can’t access the properties of an object

5. When you need to use a variable to access a property name, you can use
__________ notation.

6. A __________ function can be used to create an object structure.

7. A(n) __________ of an object can be created using the new keyword.

8. You can only have one instance of an object.

A. True
B. False

9. What could you say about the following code:
let x = myhouse.kitchen;

A. It assigns the string myhouse.kitchen to the variable x.
B. It adds the values of myhouse and kitchen and assigns them to an

object named x.
C. Assuming the myhouse object exists, it assigns the value of the

kitchen property of the myhouse object to the variable x.
D. Assuming the kitchen object exists, it assigns the value of the

myhouse property of the kitchen object to the variable x.

10. If a property cannot be found in the object instance, JavaScript will look
in the object’s __________.

11. Which of the following would send an alert to the viewer that tells the
name of the browser being used?

A. window.alert(“You are using” + navigator.appVersion);
B. window.alert(“You are using” + navigator.appName);
C. window.alert(“You are using” + navigator.javaEnabled());
D. window.alert(“You are using navigator.appName”);

12. What could you say about the following code?
myhouse.kitchen = "big";

A. Assuming the kitchen object exists, the myhouse property is
assigned a new string value.

B. Assuming the myhouse object exists, the value of the variable
kitchen is added to the string big.

C. Assuming the myhouse object exists, the kitchen property is
assigned a new string value of “big” or is initialized with the value
“big”.

D. This wouldn’t do anything.

13. In JavaScript, there are many __________ objects you can use to gain
access to certain properties and methods you may need.

14. The __________ object gives you access to the various properties of the
viewer’s browser.

15. Which of the following is not a property of the navigator object?

A. appName
B. appCodeName
C. appType
D. appVersion

N

Chapter 9
The Document Object

Key Skills & Concepts
• Defining the Document Object

• Using the Document Object Model

• Using the Properties of the Document Object

• Using the Methods of the Document Object

• Using DOM Nodes

• Creating Dynamic Scripts

ow that you know how objects work and how to use predefined
JavaScript objects, it is time to look at some of the major predefined
objects in JavaScript.

This chapter covers the document object, which helps you to gather
information about the page that is being viewed in the browser. As you will
find out in this chapter, some of the document object’s properties and
methods can be used to get information about the document or to change
information about the document. You will also be introduced to the
Document Object Model, and see how this can be used with style sheets to
create dynamic scripts.

Defining the Document Object

The document object is an object that is created by the browser for each new
HTML page (document) that is viewed. By doing this, JavaScript gives you
access to a number of properties and methods that can affect the document in
various ways.

You have been using the write() method of the document object for quite
some time in this book. This method allows you to write a string of text into
an HTML document.

To begin your journey through the document object, you will take a look
at the Document Object Model (DOM) and the various properties you can
access with this object. Many of these properties will turn out to be quite
useful when writing scripts.

NOTE

The DOM is unique to the web browser environment and is not
something used when writing Node.js code, for instance. Also, some
nonstandard DOM methods may work only in particular browsers, so
you will typically want to stick to those methods that work in all
browsers.

Using the Document Object Model
The Document Object Model (DOM) allows JavaScript (and other scripting
languages) to access the structure of the document in the browser. Each
document is made up of structured nodes (for example, the body tag would
be a node, and any elements within the body element would be child nodes of
the body element). With this structure in place, a scripting language can
access the elements within the document in a number of ways, allowing for
the modification of the elements within the document.

If you had the following HTML code, you could use JavaScript to access
its structure:

Figure 9-1 shows how the body element is a node, and how it can have

child nodes and attribute nodes.

Figure 9-1 An example of part of a document’s structure

The h1 and img elements are both child nodes of the body element. Each
element also has its own nodes. The h1 element contains a text node as its
child node (the text “My Page”), while the img element contains two attribute
nodes (src=“myimage.jpg” and alt=“My Picture”). This type of structure is
available throughout the document, so while this is a simple example, much
more complex document structure trees could be drawn for most HTML
pages.

You can write scripts to add, remove, or change nodes in the DOM. You
can use the document.getElementById() method to access elements by their
id attribute values, and even get groups of elements using methods like
document.getElementsByTagName() or
document.getElementsByClassName().

First, you will look at the properties and methods of the document object.

Using the Properties of the Document Object
Table 9-1 lists commonly used properties of the document object with a short
description of each. Following the table, some specific properties are
discussed in more detail.

Table 9-1 The Properties of the Document Object

NOTE

Not all these properties work across all browsers. You can see more
information and additional properties by visiting
http://developer.mozilla.org/en/DOM/document#Properties and
https://msdn.microsoft.com/en-us/ie/ms535862(v=vs.94).

Collections
A number of the properties (anchors, embeds, forms, images, links, plugins,
scripts, styleSheets, and styleSheetSets) return an array that holds a collection
of elements or values found in the document. These can be accessed like any
array using indexes. The element or value at index zero will be the first, index
one the second, and so on.

http://developer.mozilla.org/en/DOM/document#Properties
https://msdn.microsoft.com/en-us/ie/ms535862(v=vs.94)

For example, the links property can be used to access all of the links in the
document. If you need to find the first link in the document, you could use
document.links[0] to access that element as an object. You can then use
DOM node properties or methods (discussed later in this chapter) to get or set
information, or to perform certain tasks on the element.

The cookie Property
The cookie property is used to set a JavaScript cookie to store information for
the viewer. A cookie is a small text file saved to the viewer’s computer for a
particular amount of time (a set date or a browser session). Cookies can be
helpful in allowing a site to remember and retrieve information for a viewer
(such as the contents of a shopping cart, special settings, or session
information).

To set a cookie, you set the value of the document.cookie property to a
string that contains the information you want to store for the viewer. The
following is the syntax:

document.cookie = string;

You would replace string with a text string that contains the information you
want to use. Usually, this is in a format like the one shown in the following
example of setting a cookie:

document.cookie = "site=homepage";

You can see that there is one thing set by the cookie: the site is homepage. In
between the two the equal sign is used to help separate the site and homepage
when the cookie is read. Note that setting the cookie does not replace the
whole cookie; it just adds the new string to it.

You will see how to use advanced string-handling techniques and how to
set and read cookies in more detail in later chapters.

The dir Property
The dir property returns a string value that represents the reading direction of
the document. This value can be either ltr (left to right) or rtl (right to left).
This property is useful for displaying Web pages in languages that are read
from right to left rather than left to right, by setting the value to rtl. For fun,

you can change the way your page looks on-the-fly with this property, as in
the following example code:

document.dir = "rtl";

Figure 9-2 shows an example of how a page would look with the dir
property set to “rtl”.

Figure 9-2 A Web page with the direction switched to rtl

The lastModified Property
The lastModified property holds the value of the date and time the current
document was last modified. This is used mostly for informational purposes,
such as displaying the date the document was last modified so the viewer
knows when you last updated your page. The value of this property depends
on your browser, as different browsers have different results if you write the
last modified date on the page.

Consider the following code, which writes the value of the
document.lastModified property into a Web page to display the last modified
date and time:

Figure 9-3 shows the result of this when viewed in Mozilla Firefox.

Figure 9-3 The last modified date when viewed in Mozilla Firefox

When writing the date of the last modification on the page, the differences
only matter in terms of space on the page. Some layouts may need to have
extra space arranged for the longer version of the property.

The referrer Property
The referrer property is used for informational purposes and holds the value
of the URL of the page that the viewer was on before arriving at your page
(the referring page). While this can be useful, the viewer doesn’t always
come in with a referring URL (such as when using a bookmark or typing in
the address), so the value could be nothing. Also, the value of this property
isn’t always correct, because different browsers may consider different types
of things as referring the viewer to the new page, rather than just links, and it
is possible for the user to hide or change the referrer.

Placing the code in the following example into the document would send
an alert to the viewers of a page telling them where they were before they got
to your page:

So, if the referring page were http://www.scripttheweb.com/js/, an alert
saying “You came from http://www.scripttheweb.com/js/!” would be sent to
the viewer.

http://www.scripttheweb.com/js/
http://www.scripttheweb.com/js/!

The title Property
The title property holds the string value of the title of the HTML document.
The title is set inside the <title> and </title> tags of a page.

One way you can use the title property is to display the title of the page to
the viewer someplace other than in the top bar of the window. The following
code would allow you to do this:

This displays your title as a heading on the page. Figure 9-4 shows the result
of this when viewed in a browser.

Figure 9-4 The title of the document is shown as a heading on the page.

The URL Property
The URL property holds the value of the full URL of the current document.
This information can be useful if you print it at the bottom of your HTML
page, because it will show the page URL for anyone who prints out your

page.
While you could just type the URL at the bottom on your own, this could

become tedious when it needs to be done on numerous pages. This is where
this property can be handy, because you can cut and paste a little script to
each page rather than type the various URL addresses each time. An example
of writing the URL address on the page is shown in the following code:

Figure 9-5 shows the result of the preceding code in a browser. The last
line of the page tells the viewer the current location. The figure shows a local
file address, but it would show a regular URL if the page were online.

Figure 9-5 The URL of the document is shown at the end of the page
contents.

The URLUnencoded Property
The URLUnencoded property returns the URL of the document without any
encoding. For instance, if there is a filename with a space in it, the property
will return the space rather than a %20 in its place. For the URL
http://www.scripttheweb.com/myscript.html, the document.URL property
would return http://www.scripttheweb.com/my%20script.html. The
document.URLUnencoded property returns http://www.scripttheweb.com/my

http://www.scripttheweb.com/myscript.html
http://www.scripttheweb.com/my%20script.html
http://www.scripttheweb.com/my

script.html, the URL without the encoding for the space. Note that at the time
of this writing this property was only available in Microsoft Internet
Explorer.

Ask the Expert
Q: Will learning about the document object and the DOM be

helpful to me?

A: Yes, because they provide a foundation for working not only with
Web pages, but other types of documents as well. For example,
other types of documents use a similar structure of nodes, so
learning how it works for an HTML document is helpful when you
need to make use of JavaScript on another platform, such as Adobe
Acrobat for PDF files.

Q: The referrer property is cool! Is there any way I can write that
information to a file each time a visitor drops in so that I know
where my visitors are coming from?

A: Client-side JavaScript cannot save information in a file on its own,
but can send information to a server-side program where it can then
be stored in a file or database. You will learn more about this
(using JSON and/or AJAX) in later chapters.

Q: Other than the arrays that contain element collections, are
there any other ways to access elements in the document?

A: Methods of the document object, such as getElementById(), allow
you to be even more specific about the elements you select. You
will learn how to use these methods in the next section.

Using the Methods of the Document Object
The methods of the document object allow you to do some new things that
you haven’t been able to do yet. Table 9-2 lists common methods with a short
description of each. Because a number of these methods are browser-specific

(as with the properties), only some specific methods are described in more
detail following the table.

Table 9-2 The Methods of the Document Object

NOTE

Not all these properties work across all browsers. You can see more
information and properties by visiting
http://developer.mozilla.org/en/DOM/document#Methods.

The get Methods for Elements

http://developer.mozilla.org/en/DOM/document#Methods

There are a number of methods that allow you to get one or more elements in
the document for use in your scripts. Each of these provides you a unique
way to gain access to any elements you may need.

The getElementById() Method
The getElementById() method allows you access to an element by the value
of its id attribute. For example, if you have the following HTML code, you
can access the div element with the getElementById() method:

Since the id attribute of the div element has the value of some_text, the
document.getElementById() method can access the div element using that
value as an argument:

Valid HTML only allows an ID value to be used on a single element. If
the same ID value is used on multiple elements, getElmentById will only get
one of the elements using that ID. As you go through this chapter, you will
see that you can use this and the other selection methods to retrieve
information from elements, alter elements, add elements, or delete elements.

The getElementsByClassName() Method
This method allows you to get an array filled with all the elements in the
document that have the specified class name (from a CSS class). For
example, to obtain all of the elements with a class name of number_one, you
could use the following code:

The getElementsByName() Method
This method allows you to get an array filled with all the elements in the
document that have the specified value for the name attribute. In many cases,
this value is unique to one element. However, radio buttons that are part of
the same group all need to have the same name value (so that only one
selection can be made). This is a case where being able to retrieve all of those

elements could be handy:

This HTML code has a set of radio buttons, all named dino. If you want to
get all of these elements, you could use the following code:

This will retrieve all of the radio button elements with the name dino in an
array, which you could then loop through to perform any necessary tasks:

As you can see, you could now work with all of the elements in a loop, rather
than gathering each one by its id to perform the same task.

The getElementsByTagName() Method
This method allows you to get an array filled with all the elements in the
document that have the specified tag name. For example, to obtain all of the
image elements in the document, you could use the following code:

The querySelector() Method
This method allows you to use a CSS selector to get the first element that
matches the selector. For example, you can get an element by ID:

Notice that the CSS ID symbol is used here, whereas it is not with
document.getElementById(). The same holds for CSS classes and other types
of selections. For example, to select by class name, you could use the
following code:

Remember that querySelector() only selects the first match, so even if you
have multiple elements with the header class, only the first element with the
header class will be selected.

The querySelectorAll() Method
Whereas querySelector() selects only the first matching element, the
querySelectorAll() method will select all matching elements for the provided
CSS selector. For example, consider the following code:

This time, all elements that have the header class will be selected rather that
just the first one, and you can access each individual element through a loop,
much like you did with getElementsByClassName():

Getting More Specific
The get methods can be used with more specific objects once you have them.
For instance, suppose you had the following HTML code:

If you wanted to get only the links within the nav element, using document
.getElementsByTagName(“a”) wouldn’t work, because you would also get
the link that is within the div tag (still part of the document). To do this, you
can first get the nav element and then use the getElementsByTagName()
method on the object created for the nav element, as in the following code:

Here, you get the nav element by its id, creating the nav_element object. This
object is used to get all of the link elements within it and place them into an
array named nav_links. This array can now be used to cycle through each
link within the nav element or to find out how many links are contained
within the nav element. In this case, the number of links is alerted using the
length of the nav_links array (3).

The open() and close() Methods
The open() method allows you to open a new document and create its
contents entirely with document.write() or document.writeln() statements.
When the open() method is called, the browser looks for these statements so
that it can write the new page. Once the write() and/or writeln() statements
are completed, you need to use document.close() to finish the new page.

NOTE

The open() and close() methods are not necessary (or desirable) when
you are writing to the current loading page.

To get an example of the use of the open() method, suppose you want to
write a new page based on the name of the viewer. To do this, you not only
need to use the open() and close() methods, but also need to create a
formName property to use so that you can grab the name entered by the
viewer in a text box.

Start with the code for the body section of the initial page. You need a

form with a text box and a way to invoke a function that will create the new
document. The following code shows a way that you can do this (save the file
as document_open.html):

This sets up your script, giving you a form with an id of newp and a text
box with an id of yourname. It also has a submit button to submit the form.
When the user clicks the submit button, the onsubmit event handler will be
triggered, which executes the newpage() function (you will learn more about
event handlers later in this chapter and in Chapter 10). You now need to
create the newpage() function in your external JavaScript file so that this
form will work.

The newpage() function needs to grab the contents of the text box and
assign it to a variable. It then needs to open your new customized page in the
browser window. The following code shows how this can be done (save the
file as document_open.js):

The first thing the function does is to grab the contents of the text box. To get
the contents of the text box, you need to use the value property that is
available for form elements, which in this case is accessed using
document.getElementById(“yourname”).value. This value is then assigned to
the thename variable for easy use within your document.write() commands.

Once you have that value, you are ready to open the new page. To do this,
you use the document.open() command, which allows you to use a series of
document.write() statements until the document.close() command is used.
You use the document.write() statements to write a greeting to the viewer on
the page.

You can now try this out by opening the HTML page in your browser.
Figure 9-6 shows the initial page with the form (the page before the form
button is clicked). This is where the viewer can enter a name and click the
button.

Figure 9-6 This is the page that allows the viewer to enter information.

Figure 9-7 shows the result of entering the name “John” in the text box
and clicking the button. The new page appears with a greeting!

Figure 9-7 Once the button is clicked, the viewer will get a new page
similar to this one.

The write() and writeln() Methods
You started using the write() method early in the book, so you know how it
works already. The document.write() method is used to display a string value
on the page where it is called. The writeln() method works the same way, but
adds a newline character (\n) at the end of the statement. Recall that Chapter
3 discussed how the JavaScript newline character works—it only places a
new line in the page source code and not in the final appearance of the
HTML page.

TIP

While the newline character only affects the appearance of the source
code when using document.write(), it can be used to create new lines
in display elements created by JavaScript such as alert, prompt, and
confirm boxes.

The appearance of the page itself is not affected by the JavaScript newline
character. Recall the example from Chapter 3 that split the code into two
different lines with the newline character:

Since the document.writeln() method adds a newline character at the end of
the statement, you could rewrite the preceding code using the following
document.writeln() statements:

This would put the lines of code on two different lines in the page source, but
would not affect the appearance of the page in the browser.

Using DOM Nodes
There are methods of the document object (such as createElement(),
createAttribute(), and createTextNode()) that allow you to create various
elements or nodes on the page using JavaScript. To make use of them,
though, the new content must be appended as a child of an existing node in
the DOM. This is where DOM node properties and methods are needed.

DOM Node Properties
Each DOM node is an object with properties and methods that can be
accessed. The DOM node, HTML Element, and Element properties are listed
in Table 9-3.

Table 9-3 The DOM Node Properties

When Table 9-3 mentions the specified node, a node works in much the
same way as you worked with elements in previous chapters. For instance,
you might have the following HTML code:

If you wanted to obtain the value of the title attribute of the div element, you
could use document.getElementById() to grab the div element by its id of
div1. This would be the specified node for the DOM node title property.
Then, you could access the title property of the element node, as in the
following code:

This works just like object properties, as you learned in the previous chapter.
The me_div.title property returns the string value “All about me!”, which is
the value of the div element node’s title attribute.

Knowing this, you can use the DOM node methods in the same way.

DOM Node Methods
Table 9-4 lists some commonly used DOM node methods. Note that some
methods of the document object mentioned previously can be used on nodes,
so they are not repeated here.

Table 9-4 The DOM Node Methods

As mentioned earlier, to make the creation methods of the document
object useful by adding the created node to the document, a DOM node
method, such as appendChild() or insertBefore(), is needed to add the new
node to the document.

For instance, you might have the HTML code used earlier, as follows:

This code has a div element node with a child text node (and attribute nodes).
If you want to create another div element as the last child node of the div1
element node, you could use a combination of document.createElement(),
document.createTextNode(), and the DOM node method appendChild().

Each node is an object that can use all of the node properties and methods.
Since you have a div node available, you can use getElementById() to access
it as an object, which will allow you to add an element within it using the
appendChild() method.

First, go into the JavaScript code and grab the div1 element by its id and
assign it to a variable:

Next, create the new element node using document.createElement():

After that, create the text node for the inner_div node by using the
document.createTextNode() method:

Next, use the DOM node method appendChild() to add the text node as a
child of the new inner_div node:

To give the inner_div node a title attribute, you can assign a value to its title
property:

Finally, use the DOM node method appendChild() to add the inner_div node
to the document structure as the last (and in this case, only) child element of
the me_div node:

This adds your new div node at the end of the original div element (but
before the original element is closed, since it will be a child node). Thus, the
document structure for the HTML code would now be like this (though it
won’t show up when you use the browser’s “View Source” command):

As you can see, the div is added with the text “More about me…” and a title
attribute with a value of “Me”.

NOTE

Another way to add or alter content is to use the innerHTML
property, which is discussed in the next section, “Creating Dynamic
Scripts.”

If you decide you want to delete a node from the DOM structure, you can
use the removeChild() DOM node method. For example, if you want to
remove the inner_div node added in the previous example, you can use the
following code:

This will remove the inner_div child node from the me_div parent node.
Each node has one or more relationships with other nodes in the DOM

structure. Figure 9-8 shows how the relationships are tied together.

Figure 9-8 DOM node relationships

As you can see, there are properties and methods that can be used with
each of these relationships (for example, previousSibling, parentNode,
firstChild, and so on). You can use these to access or alter any element within
the DOM structure as needed. For example, you might have an HTML
document like this:

Each div element could be accessed in different ways, depending on where
you begin. For example, you could access the outer “company” div using any
of the following paths:

Likewise, the “employee1” div can be accessed a number of ways:

The same, again, goes for the “employee2” div:

While it may seem easiest to simply use the direct route all the time, there
may be situations where you do not know the id of the node you are seeking
beforehand. Suppose one of the nodes had been added by another script? If
you always wanted to find the last “employee” div, for example, it might be
better to use lastChild from its parent node, so that if other employees are
added (for example, “employee3”, “employee4”), you will always be
accessing the last employee:

This will ensure that last_hired will always point to the last “employee” div
that is a child of the “company” div.

Try This 9-1 Add a DOM Node to the Document

pr9_1.html

prjs9_1.js

This project allows you to practice using the new document and DOM node
properties and methods you have learned in this chapter.

Step by Step

1. Create an HTML page with the following code for the body section and
save it as pr9_1.html:

2. Create an external JavaScript file and save it as prjs9_1.js. Use it for
steps 3–5.

3. Get the value of the title attribute of the element with the id of “div1”
and send that value as an alert to the viewer.

4. Create a new div element with the text “See you!” and a title attribute
with the value “Lucky!”. Add it to the document structure as a child of
the div element with the id of “div1”.

5. Save the JavaScript file and open the HTML file in your browser to
view the results.

Try This Summary
In this project, you used your knowledge of the properties and methods of the
document object and the DOM nodes to alert a DOM node property and to
create a new div element in the document’s structure.

Creating Dynamic Scripts
As you have seen, JavaScript gives you access to all of the elements in the
document with the various methods such as document.getElementById() and
document.getElementsByTagName().

This allows you to get information, add nodes, alter nodes, and remove
nodes, as you have seen. In addition, you can access the style attributes of
elements (typically, initially set by a style sheet) to make changes to such
things as their positions, colors, borders, sizes, or just about any other part of
the styles, using the style DOM node property.

Styles in JavaScript
When setting styles using Cascading Style Sheets (CSS), you may set up
something like the following in your CSS code (save it as dyn_01.css):

This gives you style attributes for two ids, div1 and div2. Thus, if you had the
following HTML code (save as dyn_01.html), the div elements would use the
preceding styles in their presentation on the Web page:

The HTML code is linked to the CSS code via the link tag. Thus, the div1
element is going to display as simple black text on a white background and
the div2 element is going to have a plain, solid-black border around it.

As you can see, this page is using ids for each div element—so not only
can you access those elements’ ids with the CSS code, but you can also
access the elements via their ids in the JavaScript code. So, you can start out
your JavaScript file (called in the preceding HTML code—saved as
dyn_01.js) with some code to grab both div elements by their ids by using the
document.getElementById() method:

Now you have variables for both elements.
If you want to alter the styles that were set up in the CSS code via

JavaScript, you’ll need to make use of the style property that is a part of each
element node. Then, JavaScript uses the same name as the CSS selector to
access that particular property. For instance, if you wanted to change the
color of the text in the div1 element to a light gray color, you would use the
following code:

In the CSS code, the selector color is used to alter the element’s foreground
color. In JavaScript, it is also the name of the property used to alter it after
accessing the element’s style property.

What if the CSS selector is not all one single word? For example, the
background-color selector would not work in JavaScript if you used it the
same way as in the CSS code. The following code attempts to change the
background color to green:

This won’t work, because JavaScript doesn’t allow the hyphen (-) character
as part of a property name. Instead, JavaScript puts both words together and
capitalizes the first letter of any additional words after the first word. Thus,
the CSS selector background-color becomes backgroundColor in JavaScript.
Other selectors would follow the same pattern (for example, border-right-
color would become borderRightColor). This style is called camel case,
which is a very common style found in JavaScript.

The JavaScript code could be rewritten as follows to make the change
effective:

This will change the background color of the div1 element to green. The only
issue now is that this will happen as soon as the script runs, which in this case
is probably before the viewer ever notices there was another background

color on the div1 element in the first place. To make this more useful, you
need a way to run portions of your script at a time other than the loading or
reloading of the document.

CAUTION

Reading a style isn’t as easy as setting it, as there are browser
differences and other issues that occur. For further information and
techniques on how to get styles, see
www.quirksmode.org/dom/getstyles.html.

Simple Event Handling
So far, your scripts have simply run during the loading (or reloading) of the
Web page. This is good for a number of tasks, but many, such as node and
style changes, would be more useful if they were executed in response to an
action taken by the user. For instance, changing the background color of an
element while the page is loading may not even be noticed by the viewer, but
changing the color in response to a mouse click would allow the viewer to
see the change and provide the choice of leaving the original color or
changing to the new color via a click.

The click Event
The click event is available for most elements within the DOM. This event is
triggered when the user clicks the primary mouse button while the mouse
pointer is over a specific element. One way to gain control of the click event
is through onclick, as shown in the following code (other methods will be
covered in the next chapter):

Here, the d1 element’s onclick property is assigned a function expression
(refer to Chapter 4 if you need to review function expressions), which can
then execute code. Thus, when the d1 element is clicked by the user, any

http://www.quirksmode.org/dom/getstyles.html

code within the function will be executed.
So, you can now take the code you were using to change styles and

perform the task when the user clicks the element rather than while the page
is loading. The following code shows an example of this:

Figure 9-9 shows what the page looks like after the user clicks on the first div
element. The background color has changed from white to a light gray.

Figure 9-9 The background color of the first div element is changed and is
now light gray.

NOTE

Event handling will be covered more thoroughly in Chapter 10. For
the time being, only the click event will be covered using simple
DOM0 event handling.

Coding a Dynamic Script
Now that you know how to alter an element’s style properties, you can alter
them in reaction to user events to create dynamic scripts. In addition, you can
alter the entirety of the HTML code within a given element using the
innerHTML property.

The innerHTML Property
The innerHTML DOM node property allows you to change the HTML code
that is inside a specified element. For instance, you could start out with the
following HTML code:

This code sets up a div element node with an id of div1, another div element
node with an id of div2, and the link with an id of answer_link. Now, if you
want to change the HTML code in the div1 element so that it displays the
answer for the viewer when the link is clicked, you can use the click event on
the link to start the script in motion and then change the innerHTML property
on the div1 element node to change the contents of that element from the
question to the answer:

Note that in order to keep this link from being followed when clicked, you
add the return false statement after performing the desired actions. This will
be discussed in more detail in the next chapter.

When run, this script changes the content inside the div1 element on the
page, so that the HTML code would now be the following (though it will not
be seen using the browser’s “View Source” command):

TIP

To make the script accessible to those without JavaScript, a default
link destination (answer.html) is used. Including the answer text on
the linked page allows users without JavaScript to still click the link
and obtain the answer to the question.

As you can see, this can be a handy way to make dynamic changes to the
content of a Web page. The innerHTML property and appendChild() method
allow you to change information displayed on the page dynamically and
without reloading the page. This provides a definite improvement over
document.write(), which you have been using up to this point, since
document.write() can only change content when the page is loaded or
reloaded.

Now that you know the newer methods, you will make use of these
methods rather than document.write() as you continue through this book.

Using what you have learned in this chapter to access the DOM and use
the properties and methods of the document object and the DOM nodes, you
can build scripts to make any number of alterations to the document’s
appearance or content.

Try This 9-2 Try Out Property Changes

pr9_2.html

prjs9_2.js

This project allows you to practice using the new style and innerHTML
properties you have learned in this chapter.

Step by Step
1. Create an HTML page with the following code for the body section and

save it as pr9_2.html:

2. Create an external JavaScript file and save it as prjs9_1.js. Use it for
steps 3–5.

3. Write some code so that when the link is clicked, the background color
of the div element with the id of div1 changes to #CCCCCC and the
content of the same element changes to the following:

4. When complete, the JavaScript file should look like this:

5. Save the JavaScript file and open the HTML file in your browser to
view the results.

Try This Summary
In this project, you used your knowledge of the style and innerHTML
properties of DOM nodes to make style and content changes to the Web
page.

 Chapter 9 Self Test

1. The __________ object is an object that is created by the browser for
each new HTML page that is viewed.

2. The __________ property of the document object returns the URL of the
document that referred the viewer to the current document.

3. You can use the DOM node property style to alter the style sheet
attributes of an element.

A. True
B. False

4. The __________ method of the document object allows you to get an
element by the value of its id attribute.

A. getElementsByClassName()
B. createElement()
C. getSelection()
D. getElementById()

5. The appendChild() DOM node method allows you to add a child node as
the first child node of a specified node.

A. True
B. False

6. You cannot remove nodes from the document once they have been
added.

A. True
B. False

7. The __________ property of the document object is an array that
contains all of the anchor (<a>) tags on the page.

8. The __________ DOM node property allows you to change the HTML
content of an element node.

9. The __________ property holds the value of the date and time the

current document was last modified.

10. The Document Object Model (DOM) allows JavaScript (and other
scripting languages) to access the structure of the document in the
browser.

A. True
B. False

11. You can use the title property to display the title of a Web page
someplace other than in the top bar of the browser window.

A. True
B. False

12. Which property returns the complete URL of the current document?

A. domain
B. referrer
C. URL
D. title

13. How does the writeln() method differ from the write() method?

A. It adds the equivalent of an HTML
 tag at the end of the line.
B. It adds the equivalent of an HTML <p> tag at the end of the line.
C. It adds a JavaScript newline character at the end of the line.
D. It is exactly the same as the write() method.

14. What is the getElementsByName() method commonly used to obtain?

A. All the elements that you know by name.
B. All the elements that are named but do not have an id attribute.
C. All the elements that have the same value for the name attribute

(most commonly radio buttons).
D. All of the elements that have property values that are equal to a

specified name.

15. What statements are most common between a document.open() and a
document.close() statement?

A. HTML commands
B. document.write() and document.writeln() statements
C. Only document.writeln() statements
D. Only window.alert() statements

W

Chapter 10
Event Handlers

Key Skills & Concepts
• Understanding Event Handler Locations and Uses

• Learning the Event Handlers

• Other Ways to Register Events

• The Event Object

• Creating Scripts Using Event Handlers

hen creating scripts, you will often find that there are user “events”
(such as a user moving a mouse over a certain element or clicking a
particular element) to which you want your script to react. The way

you do this is through the use of event handlers.
To learn how the event handlers work, you need to learn what they are and

why they are useful to you. You will then learn where event handlers are
placed in a document and how to use them. Finally, you will see the various
events in JavaScript and the event handlers that take care of each event. To
get started, this chapter presents a general overview of event handlers.

What Is an Event Handler?
An event handler is a predefined JavaScript property of an object (in most
cases an element in the document) that is used to handle an event on a Web
page.

You may ask the question “What is an event?” An event is something that
happens when the viewer of the page performs some sort of action, such as
clicking a mouse button, clicking a button on the page, changing the contents
of a form element, or moving the mouse over a link on the page. Events can
also occur simply by the page loading or other similar actions.

When events occur, you are able to use JavaScript event handlers to
identify them and then perform a specific task or set of tasks. JavaScript
enables you to react to an action by the viewer and to make scripts that are
interactive and more useful to you and to the viewer.

Why Event Handlers Are Useful
Event handlers are useful because they enable you to gain access to the
events that may occur on the page. For instance, if you wanted to send an
alert to the viewer when he or she moves the mouse over a link, you could
use the event handler to invoke the JavaScript alert you have coded to react to
the event. You are now making things happen based on the actions of the
viewer, which enables you to make Web pages that are more interactive.

In creating this interactivity, many people find that JavaScript starts to
become a little more fun to code and to use. With event handlers, you can
create scripts that will add more functionality to the page and also perform
practical tasks like validating form input. JavaScript can make a number of
things happen on a Web page that will make the page more interesting than a
static HTML document.

Understanding Event Handler Locations and
Uses
To see how event handlers work, you need to know where you can place
them in a document and how to use them to add JavaScript code for an event.

Event handlers can be used in a number of locations. They can be used
directly within HTML elements by adding special attributes to those
elements. They can also be used within the <script> and </script> tags or in
an external JavaScript file.

NOTE

Node.js uses events and event handlers as well. This chapter will
concentrate on browser-based events, while Node.js event handling
will be covered in Chapter 11.

To understand better where event handlers are located, you need to learn
how to add event handlers to your script.

Using an Event Handler in an HTML Element
To use an event handler directly in an HTML element, you need to know the
keyword for the event handler and where to place the event handler within
the HTML code. To give you an example, I will introduce the onclick event
handler, which is used to make something happen when the viewer clicks a
specific area of the document.

One element that can be clicked is a form button. So, suppose you want to
alert the viewer to something when the user clicks a form button. You would
write something similar to the following code:

To use an event handler, you add it as an additional attribute to an HTML
tag. The only difference between an event handler “attribute” and an HTML
attribute is that you can add JavaScript code inside an event handler attribute
rather than just an attribute value. In the previous code, you would replace the
JavaScript code here text with some actual JavaScript code.

So, to make an alert pop up when the user clicks the button, you can add
the necessary JavaScript code right inside your onclick attribute, as shown in
the following example:

When the viewer clicks this plain button, an alert will pop up with a
greeting. Notice that the rules on the quote marks apply here. Using the
onclick event handler as an attribute requires you to use double quotes around
all of your JavaScript code, so when you need quote marks for the alert, you
use single quotes in order to avoid possible errors.

Also notice that the alert command ends with a semicolon. This enables
you to add additional JavaScript code after the alert, which enables you to
perform multiple actions on the click event rather than just a single JavaScript
statement.

You could code in two alerts if you wanted to do so. All you have to do is
remember to include the semicolons to separate the alert commands. This will
be a little different because all of the code will be on one line rather than
separate lines, as you normally see:

This example is able to perform two JavaScript statements on the same event
by using semicolons to separate them. When using event handlers, you can
execute multiple commands this way. It is important, however, to keep
everything between the event handler keyword (in this case, onclick) and the
ending set of quotes (in this case, after the last semicolon in the code) on one
line in your text editor; otherwise, a line break in the code could cause it not
to run properly or to give a JavaScript error.

If the code you want to use becomes really long, you may wish to put the
code in a function instead. The event handler can be used for any JavaScript
code, so you can use it to call a function you have defined elsewhere. For
example, you could place your two alerts within a function inside an external
JavaScript file, and call the function from an event handler in the HTML
code. First, code the external JavaScript file (here it will be saved as
js_event_01.js) as follows:

Next, add the script tags and the event handler to your HTML code:

Notice how the function is called using the event handler just like a
normal function call within a script. This enables you not only to shorten the
code within the event handler, but also to reuse the function on another
button click or event later in the page instead of writing the two alerts out
again. The use of a function can help you quite a bit, especially when the
code you want to use becomes extremely long.

NOTE

As you continue, you will notice that there is a difference between
using type=“button” and type=“submit”. For a submit type, you will
need to return false or prevent the default action using preventDefault.
You will see more on this as you proceed through the chapter.

Using an Event Handler in the Script Code
You can also use an event handler within the script code (whether using the
script tags in the HTML document or using an external JavaScript file). One
way to do this is to give the element an id attribute and then use the
JavaScript method document.getElementById() to access the element, as you
learned in Chapter 9.

Add the id Attribute
To use the previous script in this way, you will first add an id attribute to the
HTML tag for the input button, as shown here:

Notice that the button input element was given an id of say_hi. You will use
this to access the button and tie it to an event in your script.

Access the Element
The document.getElementById() method allows you to access any element in
the HTML document that has an id attribute using the value of its id attribute.
In order to access the button input element you have been using with an id of
say_hi, you could use the following code:

Now, you can place the function code into a function expression in the
JavaScript file (js_event_01.js), as shown here:

The function expression (which displays the two alerts) is assigned to
handle the click event on the input button. Thus, when the button is clicked,
the viewer will see the two alerts!

This method of handling events allows you to place all of your JavaScript
code outside of your HTML elements, which keeps your HTML code cleaner
(especially if an external JavaScript file is used). Later in this chapter, you
will see that newer methods are also available to handle events.

CAUTION

Make sure an element has been added to the page before accessing it
with getElementById(). This can be done by placing the <script>
</script> tags at the end of the document (just before the closing
</body> tag) or by using the load event to determine that the
document has loaded before accessing DOM elements.

Ask the Expert
Q: You mean I can just write some JavaScript by using an event

handler like an HTML attribute?

A: Yes, but keep in mind that giving an element an id attribute and
responding to the event in the JavaScript code will help keep your
HTML code cleaner.

Q: Can you use events on elements other than buttons?

A: Yes, almost any element can react to an event. You will learn more
about the events that are used in JavaScript in the next section.

Q: Didn’t I already learn this in Chapter 9?

A: So far, what you have seen is basically a review of some of the
things you learned in Chapter 9. The remaining sections will build
on this by providing you with the available events, discussing the
event object, learning new event registration techniques, and
building example scripts from what you have learned.

Learning the Events
Now that you know what event handlers are and how to use them, you need
to see which event handlers are used for various events on a page. Begin by
looking at Table 10-1, which lists the most common events, their event
handlers, and samples of what actions might trigger each event.

Table 10-1 Common Events and Event Handlers

NOTE

There are numerous additional events available that you may find
useful. Since the number of available events can change quickly, the
table lists some commonly used events. Events for drag-and-drop
functionality are discussed in Chapter 16. A complete listing of events
relevant to browser-based JavaScript that will stay up to date can be
found at developer.mozilla.org/en-US/docs/Web/Events.

Now that you have a general idea about event handlers, you will take a
look at some of the most often used ones in detail to see how they work.

The Click Event
The click event, which you have already been studying, occurs when a
viewer clicks on an element in a Web page. For example, you could use a
form button and send an alert when it is clicked:

This will send the viewer an alert once the button has been clicked. Figure
10-1 shows the result of this code when the viewer clicks the button.

http://developer.mozilla.org/en-US/docs/Web/Events

Figure 10-1 This alert pops up when the viewer clicks the button.

To use this event handler to do the same thing with a link, you might be
tempted to do something similar to the following:

The problem with this code is that the alert will work, but the browser will try
to continue the original action of the link tag and attempt to go to http://none.
This would probably cause a “Server not found” error in the browser.

One way you can avoid a “Server not found” error is to link to an actual
page (which is good for accessibility); however, if the viewer has JavaScript
enabled, it may take the viewer away from the current page. To keep the link
from being followed when JavaScript is enabled, you need to add an extra
statement to the JavaScript in the click event. You need to tell the browser
not to continue after you have shown the viewer your alert. To do this, you
will add a return false statement, which will keep the browser from following

http://none

the link after the alert has been shown. The following code shows how to add
in the return statement inline:

With this code in place, the click event will be taken care of by the onclick
event handler, and the browser will not need to worry about attempting to
follow the link in the href attribute. Later in this chapter, you will learn how
to use the modern method of preventing the default action,
event.preventDefault().

NOTE

You can also code JavaScript for a link by using the javascript:
command—for example, Click—but this method is
not recommended for accessibility reasons (if JavaScript is off, the
link doesn’t go anywhere).

Focus and Blur Events
The focus event occurs when the viewer gives focus to an element or
window. A viewer gives focus to something by clicking somewhere within
the item, by using the keyboard to move to the item (often via the TAB key),
or via a script. For instance, a viewer who clicks a text input box (before
entering anything) gives that text box focus. Also, clicking an inactive
window and making it the active window gives the window focus. The focus
event also has a related method called focus(), which is covered in Chapters
11 and 14.

To see the focus event in action, you can create a text input box, which is
one of the form elements that will enable you to give the element focus. The
following example shows how to do this, as well as how to code a reminder
alert to pop up when the viewer gives focus to the text box:

This code will give the viewer an alert before he or she can begin typing. The
alert serves as a reminder to capitalize the name. The counter variable is set
and incremented in order to keep the alert from coming up every time the
user focuses on the text box (limiting it to just the first focus event). Figure
10-2 shows the result of the preceding code in the browser when the viewer
gives focus to the text box.

Figure 10-2 This alert pops up when the text box receives focus from the
viewer.

The blur event occurs when the viewer takes the focus away from an
element or a window. To take the focus off something, the viewer usually
gives focus to something else. For instance, the viewer could move from one
form element to another, or from one window to another. The blur event also
has a related method called blur(), which will be covered in Chapters 11 and
14.

NOTE

The blur event is triggered only when the viewer gives focus to
another area, which is the only way the browser will know the viewer
released the focus from the first area. For example, when the viewer
presses the ENTER key in an input field, the focus goes from the input
field to the document window. Also, the event triggers if you place
focus on the text field and then switch tabs.

To see the blur event in action, the following example uses two text boxes:
clicking the first text box gives it focus, and clicking the second text box
invokes the blur event in the first text box.

When viewers click the second text box, they get the alert from the first one
telling them to come back.

Figure 10-3 shows the result of the preceding code when run in the
browser. Notice that the focus is in the second text box when the alert pops
up. By clicking the second text box, the viewer invoked the blur event in the
first text box.

Figure 10-3 This alert pops up when the viewer takes the focus off a text
box.

The Load and Unload Events
The load event occurs when a Web page finishes loading. If you want an alert
to be shown when the page has finished loading, you could use the following
code:

When the page has finished loading, viewers will get an alert that tells
them it is finished. Figure 10-4 shows how the preceding code example
would appear in the browser.

Figure 10-4 This is displayed in the browser window after the page has
finished loading.

If you want to use the onload event handler in the script code rather than
in the body tag, you could write this code into an external JavaScript file
(save it as load_alert.js):

NOTE

Only one load event can be specified in your document. If there is
more than one, only one of them will work. This could happen by
adding onload to the <body> tag, using addEventListener (mentioned
later in this chapter), and/or using the preceding window.onload
method at the same time, so be careful when you add a load event to
check for any others.

This will capture the load event for the current window (the window object
will be explained in more detail in Chapter 11). You can now access all of the

elements in the HTML code, and you can now remove the event handler from
the opening <body> tag, as shown here:

NOTE

Once the load event occurs, you can no longer use document.write()
to write to the document.

The unload event occurs when a viewer leaves the current Web page. The
viewer could leave by clicking a link, typing another address in the browser,
or closing the window.

This event is known to annoy viewers, because it enables the site owner to
do something while visitors are trying to move on to another page or another
Web site (forcing them to wait). To have an alert pop up when the user leaves
the page, you could write the following code:

Figure 10-5 shows the result of the preceding script. As viewers try to
leave the page that contains this script, an alert pops up telling them to be
sure to come back. Of course, this could cause a viewer to become quite
inconvenienced if it is used on an index page or on a number of pages within
a Web site.

Figure 10-5 This alert pops up when the viewer tries to leave the page.

As with the onload event handler, you can use the onunload event handler
in the script code rather than as an attribute of the body tag by using
window.onunload.

Overall, be sure to think twice before using the unload event on a live
page, because it will almost surely annoy most Web users.

TIP

If onunload does not work properly, try using onbeforeunload if you
need this functionality.

The Reset and Submit Events
Reset and submit events are used when one or more forms are included in a
document. A form can have its contents reset or can be submitted for
processing. These events allow you to program a response to one of these
form actions.

The reset event occurs when a viewer uses a form reset button to reset the
form fields in a form. The reset event also has a related method called reset(),

which is covered in Chapter 14. The submit event occurs when the viewer
submits a form. The submit event also has a related method called submit(),
which will be covered in Chapter 14.

To see the submit event at work, you have to create a form that can be
submitted with a submit button. The following code will give a “Thank You”
alert to the viewer once the submit button is clicked:

The submit event doesn’t do you much good now (especially with the
contents of the form not really going anywhere), but this event will become
more useful when you get to form validation in Chapter 14.

The Mouse Events
There are a number of events that are available for user actions involving the
mouse. These are listed below.

• mousedown Occurs when a viewer presses the mouse button down but
before the click is complete (the button has not yet been released).

• mouseup Occurs when the viewer releases the mouse button after
pressing it down.

• mouseenter Occurs when a viewer moves the mouse cursor over an
element (excluding child elements.

• mouseleave Occurs when a viewer moves the mouse cursor away from
an element (excluding child elements).

• mouseover Occurs when a viewer moves the mouse cursor over an
element.

• mouseout Occurs when a viewer moves the mouse cursor away from an
element.

• mousemove Occurs when the viewer moves the mouse cursor.

• mousewheel Occurs when the viewer scrolls the mouse wheel up or

down.

An example of using a mouse event can be shown by creating a text link.
When you add the onmouseover event handler to the link, you have the
option to perform JavaScript commands when the viewer passes the cursor
over the link. Thus, if you want an alert to pop up when the viewer moves the
mouse over a link, you could code something like the following:

This time the visitor doesn’t even get to click the link before being greeted
with an alert. Keep in mind that a script like this could annoy your visitors if
it is overused. Figure 10-6 shows the result of this script in a browser. The
alert pops up as soon as the mouse cursor moves over the link.

Figure 10-6 This alert pops up when the mouse cursor moves over the link.

Since there is no need to click the link for something to happen, the
browser won’t try to follow the link afterward. In fact, with this script in

place, it is impossible to click the link at all because the alert keeps popping
up when you move your mouse over to click it!

The Keyboard Events
Keyboard events occur when the user interacts with a Web page using the
keyboard. These allow you to react to each phase of a key being pressed and
released by the viewer. The keyboard events are listed here:

• keydown Occurs when the viewer presses down a key on the keyboard.

• keypress Occurs when a viewer presses down a key on the keyboard and
the corresponding character is typed. This occurs between the keydown
and the keyup events.

• keyup Occurs when the viewer lets go of a key on the keyboard,
releasing the key.

For example, if you wanted to send an alert each time a character was
typed into a text box, you could use the following code:

This would remind the viewer each time a character is typed into the text box.
This can get quite annoying after a couple of characters are typed, but once
you learn about the event object later in this chapter, you will learn how to
find out what key was pressed, which will give you more flexibility with the
keyboard events.

Try This 10-1 Focus and Blur

pr10_1.html

prjs10_1.js

In this project, you will use your knowledge of the focus and blur events and
innerHTML (from Chapter 9) to create a script that will remind a user what to
type into a text box.

Step by Step
1. Create an HTML page and save it as pr10_1.html. Add the necessary

script tags to point to an external JavaScript file named prjs10_1.js. Add
code so that there is a text box for a phone number with an id of “pn”
and a text area for an address. Beside the phone number text box, there
will be an empty span tag with an id of “reminder”. The body section of
the HTML file should look like this when complete:

2. Create an external JavaScript file and save it as prjs10_1.js. Use this for
step 3 and step 5.

3. Get the “pn” and “reminder” elements by their ids and assign them to
the variables pn and rm, respectively.

4. When pn receives focus, change the innerHTML of rm to the text
“Format: 123-456-7890.” When pn is blurred, change the innerHTML of
rm to an empty string (“”).

5. The JavaScript file should look like this when complete:

6. Save the HTML and JavaScript files, and load the HTML page in your
browser. Click inside the text box and a reminder message should
appear next to it. Click the text area afterward to blur the text box and
make the message disappear.

Try This Summary

In this project, you used your new skills, the focus and blur events, to create a
script that could help a user fill out a form.

Ask the Expert
Q: Why are there so many events?

A: There are so many things that a viewer (or the browser itself) can
do while on a Web page that you end up with a bunch of possible
events.

Q: Do I need to memorize all of these events?

A: You probably only need to memorize them if you are taking a test,
or you are doing this for a job and need to know things quickly, or
if you just like knowing the events off the top of your head;
otherwise, you can just refer to Table 10-1 in this chapter if you are
not sure which event needs to be used.

Q: Will I be using every single event in this book while doing the
projects in this book?

A: Since this book is a beginner’s guide, you will not get to the point
where you use every single event.

Other Ways to Register Events
Up to this point, you have been using what are called DOM Level 0 event
handlers (onclick, onmouseover, and so on). There are two other methods for
registering events in addition to the method you have used:
addEventListener() and attachEvent(). These are called DOM Level 2 event
handlers, and they offer the ability to attach multiple events to elements,
whereas the DOM 0 method only allows one event to be registered on any
given element. For example, suppose you had the following JavaScript code:

In this case, the second instance of assigning the onclick event handler to the
mydiv element will overwrite the first one, so only the “Second Click!” alert
will be displayed when a click occurs. DOM Level 2 event handlers allow
you to avoid this issue.

NOTE

If you have <div id=”mydiv” onclick=”…”> and then have
mydiv.onclick in the document, it will overwrite the onclick attribute,
so make sure to choose a single method of adding the event to avoid
any conflicts.

The addEventListener() Method
The addEventListener() method is the standard from W3C, and is currently
supported in all the most recent browsers (Internet Explorer needs to be
version 9+). It allows you to specify an event, a function to execute for the
event, and a value of true or false depending on how you want the event
handler function to be executed in the capturing (true) or bubbling (false)
phase. The general format looks like this:

Thus, if you want to create a linked input button as you did earlier in this
chapter, you could adjust the JavaScript code to look like this:

Notice that rather than using the event handler, this method uses the name of
the event (instead of onclick, you simply use click). Also, this method will
accept a function name or a function expression to handle the event (as
shown previously). It is important to note that when you specify a separate
function, you need to leave off the parentheses. For example, look at the
following code:

A common bug that will cause this not to work is including the parentheses
when specifying the handling function in addEventListener. Therefore, if you
find unexpected behavior, check to be sure parentheses were not added.

Removing an Event
To remove an event, you would use the removeEventListener() method:

Note that if a function expression is used in the addEventListener() method,
the event registration cannot be removed (the function expressions will be
seen as two different arguments, even if they use exactly the same code). If
there is a chance you will need to remove the event later, it is best to use a
separate function and use the function name as the second argument in both
method calls. An example of this is shown here:

Since this is the standard method for registering events in modern browsers,

you will use this method of event registration for the remainder of this book.

Capturing and Bubbling Phases
When you have elements inside other elements that both have the same event
type registered to them, which event occurs first will depend on whether the
capturing or bubbling phase is used to register the events. If capturing is used,
then the outermost element’s event occurs first and the innermost element’s
event will occur last. If bubbling is used, the opposite is the case. It is most
common to use the bubble phase, since it has the greatest browser
compatibility.

The attachEvent() Method
The attachEvent() method works in a similar way to addEventListener().
However, it only works with event bubbling and is only useful in versions of
IE below 9, so it’s referenced here in case you need to support an older IE
version.

The Event Object
When an event occurs, an object named event is created, which stores
information about the event. This information can be used by your script to
help it perform the required actions. For example, a keyboard event will have
information about the key that was pressed stored in the event object. This
allows you to program different responses when different keys are pressed.

DOM and Internet Explorer: DOM Level 0 Registration
In most browsers, the event object is accessed by using the name event. It can
be passed as the lone argument to a function that handles the event, as in the
following DOM Level 0 code:

Notice that the argument event is passed to the event listener. The type
property of the event object (which returns the type of event) is then used to
display an alert to the viewer, which will let it be known that the click event
is what caused the function to run. The argument can be any identifier you
like, so it is common to see shorter identifiers such as e or evt as opposed to
event. Use whatever is comfortable for you or what your organization has
standardized. As long as you are consistent, any identifier is perfectly valid
here.

Internet Explorer, however, uses window.event to access the event object,
which means the DOM Level 0 event handler would use the following code:

With DOM Level 0 functions, the event object can be implemented cross-
browser by assigning the needed value, based on what the browser supports,
to a variable, as in the following code:

Notice that the variable is assigned the event object if it is available, or the
window.event object if not. The use of the logical OR (||) allows you to
provide a preferred value if it is available, or to set another (default) value if
not. Now that the variable e will hold the proper value cross-browser, it can
be used to alert the event type.

Using event with Modern Event Registration
When using addEventListener() or attachEvent(), the event object is
accessible via event. This allows you to use the event object as expected. For
addEventListener(), you could use the following code:

For attachEvent(), you could use the following code:

Support for older browsers, if needed, can be achieved using the DOM Level
0 method. Again, you can refer to the resources mentioned in the “The
attachEvent() Method” section earlier in the chapter, as they have been coded
to handle the various event registration models.

Properties and Methods
You have already seen the type property, but the event object also has other
properties and methods that are useful, which are listed in Table 10-2.

Table 10-2 The Properties and Methods of the event Object

As you will notice, some of the listed properties work with Internet
Explorer (prior to version 9), while the others will work with other modern
browsers. Since most modern browsers (including Internet Explorer 9 and
above) support the standard DOM Level 2 event registration model, you will
use this method through the remainder of this book. Notes will be added for
cases where you may need to know how to perform a task in Internet
Explorer prior to version 9.

Preventing the Default Action
You will recall that when using the DOM Level 0 registration, preventing the
default action on a link was achieved using a return statement (return false).
However, you can do this without the need to return immediately by using
the preventDefault() method of the event object.

For example, the following code can now be used to prevent a link click
from loading the specified page:

As you can see, you can continue handling the event, rather than using a
return statement to leave the function.

NOTE

When using Internet Explorer prior to version 9, you can use the
returnValue property. Setting its value to false (for example,
window.event.returnValue = false;) will do the same thing as
preventDefault().

Event Information
Some events, such as keyboard events, have additional properties that are not
shown in the table (which are available to all events).

For example, when a keyboard event occurs, the key code of the key that
was pressed is stored in event.keyCode, which allows you to determine which
key was pressed. This can be used by your script to react only when a
particular key is pressed. For example, you could use this code:

This will alert the viewer that you do not want the P key to be pressed, since
80 is the key code for the P key on the keyboard. You can see more on key
codes at: http://protocolsofmatrix.blogspot.com/2007/09/javascript-keycode-

http://protocolsofmatrix.blogspot.com/2007/09/javascript-keycode-reference-table-for.html

reference-table-for.html

Try This 10-1 Using addEventListener()

pr10_2.html

prjs10_2.js

In this project, you will use addEventListener to register a mouseover and
mouseout event on a piece of text.

Step by Step
1. Create an HTML page and save it as pr10_2.html. Add code so that it

links to an external JavaScript file named prjs10_2.js. The body section
of the HTML code should look like this:

2. Create a JavaScript file and save it as prjs10_2.js. Use it for step 3.

3. When the mouse is moved over the “int” span, change the color to
#FF0000. When the mouse moves away, change the color to #000000.
When complete, the JavaScript file should look like this:

4. Save the JavaScript file and open the HTML file in your browser. Move
the mouse over the text and off the text to change colors.

Try This Summary
In this project, you used your skills with event handlers and

addEventListener() to change the color of text when the mouse moves over or
away from it.

Creating Scripts Using Event Handlers
Now that you have tackled the long list of event handlers and the event
object, it’s time to have a little fun. In this section, you are going to learn how
to do things other than sending alerts.

Show Hidden Content
For this script, create an HTML file with the following code inside the body
section and save it as news.html.

Here, you have a “breaking news story” headline. A link (with an id of
morelink) is placed so that when clicked, it will display the content of the
story. Below this, you have a div (with an id of morediv) that contains the
content of the story. At the moment, it is perfectly visible, since no CSS or
JavaScript has been applied to change it. Your goal is to hide this content
initially, and then display it when the user activates the link.

Next, create a JavaScript file and save it as news.js. The first thing you
will want to do is to define some variables that will grab the two needed
elements: the morelink and morediv elements.

These are now assigned as objects to the mlink and mdiv variables. Next, you
will need to add an event listener that will allow you to show or hide the
mdiv element when the mlink element is clicked, as in the following code:

Notice that the event object is passed as an argument, allowing
preventDefault to be used. The display property of the mdiv element is
changed to “block” if it is “none”, or to “none” if it is anything other than
“none” (for example, when it has been set to “block” from a previous
change).

Now everything is set for the click event, except that you need to hide the
mdiv element for the initial page display. This could be done in CSS, but here
you will use JavaScript to simply set its display style to “none”:

The full code for the JavaScript file now looks like this:

Save the JavaScript file and open the HTML file in a Web browser. You
should see the headline and the link, with no additional content. Figure 10-7
shows what the initial page should look like.

Figure 10-7 The initial view of the page, with only the headline and link
displayed

Click the link. The story content should now display below the headline
and link. Clicking again should hide the story, which you probably will want
to do after reading a teaser headline that simply leads to another teaser telling
you to check back soon! Figure 10-8 shows the result of clicking the link to
display the content.

Figure 10-8 Once the link is clicked, the content is displayed.

Change Content
Instead of showing and hiding one piece of content, you may want to give the
viewer several options and display the chosen content when a particular link
is clicked. To do this, you will first need an HTML document. In this case,
you will use the following HTML and save the file as technews.html.

Notice that there is a wrapper div, which you will use to contain all of the
content. Within it, you have the headline div, the top_story_nav div, and the
three content divs (sumdiv, statsdiv, and comdiv). The script will allow each
link to display one of the content divs while hiding the other two. This way,
the user can view one section at a time rather than scrolling to the desired
section.

The next thing you will do is add a little style to the page by creating a
CSS file. Include the following code and save the file as technews.css.

This defines the size of the wrapper div, which will be 600×400 pixels when
the padding is included. It allows content that is longer to be scrolled by the
user within the wrapper. The other styles provide some color, margins,
padding, and spacing for the other elements. You can of course adjust these
to fit your preferences.

Finally, you will need to create the JavaScript file. Include the following
code and save the file as technews.js.

The three links correspond to the three content divs, and so the elements from
both sets are placed into arrays (slinks and sdivs). The change_div() function
will be explained shortly, but first notice the for loop after the function. This
cycles through the slinks array and calls the change_div() function for each
link, passing the value of i along as an argument. This argument will be used
to register the click event for each element and to change the appropriate
content when each link is clicked.

The change_div() function takes in the passed count variable from the for
loop as an argument. The first time through the loop, change_div will be sent
a value of 0, the second time a value of 1, and so on. Since the links and
content divs are in arrays, this allows you to use the count value to access the
desired elements. The function begins by using addEventListener(). The
listener is added to the link element found in the slinks array at index count.

In other words, slinks[0] will be accessed when count is 0. This accesses the
first link element, since the value of slinks[0] is
document.getElementById(“sumlink”). Since this loop is run three times, the
event listener will be added with the count values of 0, 1, and 2.

The event listener function first prevents the default action. Then,
depending on the link that was clicked, the corresponding div element in the
sdivs array is displayed by setting its style display to “block”. A loop is used
to hide the remaining two div elements. Notice that if the value of j is equal
to the count value (the element being shown), then it is skipped so that the
element currently being shown remains visible.

Finally, at the end of the script, you will see that the statsdiv and comdiv
elements are hidden. This initializes the page with the sumdiv element still
visible by default while the other two content divs are hidden. Figure 10-9
shows the initial display of the page when viewed in a browser.

Figure 10-9 The initial display. Notice the links available for the user to
click.

Clicking on the “Stats” link will show the statistics (makes statsdiv visible
and the others hidden). Figure 10-10 shows the result of clicking the “Stats”
link.

Figure 10-10 The result of clicking on the “Stats” link

Finally, clicking the “Comments” link will display all of the comments
that were directed at me for my embarrassing showing at that programming
competition! Figure 10-11 shows the comments being displayed.

Figure 10-11 The comments display when the “Comments” link is clicked.

This script combines many of the techniques you have learned (events,
loops, arrays, and more). The arrays and loops were particularly helpful here
as they kept you from typing three versions of addEventListener() with each
value hard-coded into the event registration and function. When working with
events, it is often helpful to have these handy ways of typing less code.

Custom Events
Modern browsers allow you the ability to create custom events that can be
fired (dispatched) at a time of your choosing. Custom events can be helpful
when creating custom functionality or for triggering an action to occur once
data is finished loading from another source, such as an API call (AJAX will
be discussed in Chapter 15).

To create a custom event, you can use the CustomEvent constructor, as
shown in the following code:

Notice that the first argument is what the name of the event will be. This
name can be used in the addEventListener method to handle the event. In this
case, the name of the event is introduceself. The variable name the event is
assigned to can be used to dispatch the event—in this case, introduceSelf
(notice the capital S here).

With that in mind, the next steps for making use of the new event are to
listen for it and to dispatch it so that the event listener will capture it and
respond. The following code shows an example of this.

Notice that the custom event is defined and attached to an element from
the DOM using addEventListener. Here, the event is dispatched immediately,
but the last line in the example could be placed anywhere in your code in
order to dispatch the event at the time of your choosing. Note that with a
custom event, you have to use the identifier detail in order to pass along the
additional information. Using another identifier won’t work, as in the

following code:

 Chapter 10 Self Test

1. An event handler is a predefined JavaScript property of an object that is
used to handle an event on a Web page.

A. True
B. False

2. Event handlers are useful because they enable you to gain __________
to the __________ that may occur on the page.

3. To use an event handler, you place it in the __________ or the
__________ code.

4. Which of the following correctly codes an alert on the click event?

A. <input type=“button” onclick=“window.alert(“Hey there!”);”>
B. <input type=“button” onClick=“window.alert(‘Hey there!”);”>
C. <input type=“button” onclick=“window.alert(‘Hey there!’);”>
D. <input type=“button” onChange=“window.alert(“Hey there!”);”>

5. The __________ event occurs when a Web page has finished loading.

6. A mouseover event occurs when:

A. The viewer clicks the mouse while the cursor is over a button.
B. The viewer moves the mouse cursor away from a link.
C. The viewer clicks a link, linked image, or linked area of an image

map.

D. The viewer moves the mouse cursor over an element on the page.

7. A mouseout event occurs when a viewer clicks an element on the page.

A. True
B. False

8. The __________ event occurs when the viewer leaves the current Web
page.

9. The blur event is the opposite of the __________ event.

10. The __________ object contains properties and methods for an event.

11. The __________ property of an event contains the type of event that
occurred.

12. The submit event occurs when the viewer __________ a __________ on
a Web page.

13. The keydown event occurs when a viewer presses down a key on the
keyboard.

A. True
B. False

14. In Internet Explorer prior to version 9, the event object can be accessed
by using __________.

15. The __________ method and the __________ method are two new ways
to register events.

S

Chapter 11
Introduction to Node.js

Key Skills & Concepts
• Introducing Node.js

• Installing Node.js

• Using Node Modules

• Installing a Database

• Creating a Web Server

o far in this book, you have been using browser-based JavaScript in
order to add functionality to a Web page. In recent years, Node.js has
come along and expanded the number of places where JavaScript can be

used. Not only can you use it for browser-based applications, you can now
use it for applications on a local machine or to create a Web server and use it
for server-side applications.

This chapter will introduce Node.js and give you some basic information
on how you can use it to create local applications. In addition, you will be
introduced to a simple database that allows you to store data that can then be
used in your applications.

NOTE

Although this book provides some beginning information on Node.js
and database usage, it will not get into all the details needed for you to
be an expert at each, as they are beyond the scope of a JavaScript

beginner’s guide.

Introducing Node.js
Node.js was originally created with the idea of allowing real-time
applications to have push capability—meaning that the server could send
information to the client without the client needing to request information
from the server first. This two-way communication allows for data to be
shared in real time, which makes Node.js a great environment for Web
applications that involve chat, stock market information, collaboration, or
even games.

While Node.js is excellent for real-time applications using Socket.io, it
can also be used to create a standard Web application and to respond to
requests for information via an application programming interface (API). It’s
nonblocking I/O is great both for real-time and standard applications. In this
chapter, you will see the basics of using Node.js, which includes the creation
of a basic Web server. With this in place, you will begin creating a small
Web application that will be built upon throughout the remainder of the book,
as needed. In this way, you can see how JavaScript can be used for server-
side development in addition to the standard client-side development that has
been done using JavaScript for a long time.

Ask the Expert
Q: You mentioned Socket.io for real-time applications. What is

that?

A: Socket.io is a real-time engine that allows you to communicate
between a server and one or many clients. Messages can be passed
from client to server or from server to client in real time, which
makes it very useful for certain applications. More on Socket.io can
be found at https://socket.io/.

Q: I don’t plan to program on the server side. Why should I learn
Node.js?

A: In such a case, you wouldn’t absolutely need to learn Node.js, but

https://socket.io/

understanding the basics covered in this book could still be helpful
to you. In front-end programming, you will often be requesting
data from some sort of server-side implementation. If that is indeed
Node.js, then you will know a little about what is happening on the
other end of your request. If not, by learning a little about Node.js,
you will still have an understanding of how the server responds to
the client. In both cases, this can help you when something doesn’t
work as expected and you need to discover the origin of the issue.

Q: Are there other types of Web servers or languages that can be
used on the server side?

A: Of course! Node.js isn’t your only option. Depending on your
needs and resources, it may be more beneficial to run a different
type of Web server or to use a different server-side language. If
you want to look at the various development stacks available, you
can find more information at https://da-14.com/blog/how-to-
choose-technology-stack-application-development.

Installing Node.js
Since Node.js runs in its own environment (rather than in a Web browser), it
needs to be installed so that you can use it to create scripts or applications.
First, you need to be sure you do not have Node.js installed already. If you
don’t, or if you want to update your Node.js version, you can install the latest
Node.js for your system.

Check for a Current Installation
To see if Node.js is installed system-wide already, you can open a command
prompt on your system and type a command. Opening a command prompt
differs a bit for each operating system. Here are some tips for Windows, Mac,
and Linux.

Windows Command Prompt
In later versions of Windows, you can simply type cmd into the search bar

https://da-14.com/blog/how-to-choose-technology-stack-application-development

and click on Command Prompt when it displays.
In older versions, these options are available:

• Click Start | All Programs | Accessories | Open Command Prompt.

• Click Start | Run, enter cmd, and click OK.

Mac Command Prompt
For macOS, click the Finder icon in the dock and click Applications in the
favorites list. Find the Utilities folder and click to open the folder. Find the
Terminal icon and double-click to open the Terminal program. Alternatively,
press COMMAND-SPACEBAR to launch Spotlight for searching and then type
Terminal. Double-click the Terminal search result to open the Terminal
program.

Linux Command Prompt
The terminal can have different names, depending on the flavor of Linux you
use. For example, the following link has some tips for the different type of
Ubuntu desktops: https://help.ubuntu.com/community/UsingTheTerminal?
action=show&redirect=BasicCommands.

Running the Command
Once you have a command prompt open on your system, type the following
command and then press ENTER:

node -v

If Node.js is already installed, the version of Node.js installed is displayed.
Otherwise, an error message will display indicating that node is not a
recognized command on your system.

Install Node.js
If you do not have Node.js or want to update your version, you will want to
install Node.js on your system.

If you want to install Node.js by running a file (default), visit
https://nodejs.org/en/download/. The options will be displayed for various

https://help.ubuntu.com/community/UsingTheTerminal?action=show&redirect=BasicCommands
https://nodejs.org/en/download/

operating systems, as shown in Figure 11-1.

Figure 11-1 The Node.js download page

Download the installer for your system and follow the prompts to install
Node.js on your system. The installer should do the work of installing
Node.js for you, and once it’s done, you should be ready to try Node.js!

Alternately, you may wish to install Node.js on your system with a
package manager. You can find instructions on how to do this at
https://nodejs.org/en/download/package-manager/.

Write a “Hello World” Script
Now that you have Node.js installed, you can write a simple “Hello World”
script and then run it from the command line. First, create a folder (or use one
you already have) on your machine for saving your project files. This folder
will be used for creating the examples and projects in this book.

Create a new JavaScript file and simply place the following line of code in
it:

https://nodejs.org/en/download/package-manager/

console.log("Hello there!");

Save this file as hello-world.js in your project folder. To see the script in
action, you will need to open a command prompt in your project folder (as
described earlier in this chapter).

At the command prompt, type the following command:

node hello-world.js

Press ENTER and you will see the result. The text “Hello there!” will be
written into the command window (console) and then you will be sent back to
the command prompt. Figure 11-2 shows how the command window looks
once the script is complete.

Figure 11-2 The result of running the Hello World script

As you can see, the console.log command simply logs a message to the
console. Much like what you have done in previous chapters with
document.write, you simply pass a string value to the console.log command
in order to have that string value logged to the console.

NOTE

The console.log and some other console commands are also available
when you are writing browser-based (front-end) JavaScript. You will
see more about using these for the browser in Chapter 13.

While the default console.log command is useful for some quick logging,
you can use a Node module to add different levels of logging, such as debug,
warning, error, and so on. You will learn more about logging and installing
Node modules as you proceed in this chapter.

Ask the Expert
Q: I couldn’t install Node.js on my system. What should I do?

A: If you are having trouble installing Node.js from the official Web
site documentation, you may want to find a tutorial online that
describes the process for your operating system in more detail. To
see the most up-to-date tutorials, you may want to perform your
own search, but here are some tutorials for Windows, Mac, and
Linux:

• Windows http://nodesource.com/blog/installing-nodejs-
tutorial-windows/

• Mac http://nodesource.com/blog/installing-nodejs-tutorial-
mac-os-x/

• Linux http://www.ostechnix.com/install-node-js-linux/

Q: I was able to install Node.js on Windows, but Windows still
didn’t recognize it when I tried to run the Hello World script.
What should I do?

A: In some cases, you may need to check that Node.js was set in your
Windows path. This is typically done for you with the installer file,
but if not, you can add it to your path manually instead. For
information on adding a program to the Windows path, see
http://helpdeskgeek.com/windows-10/add-windows-path-
environment-variable/.

Q: The script I wrote was for the command line. Aren’t we going
to set up a Web server?

A: Yes, later in this chapter you will set up a Web server. In the

http://nodesource.com/blog/installing-nodejs-tutorial-windows/
http://nodesource.com/blog/installing-nodejs-tutorial-mac-os-x/
http://www.ostechnix.com/install-node-js-linux/
http://helpdeskgeek.com/windows-10/add-windows-path-environment-variable/

meantime, there are some things you can do with command-line
scripts that may prove helpful over time, and you will look at these
more as this chapter progresses.

Using Node Modules
Node modules allow you to extend the default functionality available to
Node.js scripts. Some Node modules are available without the need to install
them, while others require that you install them before they are available for
use.

Using Native Node Modules
You can use a native Node module in a script by simply including it in your
JavaScript file. A commonly used native module is the File System module
(fs). You can include it by requiring the module and assigning the result to a
variable (usually the variable name it is assigned to matches the module
name). For example, here is how you could include the fs module in your
Hello World script:

This requires the fs module but doesn’t make use of it. Much like the
commands you have used previously, fs has certain methods that can be
called. As an example, the mkdir method of fs allows you to make (create) a
directory (folder) on your local machine. This is one of a number of methods
you can use to work with files and folders. The following code shows the
inclusion of the fs module and the use of fs.mkdir as an example. Save this
file as create-folder.js in your project folder.

Notice that the code begins with the inclusion of the fs module. Without this,
the next line would throw an error indicating that fs is not defined. On the
second line, the fs.mkdir method is called.

The fs.mkdir method takes two arguments. The first argument is the name
of the folder you want to create (in this case, test-folder). This folder will be
created in the same folder where your node script is located by default (in this
case, within your project folder). You can alter this path using an absolute
path, relative path, or by methods available on the path module (you will see
more on the path module later in the chapter).

The second argument is a function that will be executed once the folder
creation has completed. Here, an if-else statement is used to throw an error if
there was an error creating the folder. Otherwise, the “Directory was
created!” message will be logged to the console.

To run this, open a console in your project folder and type the following
command:

node create-folder.js

Once it runs, you should be able to find the new folder (test-folder) inside
your project folder! Note that you will need proper permissions on any
folders you are dealing with for this to work, so be sure you have write
permissions on your project folder on your system.

As you can see, a native module can be used pretty quickly by simply
including it and finding which methods are available for use.

Asynchronous Execution
You may have noticed the following description of how the last example

works:

“The second argument is a function that will be executed once the
folder creation has completed.”

Node.js, by default, does almost everything asynchronously, meaning that
your code can continue on to do other things while waiting for an action to
complete. By going back to the previous example, you can make an alteration
that shows how this works. Consider the following code:

Save this file as test-node-async.js and run it from your console window by
typing node test-node-async.js. Unless your OS is incredibly fast, the result
should look like this:

This can display before the success message does!

Directory was created!

Notice that the message does indeed display before the folder creation is
complete.

NOTE

If test-folder already exists inside your project folder (and it will if
you ran the last example), the script will error out when you run it
because it will not re-create an existing folder. You can run it without
error by deleting test-folder before running the example or by
changing the name of the folder to be created in the script (the first
argument to fs.mkdir).

In Node.js, the default behavior is to allow other code to run while a
specific operation that could take time is executing. This is often referred to
as nonblocking, meaning that the initiation of an action that may take time
does not block the rest of the code from continuing to execute while waiting
for that action to complete. When that action is complete, there is typically a
function (in such a case, it can be referred to as a callback function) that
executes upon completion.

Alternately, the completion of the action may spawn an event that you can
respond to by assigning a function to be run when that event is triggered
(you’ll see examples of these as you progress). In the previous example, the
fs.mkdir method takes in a callback function as the second argument, and this
function is executed when the folder creation is complete.

It should be noted that Node.js does offer synchronous versions of most
functions, though it is not typically the best practice to use them. For
example, you can alter your test-node-async.js file to use the synchronous
version of fs.mkdir, which is fs.mkdirSync:

const fs = require("fs");

fs.mkdirSync("test-folder");

console.log("This displays after the folder is created!");

Run the script again (remember to delete test-folder or use a different folder
name in the script), and the code following the fs.mkdirSync call will not run
until the creation of the folder is complete. Thus, the message will be logged
to the console after the operation is complete.

Using the synchronous version of a Node module method makes the code
run in a synchronous fashion, but again this is usually not the best practice
since asynchronous code does not block other code from being able to run.
This is almost always good for users, as they can continue to interact with a
program while the asynchronous function is waiting for a completed action.
Synchronous code will force users to wait along with it, and that usually is
not seen in a very positive light by users! Keep in mind, though, that with
asynchronous code, you can’t assume when an action is completed and must
put any dependencies inside the callback method.

Non-Native Modules
To include non-native modules in your Node.js script, you have a couple

options: you can include a prewritten module from the npm (Node Package
Manager) library, or you can write your own modules and include them. If
npm has the package you need, you can install that package in your project
and use it. If it doesn’t, or if you simply want to write your own module code,
you can do so and include that module in your script.

Node Package Manager
If you want to look for and use a module that is already available as a
package, you can look in the npm library at www.npmjs.com. In the search
bar, you can search for packages by name and view more details about them.
For an example here, you will simply install the Express package, which
allows you to create a Web server with Node.js quickly.

By default, Node.js comes with a copy of npm, though this copy will
likely not be the latest npm release. You may wish to update npm before you
begin using it. To do so, go to a console window and type the following:

npm install npm@latest -g

This should update npm to the latest version for you.

NOTE

Some versions of Windows may not completely update npm with this
command, as the console window of choice may not yet find the new
version. If your system does not, you can use the npm-windows-
upgrade tool at www.npmjs.com/package/npm-windows-upgrade.

Once you are done, you can use npm to install a package into your project
directory. For an example, open a command window in your project folder
and run the following command:

npm install express

This will install the Express package within your project folder. If you don’t
have a node_modules folder in your project folder already, it will be created
and the Express package will be within that folder. Any modules in the
node_modules folder can be included without specifying a path (as you will
see next).

http://www.npmjs.com
http://www.npmjs.com/package/npm-windows-upgrade

NOTE

If npm install yields a permissions error, you may need to run your
command window as an Administrator (Windows) or use sudo
(Linux) to get the proper permissions.

Once the module is installed, making use of it is the same process as using
a native module. Require the module and then use it in your script. For
example, save the following code as include-express.js and then run it from
your console window by typing node include-express.js, as shown here:

You should see the message logged to the console. Later in this chapter, you
will learn more about how to use Express and create a Web server for an
application.

Custom Modules
Custom modules are similar to the external script files you used previously
for browser-based JavaScript, though with more options. To create a custom
module, you simply write your code into a separate JavaScript file, make sure
it exports the needed items, and then require it in your main script as you
would other types of module.

For example, save the following code as calculate-sum.js in your project
folder:

Notice that this file simply includes a function that can be called to calculate
the sum of two values. This function can be improved to check that both
values have been sent, are numeric, and provide error messages, but for this
simple example, it will suffice.

Next, save the following code as get-monthly-income.js:

Notice that everything works in much the same way as using a native
module once the custom module has been required. However, there is one
thing you will need to remember when writing your own modules: you need
to export the values or functions you want to be able to use in your main
script. The preceding code will fail because it will not be able to find the
sum.calculateSum function.

To fix this, go back to your calculate-sum.js file and update it to use the
following code:

Go to your console window and run the get-monthly-income.js script. It
should now display the message “My monthly income is 3200” in the
console. Notice that the module.exports value is added. It is assigned an
object with a key and value. The first calculateSum is the key, while the
second is the value of the key. What this means here is that the main script
can use the key calculateSum to run the calculateSum function inside the
module. If you want to use a different name to call the function outside of the
module, you could change the value of the key. For example, look at the
following code:

This time, the calculateSum is only accessible to the main script (or other
scripts) using getSum. For your example script, using sum.getSum will now
work but sum.calculateSum will not.

Note that you can also export the function more directly if you wish by
replacing the module.exports portion of the code with this:

Use what works for you in your situation or organization. With this, you
can now use custom modules in your Node.js scripts!

Try This 11-1 Use a Custom Module

pr11_1.js

pr11_1_module

.js

This project gives you practice using a custom module in a Node script. You
will create a script, require your custom module, and make use of the module
in your main script.

Step by Step
1. Set up a JavaScript file with the following code and save it as pr11_1.js:

2. Create a second JavaScript file with the following code and save it as
pr11_1_module.js:

3. In a command window, type node pr11_1.js.

4. The result should be a message indication you have only $1 left in the
bank:
My bank account has $1 left!

5. Try out some different numbers in the main script and rerun the script
from the command line. The message should change accordingly.

Try This Summary
In this project, you created a Node script and a custom Node module. From
the main script, you were able to require the custom module and to use its
getBalance function to determine what was left in a bank account after the
bills have been paid. The first iteration left you only $1, but you were then
able to change these values as you saw fit and reuse the module to calculate
the balance based on the new values you provided!

Installing a Database
A database allows you to store data in a way that is structured so that you can
easily access it later. While you can store data in text-based files, these
eventually become too large to make getting specific information from them
a quick-and-easy task. Also, if you are storing anything even somewhat
sensitive, you probably don’t want that sitting in a text file where it could
easily be read by an outside source if compromised.

Using a database with Node.js typically just requires using a module that
will allow you to write JavaScript code to query the database and get results.
Before you do this, though, you will need to install a database. For the
purposes of this book, you will simply need to install a database on your
computer. If you were to use a database for a Web site or Web app, you

would need to install the database on a server that can be accessed by your
Web site/app (if you are on a hosted Web environment, almost every Web
host has some type of database option available). To begin, you will simply
want to install a database on your computer to use locally and get familiar
with making queries to it from Node.js.

Database Options
There are numerous databases you can choose. From mySQL, MongoDB,
PostgreSQL, Oracle, and many others, you have plenty of options. What you
ultimately use will depend on your situation and may even vary from project
to project.

For the purposes of this book, PostgreSQL will be used. You may use one
of the other databases if you choose, though instructions won’t be provided
for the other databases. That said, if you choose one of the SQL databases,
the queries will be very similar, if not the same, as the queries shown for
PostgreSQL (though the module used to run the queries from Node.js might
use much different syntax).

NOTE

If you use a NoSQL database like MongoDB, things will be quite
different, but if you have some previous experience with it, you still
should be able to work alongside the exercises using the different
query structure and syntax.

Install PostgreSQL
To install PostgreSQL, go to www.enterprisedb.com/downloads/postgres-
postgresql-downloads. Here, you will need to follow the download and
installation instructions for your operating system. For an OS like Windows,
an installation program will be downloaded that you can run and then follow
the on-screen prompts. You can simply keep all the default options for the
purposes it will be used for in this book. The main thing to remember is the
password you will be prompted to input. Be sure to keep this, as you will
need it to access the pgAdmin utility, which will allow you to create users,
databases, tables, and so on.

If you find you need help with the installation process, here are some

http://www.enterprisedb.com/downloads/postgres-postgresql-downloads

tutorials that may help you through the installation process in more detail:

• Windows www.guru99.com/download-install-postgresql.html

• Mac www.robinwieruch.de/postgres-sql-macos-setup/

• Linux www.poftut.com/how-to-install-postgresql-server-into-linux-
debian-ubuntu-centos-mint-fedora-redhat/

Once PostgreSQL is installed and you have the main (superuser)
password, you are ready to begin making use of the database server to create
users, databases, tables, and more.

Create a Database Using pgAdmin
The installation process should have installed the pgAdmin tool. Open this
tool, go to the panel on the left, and expand the Servers node. This will
display the node “PostGreSQL X.X” (where X.X is replaced with the version
of PostgreSQL you installed). Click to expand this node, and you will be
prompted for the superuser password you created during installation. Type in
the password and press ENTER. Figure 11-3 shows the password prompt in
pgAdmin.

http://www.guru99.com/download-install-postgresql.html
http://www.robinwieruch.de/postgres-sql-macos-setup/
http://www.poftut.com/how-to-install-postgresql-server-into-linux-debian-ubuntu-centos-mint-fedora-redhat/

Figure 11-3 pgAdmin prompting for the password

Once you have entered the password successfully, you will have
additional nodes available in the left panel, as shown in Figure 11-4.

Figure 11-4 The additional nodes available after you have logged in

From here, right-click the Databases node and select Create and the
Database option. This will bring up the prompt shown in Figure 11-5.

Figure 11-5 Prompt for the creation of a new database

Type in the name for the database (name this one mywebapp), click the
Save button at the bottom of the window, and then close the window. You
just created a database that you can use!

Creating a Table
Once you have the database ready, you will want to put some sort of data in
it. For the purposes of the simple Web app you will create, this can simply be
done using an SQL query inside pgAdmin.

First, select your database (mywebapp) in the left panel. Next, go to the

top menu, select Tools, and then select Query Tool. A new query tab will
display on the right side. Figure 11-6 shows how to select the Query Tool in
pgAdmin 4.

Figure 11-6 Selection of the pgAdmin tool

The create table command allows you to create a table and to give it
columns with particular data types. These data types are not the same as those
used in JavaScript, but instead are PostgreSQL data types. You will notice
the first and last names are of type varchar, which stands for character
varying. The number in parentheses refers to the maximum length that any
data in the column can be. For the first and last names, there will be a
maximum of 20 characters. The remaining columns use the smallint and text
data types (smallint includes integers from –32768 to 32767, and text is like
varchar but does not have a length limit).

The insert command allows you to insert data into the table. In this case,
you inserted multiple values by listing the column names (first set of
parentheses) and the values to put in the respective columns (second set of
parentheses). Notice that character data is inside single quotation marks,
while numeric data does not need the quotation marks.

Next, you will need to type in a query that creates a new table. The query
you will use will both create a new table and add one row of data to the table.
In the query pane, type the query shown in Figure 11-7 and then press the F5
key (or click the lightning bolt button near the top). This will create the table
with some initial data for you.

Figure 11-7 The query to create and insert information into a table

To make sure the table and data exist, you can use the Query Tool again to
open another query tab and then enter the following query:

SELECT * FROM bowlers;

Figure 11-8 shows the result of this query in the bottom pane in pgAdmin.

Figure 11-8 The query result when selecting all data from the table

The select statement in SQL indicates that you want to make a selection of
data from the database. In this case, you used the asterisk (*) to request that
all columns be selected from the bowlers table. Now you not only have a
database, but you also have data that you can use!

Adding a Query User
While querying the database from the superuser account is convenient for
administration and for creating databases, tables, users, and so on, it is not a
good idea to have the superuser query your database from your Web app.
Since the superuser can also delete anything, one wrong bit of code in your
app or one malicious user being able to get a query to run on your database
could turn into a huge loss of data or even a full security breach. For these
reasons, it is best to create a separate user for your Web app and only grant
that user the minimum access needed to be able to use the Web app.

For the Web app you will create, the new user only needs to be able to
select data from your mywebapp database. You will first need to create the
user and then grant the proper permissions using the Grant Wizard on your
database.

To create a new user, go to the left panel in pgAdmin and right-click the
Login/Group Roles node. Select Create | Login/Group Role. A prompt will
display that requires a name for the user. In this case, type the name
mywebappuser. This is shown in Figure 11-9. Next, go to the Definitions tab

and enter a password for this new user. After that, click the Privileges tab, use
the values shown in Figure 11-10, and then click the Save button at the
bottom of the screen to save the new user.

Figure 11-9 Giving the new user a name

Figure 11-10 Setting the privileges for the new user

Once the user has been saved, you will give the user access to your
mywebapp database. In the left panel, select your mywebapp database, right-
click the node, and select Grant Wizard. You will receive a prompt asking
you to select a table. Select the bowlers table by checking the checkbox and
then click the Next button at the bottom of the screen.

The next screen prompts you to add privileges to the table. Click the +
button at the top right of the table and a new row will be added. In the
Grantee column, select your new user, mywebappuser, from the drop-down
list. Next, click inside the blank Privileges column. This will display a series
of checkboxes. Check only the SELECT checkbox, which will only allow the

user to perform select queries on the database (if you later decide users can
insert data as well, you can come back and check the INSERT checkbox as
well). Figure 11-11 shows this screen with SELECT checked. Finally, click
the Finish button at the bottom of the screen. Your new user should now be
able to select data from the database!

Figure 11-11 Granting privileges to the user

Adding More Data
Before completing the database setup, you will add a few more rows to the
bowlers table. For now, running the upcoming insert query will add four
more entries, giving you a total of five rows. Once you create your Web app,
this data can be queried in various ways that may be helpful to the user.

First, go back and select your mywebapp database in the left pane. Go to

Tools and select Query Tool again. In the query pane, use the following
query to add more data to your table. Note that you can change names or
numbers to anything you like, but we will use the information in this
particular query for the examples in this book.

Note that the longer strings will need to be on one line in the query pane.
Once the query is entered in the pane, press F5 to run it and add the new rows
of data to your bowlers table.

Using the pg Module
The last piece of knowledge you need about your new database (for now) is
how to query your database in a Node.js program. To do this, you can use the
pg module. First, open a command window in your project folder and then
type the following to install the pg module:

npm install pg

Once the module is installed, open a new file and save it in your project
folder as pg_example.js. Add the following code to the file, replacing 12345
with the password you created for mywebappuser, and then save the changes.

You will notice that the pg module is included and sets up a “pool” using the
connection information to query the database and return any results. The
connection information is simply a string that points to the PostgreSQL
database server and provides the username, password, host, and database
name.

With everything set up, you can use the pool.query() function to provide a
query (the first argument), query parameters in an array (the second argument
—in this case none, so an empty array), and the function to run when the
query completes. In this function, you can have an error (err argument) or
results (results argument). In this code, if there is an error, then the error will
be displayed on the console and the Node process will exit. If the query was

successful, the result is logged to the console. Figure 11-12 shows the result
of running this script.

Figure 11-12 The result of running the pg_example.js script

The result is an array of objects that contains the information for each
bowler that was stored in the database!

Try This 11-2 Test Some SQL Queries

No files

required,

just pgAdmin

This project will allow you to try out some additional things you can do with
SQL queries to narrow the result set. So far, you simply got all of the rows in
the table, but you can get fewer rows or even just a single row by altering the
query just a bit.

Step by Step
1. In pgAdmin, select your mywebapp database in the left pane.

2. Go to Tools | Query Tool and enter the following into the query pane:
SELECT * FROM bowlers WHERE accuracy > 80;

3. Press F5 to run the query. Notice that only bowlers whose accuracy is
above 80 will be in the results list. The results in this case should be the
information for Slow Roller and Prize Winner. Adding a WHERE clause
can refine your results to only those that meet certain criteria.

4. Change the query to the following:
SELECT * FROM bowlers ORDER BY power DESC;

5. Press F5 to run this query. Notice that all of the rows are returned, but
that they are ordered from those with the highest power rating to those
with the lowest power rating. ORDER BY can be used to sort the results
according to a particular column’s values; either is descending (DESC)
or ascending (ASC) order.

6. Change the query to the following:
SELECT first_name, last_name FROM bowlers WHERE consistency

>= 80;

7. Press F5 to run the query. Notice that now only the first and last names
of the three bowlers with consistency greater than or equal to 80 are
returned. Replacing * with one or more column names will limit the
number of columns returned to those that are named.

Try This Summary
In this project, you tried some additional SELECT queries via the Query Tool
in pgAdmin. You were able to refine your query to be able to get information
in different ways or to limit the number of rows or columns that are returned.
To find out more of what you can do with queries, see beginner-sql-
tutorial.com/sql-select-statement.htm.

http://beginner-sql-tutorial.com/sql-select-statement.htm

Creating a Web Server
There are a number of options for creating a Web server with Node.js. In fact,
you can write your own code to do so if you like. By and large, the standard
is to simply use the Express module, which makes much of this quite a bit
easier.

For this project, you want to create a very simple Web server that can
listen on a particular port and render an HTML document when you visit a
particular route—the most common being the base route ‘/’ or the “main
page.” For a simple local Web server, this means you want to be able to open
http://localhost in your Web browser and see an HTML page displayed.

To begin, create an HTML file in your project folder with the following
code and save it as index.html, like so:

Next, you want to create a JavaScript file that you can run as a Node script.
Create another new file in your project folder with the following code and
save it as server.js:

http://localhost

First, notice the first three lines of code:

Immediately, the Express module is included. An “app” is created by calling
the express() function. This app will actively listen on a port once things are
set up and use the router defined in the following line to direct the user to the
right HTML page. As mentioned, the third line sets up an Express router,
which allows you to define what routes will render what pages. A route can
be anything from ‘/’ for the main app page to /view_statistics route, which
will open a stats page when visited. The Express router makes it easy to set
up any routes you wish and respond to those routes in the proper way.

Next, the path module is included. This module allows you to easily
navigate the file path on your machine. This will be used later in the script.

The next portion of the code defines the routing:

As you can see, the router.get() function allows you to define what happens
when a user tries to get information from that route. Most commonly, you
respond by rendering a Web page of some kind—whether static or dynamic.
In this case, a simple HTML page will do, so res.sendFile() is used to send
the appropriate file. Here, it sends the index.html file you created earlier in
this section. This used path.join to join the folder that the server.js file is in
(__dirname does this part) with the name of the file to render (in this case, the
index.html file in your project folder). You can define additional routes the
same way, but for now the router is completed by adding the app.use(‘/’,
router) line to the script.

Finally, the app.listen() function tells the Express app which port to listen
to and whether to do anything once it is listening. To run the app (in this case,
on port 3000), point your browser to http://localhost:3000.

With the files in place, go to your command window and type the
following:

node server.js

You should get the logged information that the server is running on port 80
and how to stop the server when done. Once that is running, go to your Web
browser and go to http://localhost:3000. You should see the simple Web page
that says that the Web server is working!

With this in place, you can now use your Web server to create a simple
Web app that can even display the information you have stored in your
database. You will do this as you add to this project while moving through
the rest of this book and learn about sending requests from the front-end code
to the server to get data!

 Chapter 11 Self Test

1. Node.js runs in a Web browser.

A. True
B. False

2. Which of the following would run the Node script hello-world.js from

http://localhost:3000
http://localhost:3000

the command window?

A. node hello-earth.js
B. hello-world.exe
C. node hello-world.js
D. hello-world

3. Which of the following would require the built-in fs module without an
error?

A. const fs = req(‘fs’);
B. con fs = require(‘fs’);
C. require(‘FileSystem’);
D. const fs = require(‘fs’);

4. A __________ module allows you to define your own reusable code.

5. Which of the following extensions would be used for a custom module?

A. .js
B. .html
C. .json
D. .dll

6. Only one type of database can be used with Node.js.

A. True
B. False

7. The ________ stack uses MongoDB, Express, AngularJS, and NodeJS.

8. You should always use the superuser account to query your database
from your Web application.

A. True
B. False

9. The __________ module can be used to query your database from a
Node script.

A. gp

B. postg
C. pg
D. pgres

10. What symbol is used to return all columns when querying a database?

A. *
B. ~
C. -
D. …

11. The _________ module can be used to create a Web server in Node.js.

12. The default port used when you type a URL into your Web browser is
__________.

A. 442
B. 80
C. 3000
D. 5432

13. An Express __________ can be used to handle what happens when users
try to access a certain route from your Web app.

A. redirector
B. pathfinder
C. roadmapper
D. router

14. You should give all users of your database permission to delete data.

A. True
B. False

15. You can use a __________ clause to return only the rows in a table that
meet certain criteria.

A. WHERE
B. WHEN
C. IF

D. CRITERION

I

Chapter 12
Math, Number, and Date Objects

Key Skills & Concepts
• Using the Math Object

• Understanding the Number Object

• Using the Date Object

n this chapter, you will learn about the JavaScript Math, Number, and Date
objects, in that order. For each object, a short introduction is provided
along with a description of why the object can be useful to you. Following

that is a look at the various properties and methods that you can use for that
object.

Using the Math Object
The Math object can be useful when you need to perform various calculations
in your scripts. To begin, take a look at what the Math object is.

What Is the Math Object?
The Math object is a predefined JavaScript object. Like the other predefined
objects you have studied in this book, the Math object gives you properties
and methods to use. The Math object is used for mathematical purposes to
give you the values of certain mathematical constants or to perform certain
calculations or operations.

How the Math Object Is Useful
As mentioned, the Math object is useful when you need to make
mathematical calculations in your scripts. For instance, if you need the value
of pi for a calculation, the Math object gives you a property to use so you can
get that value.

Also, if you need to find the square root of a number, a method of the
Math object enables you to do this. Another thing this object provides is a
way to generate random numbers in JavaScript, which you will find useful in
certain scripts.

Properties
The Math object gives you a number of properties that can help you if you
need to perform certain mathematical calculations. Table 12-1 lists the
properties of the Math object, with the values of each.

Table 12-1 Properties of the Math Object

As you can see in Table 12-1, all of the properties simply hold numeric
values that can be useful in mathematical calculations. Because these are
irrational numbers, the values listed are nonterminating and are thus
approximations. Note that these properties are in “all-caps.” This is because
they are constant values, and the naming convention for such values is that
they must be in all capital letters.

Using the Properties

The properties contain read-only values, which tend to be useful in particular
types of calculations. For instance, if you want to find the area of a circle,
you use the formula Area = pi*r2. Knowing that, you could write an
application to determine the area of a circle based on the radius input by a
viewer. You could use the following code, starting with the HTML code:

This code first grabs the form element by its id (getarea) and assigns it to a
variable named get_area. When the form is submitted, it grabs the value input
in the text field for the radius and assigns it to a variable named rad.

Next, the code performs two checks. It checks that the length property of
rad is not less than 1, to ensure that the viewer entered data into the field. If it
is less than 1, the code gives an alert asking the viewer to enter the
information. Next, it checks to see if the value of rad is not numeric. This is
done by using the isNaN() function, which returns true if a value is not

numeric. Since you want to test whether it is numeric, adding the NOT
operator in front makes sure the value does not come back as NaN and thus is
numeric. If this is not the case, it is assigned a Boolean value of false. The if
statement will then check the value of rad, and will send the viewer an alert
saying that the radius must be numeric if it could not be coerced to a number.

Finally, if the data entered passes those tests, the calculation of the area of
the circle is performed and assigned to a variable named the_area. Notice that
for now you multiply the radius by itself to get the radius squared. When you
get to the math methods in the next section, you will see that the method
pow() may be used instead.

Once the calculation is complete and assigned to the variable, an alert is
displayed to the viewer with the area in generic “square units.” The script
could of course be altered to suit your needs or to offer options (centimeters,
inches, or other units of measure).

Figure 12-1 shows the result of running this script in a browser and
entering 2 into the text field.

Figure 12-1 The area of the circle is displayed for the viewer.

Methods

The methods of the Math object enable you to perform certain calculations
that can be helpful in your scripts. Table 12-2 lists the basic methods of the
Math object and briefly describes the purpose of each. Each method is
discussed in more detail in the following sections. Also, some additional
methods can be found at https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global_Objects/Math#Methods.

Table 12-2 Methods of the Math Object

The Basic Methods
For the purpose of this book, “basic methods” are defined as the methods that
take in a single number, do a simple calculation with it, and return a value.
Grouping the methods in this way avoids the need to list each method with
the same sort of example—it is not any sort of official organization of the
methods, just a way to expedite this discussion.

The following basic methods are the ones that work in generally the same

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math#Methods

way:

• abs()

• acos()

• asin()

• atan()

• cos()

• exp()

• log()

• sin()

• sqrt()

• tan()

Each of these basic methods takes a numeric value and sends back another
value. Since the general usage is the same, this discussion uses sqrt() as an
example of how the rest could be used to get their various values. If you need
to know what type of value is returned from a different method, refer to Table
12-2 to see what each method does.

The easiest way to use the sqrt() method is to input a positive number as
the argument to the method, as shown in the following example:

window.alert(Math.sqrt(4));

This alerts the value of the positive square root of 4, which is 2.
Instead of calculating a static number, you could get the user to input a

number, and then send an alert to the user with the square root of the number
input by the user. You could do this using the following code, starting with
the HTML code:

Next, the JavaScript code:

When the user submits the form, the value input into the text box is assigned
to the thenum variable. Next, the function checks to see if the field was left
empty or the data entered was not numeric. After that, it checks to see if the
viewer entered a negative number. Any of these situations will alert the
viewer to the error. Otherwise, the Math.sqrt() method is called using the
value of thenum as an argument. This returns the number’s square root,
which is then assigned to the variable named theroot. Finally, an alert appears
telling the user the square root information.

The result of this script when the viewer enters the number 4 is shown in
Figure 12-2.

Figure 12-2 The square root is displayed for the viewer.

The other methods in this section work in much the same way; they just
return different results such as absolute values, tangents, or logarithms.

The Two-Argument Methods
This section discusses the methods that take two arguments instead of just
one. These methods include the following:

• atan2()

• max()

• min()

• pow()

The max() and min() methods are very similar, while the pow() method
does something a bit different.

The max() and min() Methods The max() method takes two or more
numbers and returns the largest number. The min() method also takes two or

more arguments, but returns the smaller number. You could use these
methods in a script that enables the viewer to enter two numbers and then
alerts the user which number is larger.

The following example code uses both of these methods and gives the
viewer the results in an alert. First, the HTML code:

Next, the JavaScript code:

This form asks the viewer for two numbers and assigns them to variables. A
check is performed to ensure that numeric values are entered. If so, it takes
the maximum and minimum from both numbers and assigns the values to

variables. Those variables are then used to check whether they are equal. If
so, an alert comes up saying they are; otherwise, an alert pops up with the
results.

The following illustration shows the results of this script in a browser if
the viewer enters 2 as the first number and 54 as the second number.

The pow() Method The pow() method takes two arguments and calculates
the value of the first argument to the power of the second argument. For
instance, the following code would return the value of 2 to the third power:

Math.pow(2,3);

Other than its difference in calculations, you can use it in the same general
way that you used the other two-argument methods by assigning the result to
a variable and then using the variable in a script. As an example, you could
use the following script, starting with the HTML code:

Next, the JavaScript code:

Using this code, if the viewer enters 2 as the first number and 3 when asked
for a power, the script will compute the result of 2 to the third power. The
viewer then is given an alert showing the answer. Clicking the button in the
HTML code is how the viewer starts the function. The result of this script
when the numbers 2 and 3 are input is shown here:

Now that you know about the two-argument methods, take a look at some
other methods that haven’t been covered yet.

The Other Methods
These methods take a single argument, but what each does with that
argument warrants a closer look. The individual methods include the
following:

• ceil()

• floor()

• round()

The ceil() Method The ceil() method stands for ceiling and returns the
smallest integer that is greater than or equal to the number sent as the
argument. This method is used mainly when there are likely to be numbers
after the decimal point in a number. It rounds the number up to the next
highest integer, unless the number is an integer already. In that case, the same
number is returned (because it can be equal). For instance, Math.ceil(12.23);
would return 13, but Math.ceil(12); would return 12.

The following script shows an example of how the ceil() method can be
used to return different values, starting with the HTML code:

Next, the JavaScript code:

This script displays an alert that states the ceiling of the number entered by
the viewer. The following illustration shows the result of this in the browser
when the viewer enters 4.55 at the prompt.

The floor() Method The floor() method is like the ceil() method, but it goes
the opposite way. The floor() method returns the largest integer less than or
equal to the argument sent to the method. This rounds down to the next
lowest integer, unless the argument is an integer already. In that case, it
returns the same integer since it is already equal to an integer. Basically, this
method just removes the decimal part of a number and leaves the integer as
the result.

For instance, Math.floor(12.23); will return 12 and Math.floor(12); will
also return 12. You can use the floor() method in the same way the ceil()
method was used in the preceding section—by assigning the result to a
variable.

The round() Method The round() method works like the previous two
methods, but instead rounds the number entered as the argument to the
nearest integer whether it is greater or less than the number. Any number
having the decimal portion’s value at .5 or greater will be rounded up, while
any decimal portion with a value less than .5 is rounded down.

The .5 cutoff is strict, so Math.round(12.49999999); would return 12 even
though your tendency may be to round it up.

The random() Method
The random() method is very useful for creating scripts that require random
integers. It returns a random number between 0 and 1. This means that you
get a number with a decimal that can be quite long and not useful on its own.
For instance, it might return something like 0.36511165498095293.

To get a random integer that you can use, you need to do some things to
get the type of value that you want to use.

Random Integers To get a random integer, the first thing you will want to
do is to make the result have a greater range of values so that you are not
stuck between 0 and 1. To get a greater range of values, you can multiply the
result of the random() method by an integer to create a larger range. Like an
array, the range would begin counting from 0; so, to get a range of five
possible integers, you would multiply the result by 5. The following code
shows how you can do this:

This gets the result between 0 and 4, but does not give you an integer yet.
The number could still come out as a long decimal number.

To get an integer between 0 and 4, you need to find a way to make all of
these decimal numbers convert to integers. Recall that earlier you ran through
three methods, floor(), ceil(), and round(), that converted numbers to integers
in various ways. The floor() method is the one you will choose here because
it simply removes the decimal places after the integer and gives you the
integer portion of the number.

To use the floor() method, you could write the following code:

The floor() method takes in the value of the rand_num variable as an
argument and then gives you an integer from it.

If you want to save a line of code, you could get a little fancy. You could
just insert the random() method and calculation as the argument to the floor()
method. You can do this because the result of the calculation,
Math.random*5, is a number, and the floor() method can take a number as an

argument. The following code shows how you can code this on a single line:

Now the variable rand_int will have the value of a random integer between 0
and 4. As you might have noticed, this sort of number range could be quite
useful with arrays. This is how you can begin to code some fun scripts with
random numbers.

Note that if you want the random number to start at 1 instead of 0, you can
add a + 1 to the end of the statement (this is helpful in user-facing code where
that might be the expectation). Here is an example of this:

Random Numbers for Scripts Now you can have a little fun with the Math
object by using the random() method. By setting up some arrays, you can
create a script that provides random quotes or shows a random image each
time the page is loaded.

Random Quotes for Fun If you have thought about adding a quote to your
page but don’t want to deal with changing the quote all the time to have
something different, a random-quotes script could be just the thing for you.

To make such a script, you first need some quotes to use. Suppose you
want to set up ten different quotes that will be displayed in random order
each time the page is loaded. Since you have a number of values that are
similar (and so that you can use them with the random integer later), you
should use an array so that you can store all of these values and retrieve them
easily.

So, you need to set up an array with ten elements similar to the following
example, in which each element is a random (and perhaps peculiar) quote that
I have thrown into the mix for you:

Now that you have this odd list of quotes in an array, you can use them by
generating a random integer.

You need a random integer between 0 and 9 (ten numbers), so you can use
the following code to assign a random integer between 0 and 9 to a variable:

Now the value of the variable rand_int will be a random integer between 0
and 9. You can use it to access the element of the array whose index number
matches the random integer in the rand_int variable. You just need to access
the array element using the variable as the index number, as in the following
example:

You can write this value in the body of the page using the innerHTML
property of the div element, as in the following example code. The HTML
document is saved as random_quotes.html and the JavaScript file is saved as
random_quotes.js. The HTML code:

The JavaScript code:

The code writes one of the random quotes on the page based on the
random integer value in the rand_int variable. A default quote (the first one in
the array data) is provided for those without JavaScript, which is then
overwritten with the random quote if JavaScript is available. Reloading the
page enables the random number to be reset and will probably (though not
necessarily, because it is random) show a different quote.

Figure 12-3 shows one of the possible results of this script when run in a
browser.

Figure 12-3 A possible result of using the random-quote script

Figure 12-4 shows another one of the possible results of this script when
run in a browser. You can keep getting different (or sometimes the same)
results by refreshing the page.

Figure 12-4 Another possible result of using the random-quote script

Now that you can write random quotes into a page, how about displaying a
random image? It is very similar to the last script; you just need to make
some small adjustments.

Random Images for the Updated Look A random-image script can give
your page the feel of being updated without requiring you to change an image
all the time. Of course, the images all need to fit the content where you
decide to place the randomly chosen image. A random-image script could be
useful, for example, for an art gallery to display its collection.

The first thing you need is an array of image URL addresses (which can be
local or absolute—local addresses are used here). The array used for this
script is shown in the following example code:

This array sets up the addresses of images that can be displayed at random
each time the page is loaded.

Next, you need a way to get a random integer between 0 and 9. This is the
same as in the previous random-quote script:

The next step is to access the array in the body section of the document to
show a random image from the array when the page is loaded in the browser.

The following code enables you to display the random image using the src
property of an img element. The HTML file is saved as random_images.html
and the JavaScript file is saved as random_images.js. First, the HTML code:

Next, the JavaScript code:

As you can see, this is quite similar to the random-quote script. Since you are
changing an image, you can assign the result to the src property available on
image elements to dynamically change the image. If you need to change text
as well, you could change this to use innerHTML as you did with the random
quotes.

NOTE

For this example, the images are saved as image0.gif, image1.gif, and
so on; however, you could save your image files under any name you
like.

This discussion of the random() method could go on for some time
because there are numerous things that you could randomize. However, you
now know the basics of how this feature works, so it’s time to move on.

Ask the Expert
Q: Will I ever have any use for any of the properties of the Math

object? They are all numbers that I don’t even use!

A: This depends on how often you perform different types of
calculations. It would be unlikely for you to use any of them as a
beginner, but there are some scripts out there that use them for
various advanced purposes, such as JavaScript calculators,
graphical objects (such as the canvas element), and more.

Q: I have no interest in writing a calculator. Do I really have to
bother memorizing all the properties of the Math object?

A: Well, probably not, since a situation where you need to use them
probably won’t come up all that often. It is good to have a
reference on hand just in case, though, and to know generally what
they are, since they appear in scripts on the Web from time to time.

Q: Some of these properties and methods could be handy if I don’t
have a calculator around. I could write a little script to
calculate some things for myself, couldn’t I?

A: Of course! Just be sure to double-check the numbers with
something you know the answer to first to be sure that there are no
mistakes in your code.

Q: The random() method is fun so far, but I can’t think of
anything else I could use it for. Could you give me some ideas
for using it to do other things?

A: There are a number of other things you could use it for. You can
randomize pretty much anything that can be displayed with an
HTML tag or plain text, so try out some ideas and see if they work
for you. Here are some thoughts off the top of my head for you,
though: random links, random linked images, random tasks for a
JavaScript game of some sort (like rolling dice or drawing a card),
random page greetings, random alerts … and I’m sure there are
plenty more.

Try This 12-1 Display a Random Link on a Page

pr12_1.html

prjs12_1.js

This script enables you to work with the random() method a little more by
enabling you to create a script to display a random link on a page.

Step by Step
1. Create an HTML page with script tags that point to an external

JavaScript file named prjs12_1.js. Add a heading that says “Random
Link” and add a div element with an id of random_link. Inside the div
element, insert a default link for those without JavaScript. Save the
HTML file as pr12_1.html.

2. When complete, the body of the HTML file should look like this:

3. Create an external JavaScript file and save it as prjs12_1.js. Use it for
steps 4–7.

4. Create a set of five Web addresses in an array. Use the following
addresses or some of your own choosing:

5. Use the random() method to create a random integer you can use to
access the array with the integer as an index number.

6. Display a random link on the page in the format shown next by changing
the innerHTML property of the div element with the id of random_link:

7. When complete, the JavaScript file should look like this:

8. Save the JavaScript file and open the HTML file in your Web browser.
Try reloading a few times to see how the random addresses show up for
the link.

Try This Summary
In this project, you were able to use your knowledge of the Math object.
Using the random() method, you created a Web page that displays a link that
goes to a random Web address.

Understanding the Number Object
The Number object is another predefined JavaScript object that offers several
useful properties and methods for use with numbers. Its most common use is
to access some of its helpful properties that represent certain values that can
aid you when creating scripts. Number is slightly different from Math in that
you can create a number to use as a number datatype with this object.

Properties
Table 12-3 lists the properties of the Number object and briefly describes the
purpose of each. Some of the properties are described in more detail in this
section.

Table 12-3 Properties of the Number Object

The MAX_VALUE Property
The MAX_VALUE property is a constant number value, approximately
1.79E+308. The reason this property is helpful is that any number greater
than its value is represented as infinity in JavaScript. Thus, using it in a
comparison could provide a way to avoid calculations that are too large to
display a numerical value. The following code is an example of how this
works:

Assuming num1, num2, and num3 were entered by the viewer, the alert,
instead of displaying the word “infinity” as the answer, informs the viewer to
try entering smaller numbers for the calculation if the value of big_num is
greater than the value of the MAX_VALUE property.

The MIN_VALUE Property

The MIN_VALUE property is a constant number value, approximately 5e –
324. The reason this property is helpful is that any number less than its value
is represented as negative infinity in JavaScript. Thus, using it in a
comparison could provide a way to avoid calculations that are too small to
display a numerical value. The following code is an example of how this
works:

Assuming num1, num2, and num3 were entered by the viewer, the alert tells
the viewer to try entering larger numbers for the calculation if the result of
the calculation is less than the value of the MIN_VALUE property.

The NaN Property
The NaN property is a value that represents “Not a Number.” It is displayed
by the browser as a string value of NaN and is not equal to any number or
another instance of NaN.

The NEGATIVE_INFINITY Property
The NEGATIVE_INFINITY property is a constant value that represents
negative infinity. It can be used in a similar fashion to the way
MIN_NUMBER and MAX_NUMBER are used.

The POSITIVE_INFINITY Property
The POSITIVE_INFINITY property is a constant value that represents
positive infinity. It can be used in a similar fashion to the way
MIN_NUMBER and MAX_NUMBER are used.

NOTE

Infinity behaves differently in mathematical equations than other

numbers. For more information on this, see
tutorial.math.lamar.edu/Classes/CalcI/TypesOfInfinity.aspx.

Methods
Table 12-4 lists some of the methods of the Number object and briefly
describes the purpose of each. The following sections discuss some of these
methods in more detail.

Table 12-4 Methods of the Number Object

The toExponential(), toFixed(), toPrecision(), and
toString() Methods
These methods return a string value representing what the Number object
would look like formatted in a particular way. Note that these methods cannot
be used with a number itself (a numeric value), as in the following code:

alert(10.toExponential());

This will cause a JavaScript error because it expects a Number object. To
avoid this, use the methods by assigning numeric values to variables (which
will make them Number objects), as in the following code:

NOTE

You could also use the constructor syntax of let the_num = new
Number(10); or simply new Number(10).toExponential() if you just
need the value.

The toExponential() Method
The toExponential() method returns a string representing a Number object in
the form of exponential notation. Thus, the following code would write the
result of 1.0e+1 (or a similar notation, depending on your browser) on the
screen:

The toFixed() Method
The toFixed() method returns a string representing a Number object rounded
to the specified number of places after the decimal. For instance, if you need
to format the results of calculations to appear as monetary values, you could
use this method to get the result of your calculation rounded at the second
digit after the decimal and displayed in your currency format. For example,
this code uses dollars and cents:

The result of the calculation for one share is 285.7142857142857, but since it
is displayed using the toFixed() method on it with 2 as the argument, the
sentence displays as follows:

One share of the money is $285.71

The toPrecision() Method
The toPrecision() method returns a string representing a Number object
rounded to the specified number of significant digits. This is for all digits

before and after the decimal. Thus, if you wanted a number like 45.57689349
rounded to five significant digits, you could use the following code:

The browser will alert the string 45.577, which is the number rounded to five
significant digits (two before and three after the decimal place in this case).

The toString() Method
The toString() method returns the string value of a Number object (or a
numerical variable value). This can be useful if you want to convert a
numerical value to its corresponding string value (for example, change 10 to
“10”).

The toSource() Method
The toSource() method returns a string value that represents the source code
of the object. With the predefined Number object, this method returns the
value of the constructor property. This method is most often called by
JavaScript internally and is less likely to be used in code.

The valueOf() Method
This is another method that is mainly used by JavaScript internally. For now,
you just need to know that it is a valid method of the Number object.

The parseInt() and parseFloat() Methods
These two methods are useful when you need to get a numeric value from a
mixed string. They work in a similar fashion, with parseInt() only grabbing
the integer portion of a number and parseFloat() grabbing the integer and any
numbers after a decimal. Here is how they work:

• If the first character in the string is anything other than a number, a plus
(+), or a minus (–), then both methods return NaN.

• For parseInt(), if the first character is a number (other than zero), plus, or
minus, then each character is evaluated until a non-numeric character is

reached (with the exception of hexadecimal values, where certain other
characters such as x and A are allowed). The number obtained from this
process will be returned. If the first character is zero and the number is not
hexadecimal, then zero is returned.

• For parseFloat(), if the first character is a number, plus, or minus, it will
evaluate each character and continue if it finds a dot (.) followed by
additional numbers, until a second non-numeric character is reached. If the
number begins with zero and the number is not hexadecimal, then any
leading zeros are ignored until another number is reached. The number
obtained from this process will be returned. Hexadecimal numbers return
zero.

Some examples of the values returned for each method will show how the
rules work:

When using parseInt(), you are allowed to define a second argument,
called the radix. This gives you the opportunity to specify the type of number
to be returned. Here are some examples:

As you can see, the same value can have different results depending on the

specified radix. The parseFloat() method does not have this option, since by
design it will only parse decimal values.

TIP

When the radix argument is left off, JavaScript decides what type of
value to return. In some cases, this can lead to unexpected results. To
avoid this, it is best to specify the radix value, even when working
with and expecting decimal values (specify the radix as 10).

Using the Date Object
The Date object is another predefined JavaScript object. It enables you to set
certain time values and to get certain time values that you can use in your
scripts. To use this object, you need to create an instance of the object to
which you can refer.

To create an instance of the Date object, you use the new keyword (as you
have with a number of other objects), as shown in the following example:

You would replace instance_name with a name that you want to use for the
instance of the Date object. So, if you wanted an instance named rightnow,
you could use the following code:

Now you have an instance of the object named rightnow.
When using the constructor, the default date is the current date; however,

you can specify a different date if needed, as in the following code:

Once you have an instance of the object, you can use the properties and
methods of the Date object to perform various tasks (such as create
JavaScript clocks). These properties and methods are described in the
following sections.

Properties and Methods
The Date object doesn’t give you properties (outside of constructor and
prototype), but it does have quite a large number of methods you can use.
Table 12-5 lists various methods of the Date object and the purpose of each
method. Further methods can be found at https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global_Objects/Date#Methods.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date#Methods

Table 12-5 Methods of the Date Object

Now that you have the long list of methods, take a look at them in a little
more detail, beginning with the methods used to get date values in an
instance of the Date object.

Methods That Get Values
Methods that get values enable you to get various time and date values that
you can use in your scripts. The methods that enable you to get values for an
instance of the Date object include the following:

• getDate()

• getDay()

• getHours()

• getMilliseconds()

• getMinutes()

• getMonth()

• getSeconds()

• getTime()

• getTimezoneOffset()

• getFullYear()

• getUTCDate()

• getUTCDay()

• getUTCFullYear()

• getUTCHours()

• getUTCMilliseconds()

• getUTCMinutes()

• getUTCMonth()

• getUTCSeconds()

To use these methods, you need an instance of the Date object. Once you
have that, you can call any of the methods by using the instance name. The
following is the syntax for doing this:

You would replace instance_name with the name of your instance of the Date
object, and you would replace method with the method function you wish to
use.

So, if you wanted to use the getDate() method with an instance of the Date
object named rightnow, you would use the following code:

This assigns the value returned from the getDate() method to a variable
named theday.

Because the values returned from the Date methods are often numeric, the
methods need to be explained a bit further; thus, the following sections take a

look at these methods more closely.

The getDate() Method
The getDate() method enables you to get the day of the month for use in a
script. The value returned is a number that represents the day of the month.
So, if it is the 5th of the month, the getDate() method would return 5. If it is
the 22nd, the getDate() method would return 22. This method is nice because
it is fairly straightforward.

The getDay() Method
The getDay() method enables you to get the day of the week; however, rather
than returning a name such as Monday or Friday, it returns a number. The
number represents the number of days into the week (0–6) rather than the day
of the week you would commonly have in mind (1–7). So, if it is Sunday, the
method returns 0; and if it is Wednesday, the method returns 3. You have to
remember that it counts from 0 when you begin using it in your scripts. Many
of the methods that follow will count beginning at 0.

The getHours() Method
The getHours() method enables you to get the number of hours into the day
(0–23). The count begins at 0. So, when it is midnight, the method returns 0;
and when it is 2:00 p.m., it returns 14.

The getMilliseconds() Method
The getMilliseconds() method enables you to get the number of milliseconds
stored in the instance of the Date object (0–999).

The getMinutes() Method
The getMinutes() method enables you to get the number of minutes stored in
the instance of the Date object (0–59). Again, the counting begins at 0. So, if
it is 2:00 (either a.m. or p.m.), or any hour on the dot, the method returns 0;
and if it is 2:23, the method returns 23.

The getMonth() Method

The getMonth() method enables you to get the number of months stored in
the instance of the Date object (0–11). This method also begins counting at 0,
which makes the result a little tricky. For instance, if it is January (the month
people tend to think of as 1), the method returns 0; and if it is October (the
month people tend to think of as 10), the method returns 9. This is one you
have to watch a little more closely when you use it in scripts, because you
will need to remember to make an adjustment if you want to use numeric
dates (like 10/24/2000).

The getSeconds() Method
The getSeconds() method enables you to get the number of seconds stored in
the instance of the Date object (0–59). So, if the time is 2:42:23, the method
returns 23; and if the time is 2:23:00, the method returns 0.

The getTime() Method
The getTime() method gets the time (in milliseconds since January 1, 1970,
at midnight) for an instance of the Date object. So, if you wanted to know the
number of milliseconds since that date at your current time, you could use the
following code:

This assigns the result of the method to a variable so that you can use it later
if you need it in your script.

The getTimezoneOffset() Method
The getTimezoneOffset() method gives you the number of minutes that
separate the local time from GMT. So, if you are six hours apart from GMT,
the method would return 360 (6 × 60); and if you are only one hour apart, the
method returns 60.

The getFullYear() Method
The getFullYear() method returns a four-digit year:

This assigns the value returned by the method to the variable theyear.

The UTC Methods
These methods work the same as their counterparts (for example, getDate()
and getUTCDate() work the same), but return the information in terms of
Universal Time rather than the viewer’s local time.

Now that you have seen the methods that get values, take a look at the
methods that enable you to set values for an instance of the Date object.

Methods That Set Values
The methods that set values work with the same types of values as the
methods that get values. The methods that enable you to set values for an
instance of the Date object include the following:

• setDate()

• setHours()

• setMilliseconds

• setMinutes()

• setMonth()

• setSeconds()

• setTime()

• setFullYear()

• setUTCDate()

• setUTCFullYear()

• setUTCHours()

• setUTCMilliseconds()

• setUTCMinutes()

• setUTCMonth()

• setUTCSeconds()

To set these, you send them a numeric argument based on the time or date
you want to use. For instance, if you wanted to set the day of the month for
an instance of the Date object, you could use the following code:

This would set the day of the month to the 22nd for the rightnow instance of
the Date object.

The other methods work in the same way. In order to know what value
needs to be sent to one of these methods, take a look at what type of value is
returned by its counterpart in the methods that get values. The argument the
method will expect will be a value like the one returned by the method.

Other Methods
The remaining methods perform various tasks that the other methods don’t
cover in some way.

The parse() Method
The parse() method is used to find out the number of milliseconds since
January 1, 1970, at midnight for a date string (such as Dec 12, 1999) input as
an argument. This is often used with the setTime() method since it needs an
argument in milliseconds to set the time. You could use the parse() method to
find the number of milliseconds since January 1, 1970, for the date Dec 12,
1999 at midnight (the rightnow instance of the Date object will use this as the
date that all of the methods will use to return values), as shown in the
following code:

This code parses the date into a number of milliseconds, and then sends it to
the setTime() method used with the rightnow instance of the Date object.

The toString(), toDateString(), toTimeString(),
toLocaleDateString, and toLocaleTimeString() Methods
These methods return a string representing the date and time, or a portion
thereof. For instance, the toString() method returns a date in string format.
You can use it to get a formatted date for an instance of the Date object, as
shown in the following code:

This will assign a date string value to the variable thedate. The value of the
string depends on what browser the viewer is using to view the page. It can
then be written to the page or used with other methods of the Date object in a
script.

The toLocaleString() Method
The toLocaleString() method returns a date string in the format of the
viewer’s locale. You can use it to get the locale format for an instance of the
Date object, as shown in the following code:

This will assign a date string value to the variable thedate. The value of the
string depends on what browser the viewer is using to view the page. It can
then be written to the page or used with other methods of the Date object in a
script.

Now that you have the methods down, see if you can have a little fun with
the Date object.

How About Some Date Scripts?
With the technical overview out of the way, you are ready to create some
scripts that use the methods of the Date object. First you will write a script to
display the date on the page, and then you will create a script for a simple
status bar clock.

Write the Date on the Page
To write the date on the page, you need to use some of the Date object
methods to get the values you need. Suppose you want to write a date with
the format of Tuesday, M/D/Y (month, day, year). To do this, you need to
find out the day of the week, the month, the day of the month, and the year.
You can do this using the getDay(), getMonth(), getDate(), and getFullYear()
methods.

The following script will write the date to the page. First, the HTML code
(save as write_date.html):

Note the comment within the div element. If you want to make this accessible
to browsers that do not support JavaScript, you can place a call to a PHP (or
other server-side technology) script here for those lacking JavaScript. For
example, if you had the page set up to parse PHP, you could use the
following to display the date much like the JavaScript code will:

You will see that the PHP script is much shorter than the JavaScript script
due to its built-in date-formatting capability. The date displayed may differ
from the viewer’s date as it displays the date on the Web server. An in-depth
discussion of server-side technology is beyond the scope of this book, but this
serves as an example of a way to provide the same basic feature for those
without JavaScript.

Next, the JavaScript code (save as write_date.js):

This script sets the results of the methods to variables. It then creates an array
to hold the days of the week, which are later accessed using the number
returned from the getDay() method as the index. The script then makes an
adjustment, adding 1 to the number returned by the getMonth() method, so
that the month will show up the way you would expect it (recall that it counts
months starting at 0 instead of 1, so this ensures that January is represented
by the number 1 rather than 0, for example).

The formatted output is written onto the page for the viewer to see. The
result of this script when run in a browser is shown in Figure 12-5.

Figure 12-5 The date is shown on the page.

Note that, in this case, if the date or month is in single digits, it won’t add
the 0 to the front. You will see how you can do this in the next section where
you will create a clock.

Create a Simple Clock
To create a simple clock, you need the hours, minutes, and seconds of the
current time. To get these, you can use the getHours(), getMinutes(), and
getSeconds() methods.

The following code will create a clock that is displayed on the page. First,
the HTML code (save as clock.html):

CAUTION

If you use a server-side script as a backup to the JavaScript clock, you
almost surely do not want it to update every second because this could
put undue strain on the Web server. In such a case, it is often best to
simply display the time without updating it.

Next, the JavaScript code (save as clock.js):

The script creates a function that sets the results of the methods to

variables. It takes the hours variable and sets the ap variable to p.m. if hours
is greater than or equal to 12 and sets it to a.m. if hours is less than 12 (at this
point the hours variable still holds 13 for 1 p.m., 14 for 2 p.m., and so on).
Once this is done, the hours variable is adjusted so that it will display the
expected value for a 12-hour clock.

The script then adjusts the values of the variables that show the minutes
and seconds by adding a leading 0 when the number is less than 10. This way
the clock will show 12:02:34 for 12:02:34, instead of leaving out the 0 and
displaying 12:2:34 (this can also be done for the hours variable if you would
like it to have a leading zero).

At the end, the function displays the output on the page. The function is
initially called right after it is defined. The function is repeated at intervals of
1000 milliseconds, or 1 second. This enables the clock to stay current. The
results of this script when run in a browser are shown in Figure 12-6.

Figure 12-6 The current time is displayed on the page.

Try This 12-2 Create a JavaScript Clock

pr12_2.html

prjs12_2.js

This project enables you to work more with the methods of the Date object,
as well as learn how to adjust the values that are returned so they can be used

in various ways. This creates a JavaScript clock with a few more options than
your simple clock in the previous section.

Step by Step
1. Create an HTML page with script tags that point to an external

JavaScript file named prjs12_2.js. Add a heading that says “Current
Time” and add a div element with an id of my_clock. Save the HTML
file as pr12_2.html.

2. When complete, the body of the HTML file should look like this:

3. Create an external JavaScript file and save it as prjs12_2.js. Use it for
steps 4–7.

4. Write some code that will display a clock. In this clock, include the
following information:

• The time with hours, minutes, and seconds

• Whether it is A.M. or P.M.

• The date in the form mm/dd/yyyy

5. This will be a 12-hour clock, so be sure to adjust the value of the hours
so that they stay between 1 and 12. Also, note the format of the date and
adjust the month and day values accordingly.

6. Begin the clock, and have it update every second.

7. When complete, the JavaScript file should look like this:

8. Save the JavaScript file and open the HTML file in your browser. The
time and date should appear on the page.

Try This Summary
In this project, you used your knowledge of the Date object. Using the
methods of the Date object, you created a clock with a date that appears on
the Web page.

Continuing Project
In Chapter 11, you used Node.js to retrieve data from a PostgreSQL database
(your mywebapp database). You also used Node.js to create a simple Web
server and were able to open a test page in your browser. In this chapter, you
will further your project by combining the PostgreSQL query you made in
Node.js with the Web server you wrote. You will then add some calculations
that can be useful down the road when you begin displaying more
information in the browser.

First, update your server.js file in your project folder so that it looks like

the following code. This simply adds in the pg module and uses it. This will
eventually allow you to get data from the database and then use any data you
need to update the resulting Web page (for now you will just look at the
Node.js console to see the results). Here is the new code for server.js:

Notice the addition of the getBowlerData function and the comment
indicating where code will be added. Save the updated file with the same
name, server.js. In the following code examples, you will simply see the code
to be added where this comment is, and when done, the complete file will be
displayed again with the completed code.

Getting to the Needed Data
When you retrieved the data in Chapter 11, you simply logged the result to
the console, which displayed an array of objects with bowler information.
This time, you will go through each of the bowler objects in the array and
make calculations based on the bowler attributes.

To get to the data, you will need to loop through the results array. This can
be done a number of ways, most commonly using a for loop or using
forEach(). For ease of reading the code, forEach() will be used. Where you
have the comment indicating the location of new code, add the following
code:

The argument bowler in the function represents the value of the item for the
current iteration of the array. So, the first time the function is run, the first
array item’s value is used, in this case result.rows[0]. This is the first bowler
object returned from the database query. Thus, referring to this object as
bowler lets you use an easy-to-read format to access the properties. Instead of
result.rows[0].last_name, you can refer to bowler.last_name. Note that a for
loop is just fine and may be preferred in some situations, but for this project a
forEach fits nicely.

As you can see the first_name and last_name properties of the object are
used to log each bowler’s name to the console. You can use this same
technique to access any of the properties, which you will do in the next
section!

Running Some Calculations on the Results
Now that you can easily access the data from the query, you can make some
calculations for each bowler based on the bowler’s attributes. For your app,
you want to give each bowler an overall rating, which will simply be an
average of each of the bowler’s attributes rounded to the nearest whole
number. Bowler attributes are based on a 0-100 system, so a bowler with a

100 overall rating would have the best possible rating.
To begin, you need to calculate the average of each bowler’s attributes. To

do this, you can add them all together and divide by the number of attributes
(three in this case). So, adjust your code to look like this:

Start your Web server from a console window (node server.js) and open the
URL http://localhost:3000 in your browser. Look at your console window
(not the Web page) to view the result. Notice that it doesn’t look particularly
nice:

The decimals are really long. This can be fixed by limiting the number of
decimal places displayed. For this app, you will simply round to the nearest
whole number to achieve this, which can be done with the Math.round()
method you learned earlier in this chapter. This time, adjust your code to look
like this:

Shut down the Node server (ctrl-c), restart (node server.js), and refresh the

http://localhost:3000

Web page. If you look at the console window now, you should see a cleaner
result:

Now you can easily see which bowlers have the best overall rating! As
expected, Doctor Gutter is rated lowest, while Prize Winner has a stellar
rating at 97. As you progress with this app, you will be able to display this
information on the Web page instead!

If you had any trouble getting this to work or just want to see the full code
for the server.js file upon the completion of the new code, here it is:

Note that you will want to ensure that the Postgres connection string is
correct with your own username and password.

 Chapter 12 Self Test

1. What do the properties and methods of the Math object enable you to
do?

A. Take the square roots and other such values of strings and return a
number.

B. Perform mathematical calculations.
C. Go to math class to learn new theorems.

D. Nothing, they are useless.

2. The __________ property holds the value of Euler’s constant.

3. The LN10 property holds the value of the natural __________ of 10.

4. The LOG10E property holds the value of the logarithm of 10*E.

A. True
B. False

5. Which of the following would correctly write the value of pi on a Web
page?

A. document.write(Math.Pi);
B. document.write(Math.pi);
C. document.write(Math.PI);
D. document.write(Date.PI);

6. The __________ property holds the value of the square root of 2.

7. The abs() method returns the __________ value of a number sent to it as
an argument.

A. absent
B. absurd
C. absolute
D. absolute square root

8. The __________ method returns the arcsine of a number sent to it as an
argument.

9. The pow() method returns the numeric value of the __________
argument raised to the power of the __________ argument.

10. Which of the following would correctly generate a random number
between 0 and 7?

A. let rand_int= Math.floor(Math.random()*7);
B. let rand_int= Math.floor(Math.random()*6);
C. let rand_int= Math.floor(Math.random()*8);
D. let rand_int= Math.sqrt(Math.random());

11. The __________ method returns the square root of a number sent to it as
an argument.

12. What must be created in most cases before the Date object’s properties
and methods can be used?

A. Nights string
B. A number for reference to the date
C. A time for the date to be set
D. An instance of the Date object

13. The __________ method returns the number of days into the week.

14. The getMonth() method returns the same number as the number that
represents the current month (for example, returns 1 if the current month
is January).

A. True
B. False

15. Which of the following correctly assigns the day of the week for an
instance of the Date object named rightnow to a variable named
weekday?

A. let weekday= rightnow.getDate();
B. let weekday= rightnow.getDay();
C. let weekday= right now.getDay();
D. let weekly= rightlater.getMinutes();

T

Chapter 13
Handling Strings

Key Skills & Concepts
• Using the Properties of the String Object

• Using the Methods of the String Object

• Using Cookies

• Using Regular Expressions

o work with strings in JavaScript, you need to learn about the various
methods that handle them. The methods come from the JavaScript
String object.

This chapter first explains what the String object is and how to create
strings that use its properties and methods. Then, the String object’s
properties and methods are discussed in more detail so you can see how they
work. Finally, you’ll code a script that uses some of the properties and
methods you’ve learned.

Introduction to the String Object
The String object provides properties and methods to get information about
strings or to modify strings. A String object is created in either of two ways: a
programmer creates one by using the new keyword with the constructor
function, or JavaScript creates one temporarily when one of the methods is
called from a string literal. What makes a String object and what makes a

string literal? To find out, take a look at how to create a String object in
JavaScript.

The String Object
As just explained, one way to create a String object is to use the new
keyword, as you’ve done with other objects previously. The syntax is shown
here:

let instance_name = new String("string value here");

You replace instance_name with the name you want to use for the instance of
the String object. You then replace string value here with the string of
characters to use as the new String object.

So, if you want to create an instance of the String object named
guitar_string, you could use the following code:

let guitar_string = new String("G");

This script creates an instance of the String object for the string “G”.

The String Literal
You can create a string literal just by assigning a string value to a variable.
This technique is a bit shorter than creating a String object using the new
keyword and still allows you to use all the methods of the String object (as
well as one of the properties).

A string literal is created in the code that follows. Notice that the code
assigns a string value to a variable.

let guitar_string = "G";

This makes the string “G” a string literal, which you know as a regular text
string. With text strings, you’re also allowed to use the properties and
methods of the String object.

What’s the Difference?
The difference between a String object and a string literal is that a regular
text string has the value of the string itself, and it can be compared against

another string easily, as in the following code:

Because this code uses regular string literals, the result is what you’d expect.
An alert says that the strings are the same.

However, if you used String objects to run through the same if block, you
would see something unexpected. The code that follows uses String objects
instead:

This time the alert would tell you that the strings are not the same, even
though the string values are both “E”—because a String object is an object
value and not a literal value. Objects aren’t going to be equal to one another
in the same way regular text strings would be (objects contain name-value
pairs, while literal values only contain the value). For most purposes, you
would probably use string literals and let them use the String object’s
methods.

A regular text string is able to use the String object’s methods because
JavaScript takes the string literal and turns it into a temporary String object.
Once the method’s execution is complete, it returns a string literal. This
allows you to use the String object’s methods without having to create String
objects.

Using the Properties and Methods of the String

Object
The String object has only has one property (aside from the constructor and
prototype properties, which can only be used with a String object created via
the constructor function). Table 13-1 shows this property.

Table 13-1 Properties of the String Object

The length Property
This property returns the length of the string, which is the number of
characters contained in the string. You can use it with both String objects and
string literals. You’ve seen this property with other objects as well, such as
the Array object. (In that case, the value was the number of elements in an
array.)

The following code uses a regular text string. It writes the length of the
string variable onto the page.

Notice how the name of the variable is used like an object name, and is able
to access the String properties and methods. The script writes the result to the
page. Because the name has four characters, the length property has a value
of 4 here.

Methods of the String Object
Some common methods of the String object are listed in Table 13-2 (grouped
by function). Additional methods can be found at
https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global_Objects/String#Methods.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String#Methods

Table 13-2 Methods of the String Object

The charAt() and charCodeAt() Methods
The charAt() method determines which character resides at a particular
position in a string. It takes a number argument representing the position of
the character in the string.

When you want to find a character, remember that the position count
begins at 0 (as with arrays) rather than 1, so the first character is at position 0.
The following code shows how to get the first character in a string by using
the charAt() method:

This code assigns the result of the charAt() method call to a variable
named first_char, which is then used in an alert. The alert will tell the viewer
the first character in the text string that called the method. In this case, the
alert would say “The first character is C.”

If you want to find the last character, either you need to know how many
characters are in the string before you use the method, or you can use the
length property to determine the number of characters in the string. When
using the length property, remember that it returns the number of characters,
not the position of the last character.

The length property begins counting at 1, while you must begin counting
at 0 when you use the charAt() method. Thus, the last character in a string
will be at a position one less than the number of characters it contains. In
other words, if the string has 10 characters (1–10), the last position (0–9) is at
9. For example, this code finds the last character in a string:

This code assigns the value of the length of the string minus 1 to a variable
named position. The position variable now holds the position of the last
character in the string. The result of calling the charAt() method with the
value of position sent as the parameter is assigned to a variable named
last_char. Finally, an alert provides the last character in the string, which is r.
Thus, the viewer gets an alert saying “The last character is r.”

The charCodeAt() returns the character code for the character at the
positions sent as the argument (for further discussion on character codes, you
can refer to Chapter 5 or visit www.scripttheweb.com/js/ref/javascript-
character-codes.html). For example, you could use the following code:

An alert would then tell you the character code at position 0 in the string (the
letter H), which is 72.

http://www.scripttheweb.com/js/ref/javascript-character-codes.html

The concat(), slice(), and substring() Methods
These methods are provided to allow you to alter the value of a string in
various ways.

The concat() Method This method works much like the Array object’s
concat() method. It combines the text string that calls the method with any
number of other text strings sent as arguments and returns the combined
value. The text string calling the method comes first in the order, while the
strings sent as arguments are added in order afterward. The following code
shows an example that combines three strings using the concat() method:

This code combines the strings in the order string1, string2, and then string3.
The result is an alert that says, “I went to the store then I played a video
game.” Note that MDN recommends very strongly that you use assignment
operators instead of concat to do this. See https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global_Objects/String/concat#Performan
ce for details.

The slice() Method This method slices out a portion of a string and returns
the value that was sliced. It works much like the slice() method of an array.
The first argument tells it the position at which to start slicing, while the
second argument is one greater than the position where it will stop. For
instance, take a look at the code that follows:

This code slices the string from position 0 through position 6. Position 7 is
where the c is in “cut”; but it isn’t sliced because the argument that tells
JavaScript where to end the slicing is one greater than the position of the last
character to slice. Thus, the alert will say “Do not.” Note that the original
the_text value remains the same.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/concat#Performance

The substring() Method This method works much like the substr() method,
but it allows you to send arguments for the beginning position and the ending
position of the portion of the string you want to remove. It then returns the
removed portion as a new string.

For example, take a look at the code that follows. Rather than specifying
the number of characters to remove, you give an ending position. The
characters are removed beginning at the starting position and ending at one
less than the ending position. (Remember the slice() method.)

You remove everything between the beginning of the string and the
beginning of the word “cut.” The alert will say “not.”

NOTE

The slice() and substring() methods are very similar, but they do have
their differences in specific cases. To see more about this, go to
http://stackoverflow.com/questions/2243824/what-is-the-difference-
between-string-slice-and-string-substring-in-javascript

The fromCharCode() Method
The fromCharCode() method creates a string from a series of character codes
sent as parameters to the method. The charCodeAt() method returns a
numeric code for the character at a given position. This is the type of value
you must send to the fromCharCode() method. Also, fromCharCode() is
called directly from the String object rather than from an existing string,
because it is piecing together a string on-the-fly and doesn’t require one to
run. Instead, it uses the parameters sent to it to return a string.

So, if you want to alert the text string “HI” to the viewer, you could use
the example code shown here:

window.alert(String.fromCharCode(72,73));

This code takes the first parameter (the character code 72) and converts it to
an H. It then takes the second parameter (the character code 73) and converts

http://stackoverflow.com/questions/2243824/what-is-the-difference-between-string-slice-and-string-substring-in-javascript

it to an I. The two are combined in the order they were sent to form the string
“HI,” which is sent as an alert to the viewer.

The localeCompare() Method
The localeCompare() method compares two strings and returns a number
indicating whether or not the string comes before or after the string argument
in alphabetical order. The method will use different ways of calculating this,
depending on the locale (country and language) of the browser. It returns one
of the following values:

• If the string should come before the argument alphabetically, it returns a
negative number.

• If the strings are equal, it returns 0.

• If the string should come after the argument alphabetically, it returns a
positive number.

For example, you could use the following code to determine whether the
string “orange” comes before or after another string alphabetically:

In this case, the viewer will get an alert saying, “orange comes after apple.”

The indexOf() and lastIndexOf() Methods
The indexOf() method finds out where a certain character or string begins in

a string. It returns the position of only the first occurrence of the character or
string that is sent as the argument. If the character or string isn’t found in the
string value, a value of –1 is returned.

The following code looks for the letter C in the string “Cool”:

Remember that the position count begins at 0, so when it finds C as the first
character in the string, it returns 0. Thus, the alert will say “Your character is
at position 0.”

Note that the method is case sensitive, so C and c are two different
characters to JavaScript in this case. Thus, the code that follows returns –1
(telling you the character isn’t in the string), even though an uppercase C is in
the string.

The alert would now say “Your character is at position –1.”
If you want to check for that –1 to keep from getting it as a position, you

could use this code to send a different alert in case the character you want to
find isn’t in the string:

This time, the if statement checks to see whether the method returns –1 to the
position variable. If so, the alert says “Your character is not in the string!”
Otherwise, the regular alert will tell you the position. In the previous code,
the lowercase c isn’t in the string, so the “Your character is not in the string!”

alert appears.
The indexOf() method returns the position number only for the first

occurrence of the character you send as the parameter. So, if you use the code
that follows, you will be alerted that your character is at position 1, even
though it’s also at position 2:

If you use the second argument to the indexOf() method, the search for
your character or string will begin at that position rather than from the 0
position. Thus, one way to find that second “o” would be to skip past the first
one at position 1 and start looking at position 2.

This time, the method returns 2 as the result, since it finds it right at the
specified starting position.

NOTE

If you want to find all occurrences of a string, you may wish to use a
regular expression, discussed later in this chapter.

The lastIndexOf() method finds out where the last instance of a certain
character or string is located in the string. It returns the position of only the

last occurrence of the character or string that is sent as the argument. If the
character or string isn’t found in the string value, a value of –1 is returned.

The following code looks for the letter C in the string “Cool Cruising
Car”:

This code will display an alert that tells the viewer “Your character is at
position 14.”

The match(), replace(), search(), and split() Methods
These methods all perform some type of pattern matching.

• The match() method compares a regular expression and a string to see
whether they match.

• The replace() method finds out if a regular expression matches a string and
then replaces a matched string with a new string. Note that you can also do
a replace with strings. This will only replace the first instance, but it is
something you can do if you only need to replace the first instance, and it
can be done without regex.

• The search() method executes the search for a match between a regular
expression and a specified string.

• The split() method creates an array of string elements from a string based
on the character sent as an argument.

The first three methods deal with regular expressions, so you will learn
more about them later in this chapter in the “Regular Expressions” section.

The split() Method The split() method uses the character sent as an
argument as a separator on which to split the single string into a number of
parts. It returns an array with each piece of the string minus the separator
character.

For instance, the code that follows has a string with a bunch of colons in
it:

The string assigned to the the_text variable consists of the names of
several fruits separated by colons. The next line creates an array named
split_text by using the split() method on the text string the_text. The
argument sent is a colon, which is what is used to separate the string into
array items. In this case, the array ends up with four items.

NOTE

The separator character that is sent as a parameter won’t end up in the
array: it serves only as a divider between the text so that the method
knows where to begin and end each item.

The next line gets the length of the split_text array and places that value in
the variable end_count. This information is then used to loop through the new
array and print the items on the page.

Figure 13-1 shows the result of this script in a browser, which is a listing
of fruit names.

Figure 13-1 The array elements created using the split() method are printed
on the page.

The toString() Method
The toString() method returns a string literal value for a string. Here’s an
example of how you can use this method:

This code takes the String object and uses the toString() method to get its
string literal value. It then assigns that value to the string_lit variable.

The toLowerCase() and toUpperCase() Methods
The toLowerCase() method returns the string in all lowercase letters. Take a
look at this code:

This code alerts the string in all lowercase letters, like this sample text:

i feel calm, really.

The toUpperCase() method returns the string in all uppercase. Here’s an
example:

This code alerts the string in all uppercase letters, like this sample text:

I AM YELLING!

The trim() Method
The trim() method removes any excess white space from the beginning and
end of a string and returns the result. The original string is left intact. For
example, look at the following code:

The spaces from the beginning and end will be removed, and the string
“Once upon a time…” is alerted to the viewer. Figure 13-2 shows the result
of this script when run in a browser.

Figure 13-2 The text without the extra spaces is alerted to the viewer.

NOTE

This method does not work in Internet Explorer prior to version 9.

That’s the last of the methods! Now you are ready to test what you’ve
learned.

Ask the Expert
Q: So the length property returns the number of characters in the

string, but the string methods start counting at 0. This is a little

confusing, just as it is with arrays. Is there an easy way to
remember this?

A: The easiest way is probably to remember that the length property
begins counting at 1, while the methods count positions beginning
at 0. Thus, the length property ends up one greater than the last
position in a string. So, if the string has a length of 5, for a method
that means the last position in the string is position 4.

Q: Yes, but it’s also confusing because the second parameter in
the slice() and substring() methods is a position higher than the
point where the methods stop removing characters. Why is
this?

A: It is confusing in the beginning. You just have to get used to how
each method works. If you use them often enough, you’ll
remember which numbers to use in which situations.

Q: Why do I need the split() method? Couldn’t I just make my
own array and be done with it?

A: Yes. However, once you learn about JavaScript cookies, the split()
method will be useful because you’ll be able to split up the
information stored in the cookie to make use of it. Cookies store
information in long text strings, usually with some character as a
separator. This is just one example of when the split() method can
be useful to you.

Q: A lot of those methods just add tags around a text string.
Couldn’t I just write out the HTML for that? It seems easier.

A: These methods are not used often any more, due to the ability to
use innerHTML or to add DOM nodes to the document. Also, they
could cause the HTML code to be invalid, as some of them create
tags that are now deprecated in HTML5.

Try This 13-1 Use indexOf() to Test an Address

pr13_1.html

prjs13_1.js

In this project, you practice using the indexOf() method by creating a script
that performs a very basic test on an e-mail address that the viewer enters.

Step by Step
1. Create an HTML page that points to a JavaScript file named prjs13_1.js.

Create a form with an id of “getemail.” Add a text box with an id of
“email” and a submit button labeled “Submit E-mail.” Save the HTML
file as pr13_1.js.

2. When complete, the body of the HTML file should look like this:

3. Create an external JavaScript file and save it as prjs13_1.js. Use it for
steps 4–7.

4. Assign the value of the “email” text box to a variable named email_add.

5. Use indexOf() to see if the address has an at (@) character in it and to
see if the address has a dot (.) character in it.

6. If the address has both an at (@) character and a dot (.) character, send
an alert thanking the viewer. If not, send an alert to the viewer saying
that he or she needs these characters and to try again.

7. When complete, the JavaScript file should look like this:

8. Save the JavaScript file and open the HTML file in your browser to try
out the script.

Try This Summary
In this project, you used your knowledge of the indexOf() method to test an
e-mail address entered by the viewer for certain characters. If one of the
characters is missing, an error alert is sent to the viewer. Otherwise, an alert
is sent thanking the viewer.

Using Cookies
A cookie is a small text file that is stored on the end user’s computer. It can
be referenced any time the viewer returns to your site, provided the cookie
hasn’t been deleted or expired. Of course, if the viewer doesn’t accept
cookies, then a cookie won’t be able to be set or referenced later. Keep the
following points in mind when using cookies:

• Cookies must be 4KB (4000 characters) each or less.

• A browser can accept up to only 20 cookies from a single domain.

• If a number of viewers don’t accept cookies, this eliminates any
advantages of your cookie(s) to those viewers.

Cookies can help users browse your site more effectively. For instance, if
you use a script on your main page that sends one or more alerts while the
page is loading, you won’t want that to happen every time the viewer goes to
another page on your site and then returns to the home page. It would likely

be so aggravating that you wouldn’t have a visitor after it happened a few
times. The alerts pop up each time the page loads because HTTP lacks state
persistence. Cookies fill that gap because they allow the browser to
“remember” that the viewer has seen the pop-up alert before and thus not
display it on subsequent page visits.

Setting a Cookie
Setting a basic cookie is as easy as giving a value to the cookie property of
the document object. The only restriction is that you can’t have spaces,
commas, or semicolons inside the string. For example, you can set a cookie
that will store a name so that you can identify it if you set more than one
cookie later. The following code sets a basic cookie:

CAUTION

When setting a cookie, remember not to use spaces, commas, or
semicolons inside the string that sets the cookie data.

The preceding code sets a cookie with a value of name=tasty1 when the
function is called. You can set any delimiter you want, though (or none at all,
but setting delimiters allows you to store multiple values like a query string),
so the following code would work as well:

Adding the additional information isn’t very difficult as long as the value
does not need a space, as shown in the following code:

As you can see, the value of the cookie is being formatted in name-value

pairs, and each pair is separated with an ampersand (&). Again, you can
choose any type of separators you want. The following code is fine as well:

In this case, the names and values are separated with colons, while the pipe (|
) symbol separates them into pairs. You can use anything that you are
comfortable using.

The encodeURIComponent() Method
If you want to use spaces, commas, or semicolons in your cookie, you need a
way to “escape” them so that they are translated into something a cookie
accepts.

A cookie will accept character codes, as a server-side program often does.
They may look like %20, %41, or something similar. To turn spaces,
commas, and semicolons into these codes, you must use the JavaScript
encodeURIComponent() method. It is a method under the window object, so,
as you have seen in previous chapters, you can just use
encodeURIComponent() rather than window.encodeURIComponent().

The following code shows how you could use the encodeURIComponent()
method to set a cookie with a space in it:

The thetext variable is set to include the string you want to use in the cookie.
The newtext variable is set to hold the result of using the
encodeURIComponent() method on thetext. The escaped text is then used as
the string for the cookie, which will now have the code for the space
character in it (when you want to use this data, you will need to unescape it).

Allowing User Input

By using the encodeURIComponent() method, you can prompt the viewer for
the information, escape it, and then use it in the cookie. The following code
shows one way to do this to get the viewer’s favorite type of cookie:

Now the viewer can help decide the information that will be set in the
cookie, and you can use the information your viewers enter on your site on
their next visit.

Setting an Expiration Date
Adding an expiration date to a cookie will keep it from being deleted once
the browser is closed, or it can be used to expire a cookie you no longer want
to use. To set an expiration date, add a little more to your string for the
cookie, as shown in the following code:

Basically, you are adding on another name-value pair that adds an expiration
date (notice that the name-value pairs are separated with a semicolon). It
needs to be in this form:

expires=date (in UTC format)

In the code, an expiration date for the cookie was added by adding the date
in UTC format. Then the result is added to the variable that will be used to set
the string for the cookie.

If you want a cookie to last a long time, you can set the date far into the
future. If you want to expire a cookie you have decided not to use any more,

set a date in the past and the cookie will expire.

Reading a Cookie
Reading cookies is straightforward if you have only a single cookie set and
want to read it. To read the cookie, you just need to get the value of the
document.cookie property from the browser:

However, the preceding code will give you a long and possibly messy string
for the value of the mycookie variable. It might look like this:

name=tasty1&fav=Chocolate%20Chip

The %20 got in the code when the input for the cookie was escaped using the
encodeURIComponent() method. To fix that, use the
decodeURIComponent() method to get the data in a more readable format
(you will use this once you get to the value input by the user).

Next, you must find a way to extract the information you need from the
cookie. Assuming the cookie contained the string just used as an example
(name=tasty1&fav=Chocolate%20Chip), the string would now look like this:

name=tasty1&fav=Chocolate Chip

Notice that the text is divided in two different ways. The ampersand divides
the string into name-value pairs, while the equal signs divide the name-value
pairs into their names and values.

You can use that variable to create a new array by splitting the string on
the ampersand character:

The preceding code splits the string into two array values:

You split each of these into a new array that will have a name and a value.
Therefore, you need some code like this:

Now you have all the information you need using the name_propval[] and
fav_propval[] arrays:

You can use them in any way you like, such as placing them in alerts. You
can now also decode the values input by the user, as shown in the following
example:

You might want to be sure document.cookie exists before you try to run
all the code in the function. Any cookie you set to expire later can be read,
but those without the cookie may get an error. By making the check, you can

ensure the existence of the cookie or send the viewer to the function that sets
the cookie. To do that, add an if/else block around the code in the function, as
shown here:

The preceding code assumes that the set_it() function exists and will set the
cookie if needed. It also assumes that this cookie is the only cookie set from
this domain and that it is formatted a particular way. If you plan to use
multiple cookies, you will need to do additional testing to ensure you grab the
cookie you need. You can see
webmonkey.com/2010/02/advanced_javascript_tutorial_-
_lesson_2/#Reading_and_Writing_Multiple_Cookies for more information
on this.

Try This 13-2 Remember a Name

pr13_2.html

prjs13_2.js

In this project, you use a cookie to remember a name when a visitor returns to
the page.

http://webmonkey.com/2010/02/advanced_javascript_tutorial_-_lesson_2/#Reading_and_Writing_Multiple_Cookies

Step by Step
1. Create a new HTML document that uses an external JavaScript file

named prjs13_2.js. Create a div with an id of “greeting”. Save the
HTML file as pr13_2.html.

2. Create an external JavaScript file and save it as prjs13_2.js. Use it for
the remaining steps.

3. Create a function named set_it() that will set a cookie. Set the expiration
to a future date. Allow the viewer to enter a name in a prompt and then
use the viewer’s entry in the cookie.

4. Create a function named read_it() that will check whether the cookie
exists and, if so, read the cookie and write the name on the page in the
following format (replace <name> with the name read from the cookie):
Welcome, <name>!

5. If the cookie exists, call the read_it() function. If the cookie doesn’t
exist, call the set_it() followed by the read_it() function.

6. Save the JavaScript file and open the HTML file in your browser. Enter
your name and get your greeting. If you close your browser and open the
page again, you should see your name without the need to enter it again.

Try This Summary
In this project, you used your knowledge of setting and reading cookies with
JavaScript. You created a Web page that remembers the viewer’s name when
the viewer returns to the Web page.

Using Regular Expressions
Regular expressions give you much more power to handle strings in a script.
They allow you to form patterns that can be matched against strings, rather
than trying to use the String object’s methods, which may make it more
difficult to be precise.

For example, you may want to know whether the value entered in a text
box for an e-mail address included at least one character at the beginning,

followed by an at (@) symbol, followed by at least one character, followed
by a dot (.), followed by at least two more characters (matching a traditional
e-mail address like jon@jon.com or the shortest type of e-mail address,
j@j.jj).

The String object’s methods don’t provide a neat and clean way to
perform this task (although with enough tinkering, it may be possible).
However, a regular expression can shorten the task or even turn a match that
seemed impossible with the String object’s methods into one that can be
completed.

Creating Regular Expressions
To create regular expressions, you must create an instance of the JavaScript
RegExp object or a RegExp literal. To create a RegExp literal, you just assign
the regular expression to a variable. Instead of using quotation marks to
surround the expression, you use forward (/) slashes, as shown here:

let varname = /your_pattern/flags;

You replace varname with the name you want to use for a variable and
replace your_pattern with the regular expression pattern of your choice. You
can follow the last slash with one or more flags (which are discussed in the
upcoming section “Adding Flags”).

NOTE

JavaScript uses forward slashes to let the browser know that a regular
expression is between them, the same way quote marks are used to set
off strings. Thus, if a forward slash is used within the regular
expression, it must be escaped with a backslash in order to work
properly. For instance, instead of writing /02/03/2009/, you would
need to write /02\/03\/2009/.

The easiest regular expression pattern to create is one that looks for an
exact match of characters. For instance, if you wanted to see if the sequence
our is present in a string, you could create the following regular expression
pattern:

let tomatch = /our/;

mailto:jon@jon.com

The preceding code creates a RegExp literal named tomatch. Now you need a
string against which to test the pattern. If you test the word our against the
expression, it’s a match.

If you test your, sour, pour, or pouring against it, then it’s a match. If you
test cool, Our, oUR, OUR, or souR, then it won’t be a match. So how do you
perform this test?

Testing Strings Against Regular Expressions
To test a regular expression against a string, you can use the test() method of
the RegExp object. The basic syntax is as follows:

regex_name.test(string_to_test);

This syntax is similar to using a string method. You replace regex_name with
the name of the regular expression and replace string_to_test with a string or
a string variable name. For instance, look at the following example:

This code will test the “pour” string against the regular expression named
“tomatch.” It doesn’t use the result, though.

The test() method returns a Boolean value of true or false. It returns true
when any portion of the string matches the regular expression pattern. Using
the test() method, you can already write a short script, as shown here:

The prompt gathers a name and holds the value in a variable. The pattern to
match is John, and it is case sensitive. Thus, only an entry containing John
with a capital J followed by lowercase o, h, and n will create a match and

return true when it is tested (though it could contain more than just John, so
entries such as Johnny or John Doe would also return true—if you want only
a specific set of characters, you need to use some additional special
characters, which will be discussed later in this section).

The result of the test() method is assigned to a variable named is_a_match.
The variable is then used as the condition for the if statement. If the variable
holds a value of true, then the viewer gets the “Wow, we have the same
name!” alert. If it holds a value of false, the viewer gets the “Not my name,
but it will work!” alert instead. Figure 13-3 shows the result of this script
when “Steve” is used as the name.

Figure 13-3 The name does not match the regular expression pattern.

If you want to shorten the script, you can just make the result of the test()
method the condition for the if statement (rather than create another variable),
as in the following code:

Because the method returns true or false, it can be placed as the condition for
the if statement on its own. (You could make it
(tomatch.test(thename)==true) if you wanted to, though.)

Adding Flags
Flags allow you to make the match case insensitive or to look for every
match in the string rather than just the first one (a global test). To add a flag,
place it after the last slash in the regular expression. You can use three
options, as shown in Table 13-3.

Table 13-3 Regular Expression Flags

If you wanted to adjust the name script used previously to be case
insensitive, you could add an i flag to the regular expression, as shown in the
following code:

The test() method will now return true as long as the pattern of John is in

the string. It can be in any case, so now John, JOHN, john, and even JoHn are
all matches and will cause the test() method to return true.

You can also use more than one flag or all three flags at once. For
example, if you want to have the match be both case insensitive and
multiline, you could use the following:

let tomatch = /John/im;

Creating Powerful Patterns
Although it’s nice to be able to create such an exact pattern, you won’t
always be looking for a match that is so precise. In many cases, you will be
looking to match a more general pattern, such as an entry that needs to have
at least three characters or that needs to have two characters of any type
followed by a special character.

By using special characters in your expressions, you can create the type of
patterns you need to match a given sequence you want. JavaScript regular
expressions use the syntax of Perl regular expressions as a model. Thus, if
you’ve used regular expressions in Perl, much of this material will be
familiar. Table 13-4 lists a number of the characters to help you create your
patterns.

Table 13-4 Regular Expression Codes

As you can see, extensive options exist for creating the pattern you need.
Now you could easily verify strings according to the standards you decide to
set.

Now, if you want to make sure a text field contains one or more digits,
you could use the /d and + characters from Table 13-4 with the following

HTML and JavaScript code, starting with the HTML code:

Next, the JavaScript code:

This code simply checks to see whether any digits are in the string. If you
want to ensure that the viewer typed in only digits without any other types of
characters, you need to be sure the regular expression is written to test from
the beginning to the end of the string. Using the ^ and $ symbols from Table
13-4, you can ensure that the string is tested for the match starting at the
beginning of the string and ending at the end of the string. The + following
the \d ensures that there is at least one number entered. Thus, the following
patterns would allow only digits:

let tomatch = /^\d+$/;

Since the only valid characters from the beginning to the end of the string are
digits, this will return true only for entries containing digits without other
characters present in the string. This is especially helpful for validating forms
and other types of user input to ensure that it is the type of input you expect.

NOTE

Regular expressions can be quite powerful for validation because they
allow less erroneous information to be accepted.

Client-side validation of form submissions with data such as e-mail
addresses or phone numbers can save unnecessary trips to the server.
However, users may disable JavaScript support and make form submissions
directly. Therefore, client-side validation should support server-side
validation (by a PHP script or CGI script, for example), but should never
replace it (it could cause a great security risk to store or display data from a
viewer that has not been validated).

Grouping Expressions
You will notice in Table 13-4 that an expression surrounded by parentheses
indicates a group that can be stored for later use in the expression (or using a
method such as the match() method where it will store each match of a group
along with the overall match in an array).

For example, you might decide to use a particular sequence of numbers
and to have that sequence repeat a particular number of times. To match the
number of times something is repeated, you can use curly brackets ({}) along
with a number or number range. For instance, if you want to match five
instances of the number 3, you could use the following expression:

/3{5}/

If you wanted this to be a match if the number 3 occurs at least five times but
no more than ten times, you could use the following expression:

/3{5,10}/

Now, suppose you wanted the match to start with a 3 and have any digit as
the next character, and wanted to match that entire sequence five times (thus,
something like 3234353637 would be a match). You might write the
following:

/3\d{5}/

The trouble with this is that it gets the 3 correct, but matches five digits

afterward without the need to repeat the 3. Thus, a number like 387643 would
match even though you wanted to have five sets of two numbers with each
set beginning with a 3. To fix this, you can group the 3 and the \d together
with parentheses, and follow that with the number of times it should repeat:

/(3\d){5}/

This time, the 3 and the second digit are grouped together, and that sequence
must be repeated five times.

Grouping is a helpful way to get more out of your use of regular
expressions, and you will see more of this when you get to form validation in
the next chapter.

The replace(), match(), matchAll(), and search() Methods
These methods of the String object were mentioned earlier in the chapter, and
will make more sense now that regular expressions have been introduced.

The replace() Method
To replace information in a string, you can use regular expressions and the
replace() method of the String object. The syntax for using the replace()
method is as follows:

varname = stringname.replace(regex, newstring);

You replace varname with the name of the variable that will hold the new
string value once the information has been replaced. You replace stringname
with the name of the string variable that will undergo the replacement. You
replace regex with the name of the regular expression to be used to match
against the string. Finally, you replace newstring with the string or string
variable to replace any matched values in the string.

As an example, the following code replaces the first instance of “car” in
mystring with “skunk”:

The preceding code replaces only the first instance of car, giving the alert “I
like the way a new skunk smells, and cars are fun.” If you want to change
every instance of “car” instead, the g flag is helpful at the end of the regular
expression, as shown in the following code:

The g flag will match every instance of the regular expression it finds in the
string. Thus, when the replace() method is run, all instances of “car” will be
replaced with “skunk.” The viewer will see this alert: “I like the way a new
skunk smells, and skunks are fun.”

By using the replace() method with a regular expression, the first letter of
the first and last name can be changed more easily. The following code
shows how:

This script changes the first letter of the first and last name to Z regardless
of what it was before. The regular expression for the replacement simply
looks for a letter at the beginning of a word using the word boundary (\b)
code. Each time a letter is at the beginning of a word, it is replaced.

The validation of the input keeps the script from getting more than two
names and one space, and it also ensures that at least one letter is in each
name, with no numbers or special characters. The illustration shows the result
of the script if the viewer enters Debra Loo at the prompt: the viewer’s name
is changed.

The match() and matchAll() Methods
The match() method compares a regular expression and a string to see
whether they match. It returns an array containing one or more matches,
depending on how it is used. If no match is found, it returns –1.

The basic use of the match() method is as follows:

string.match(regex);

The string will be your string literal, and regex will be your regular
expression literal. Note the difference in the order between this method and
the test() method. You could use it in this way:

If this is used with the g flag or with grouping using (), it will remember
each match made (including matches on groups or nested groups) and return
each match as an array element. The matchAll() method works in this way,
returning all of the matches found as an array.

The search() Method
The search() method executes the search for a match between a regular
expression and a specified string. If a match is found, it returns the position in
the string where the beginning of the match was found. Otherwise, it returns
–1. Here is an example of this method in action:

As you can see, the syntax is much like that of the match() method.

More Information
For more information on regular expressions and how to create more
complex patterns, you can look at the following online resources:

• www.regular-expressions.info/

• www.regular-expressions.info/javascript.html (includes specifics on the
JavaScript engine)

http://www.regular-expressions.info/
http://www.regular-expressions.info/javascript.html

• https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Guide/Regular_Expressions

With these techniques down, you are ready to move on to working with
forms in JavaScript and working on the validation of form contents.

Continuing Project
In this chapter, you will update your Node.js project to begin creating the
front-end HTML and CSS for displaying your bowler data in your app. As
you move through subsequent chapters, the skeleton HTML will be filled in
with the actual data.

First, create a folder within your project folder named public. This folder
will be used to store CSS and front-end JavaScript files. You may recall
seeing the following line of code in your server.js file:

app.use(express.static(path.join(__dirname, 'public')));

This tells Express to look for static assets (such as CSS and JS files) in a
folder named public within your project folder. You can create folders within
that folder, but since this will be a relatively simple app, you will just place
your assets directly within the public folder.

Next, create a CSS file with the following code and save it as styles.css
inside the public folder:

You will include this CSS inside your index.html file.
With this in place, update your index.html file in your project folder to

have the following code:

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions

Save the file. If you want to see the shell HTML page this creates, make sure
to start your Node server and then go to http://localhost:3000 to see the basic
HTML that will need to be filled in once you pull the information you
retrieved from the database into the front-end code. As you can see here, the
plan is to fill in the tbody portion of the table with rows for each bowler’s
information. This will be done in Chapter 15 once you learn about AJAX.

 Chapter 13 Self Test

1. The __________ object provides properties and methods to get
information about strings or to modify strings.

2. What are the two ways in which you can create String objects?

A. Creating an instance of the String object and creating a string
literal

B. Creating an instance of the Array object and creating a string literal

http://localhost:3000

C. Creating a numeric variable and creating a numeric object
D. Creating a string and adding numbers

3. You can create a string __________ by assigning a string value to a
variable.

4. A regular text string is able to use the String object’s methods because:

A. It is already a String object.
B. It can use other methods as well, so it can use the methods of the

String object.
C. JavaScript takes the string literal and turns it into a temporary

String object.
D. The String object uses the string literal as-is.

5. Which property of the String object can you use with both String objects
and string literals?

A. prototype
B. constructor
C. length
D. color

6. The __________ property returns the length of a string.

7. Which of the following correctly creates a string literal?

A. let the_text = “Look at me!;
B. let the_text = “Look at me!”;
C. let the_text = Look at me!;
D. let the_text = new String(“Look at me!”);

8. Which method of the String object can you use to find which character
is at a given position in a string?

A. indexOf()
B. charAt()
C. charIsAt()
D. indexOfThePosition()

9. The __________ method adds <big> and </big> tags around a string
value.

10. The concat() method __________ two or more strings together and
returns the new combined string value.

11. Which one of the following statements is true?

A. The charAt() method returns a numeric value that is the position of
a character sent as a parameter.

B. The split() method creates a new string by removing a portion of
the string and returning the string minus the portion removed.

C. The length property allows you to add longer properties and
methods to the String object.

D. The indexOf() method returns a numeric value that is the position
of a character sent as a parameter, but only the position of the first
occurrence of that character.

12. Cookie information is stored in the __________ property.

13. The __________ method returns the string literal value of a string.

14. To replace information in a string, you can use regular expressions and
the __________ method of the String object.

15. The __________ method compares a regular expression and a string to
see whether they match.

T

Chapter 14
Browser-Based JavaScript

Key Skills & Concepts
• Window: The Global Object

• Using the Properties of the Window Object

• Using the Methods of the Window Object

• Opening New Windows

• JavaScript and Images

• JavaScript and Frames

he JavaScript window object gives you access to more properties and
methods you can use in your scripts, and serves as the global JavaScript
object in Web browsers. In this chapter, you will see how it works as the

global object, and learn to use a number of its properties and methods. You
will also learn about how you can use JavaScript with images and frames in a
Web browser.

Window: The Global Object
The window object is created for each window that appears in the browser. A
window can be the main window, a frame set or individual frame, a tab, or
even a new window created with JavaScript. It differs from the document
object in that the window object contains the document object (as well as

many other objects, such as history, navigator, and so on). It serves as the
global object for JavaScript in Web browsers.

Because it is the global object, any global variables or functions that are
defined are also properties and methods of the window object. For example,
consider the following code:

Here, there is a global variable named fruit and a global function named
show_msg(). Both of these can now be called as part of the window object, as
in the following code:

Because window is the global object, it is not necessary to use window.fruit
or window.show_msg(). The window is assumed, so these can simply be
shortened to fruit and show_msg(), which is the way you have already been
using them.

For this same reason, objects, properties, and methods within the window
object do not need to reference the fact that they are within the window
object. As you recall, you have used window.alert(), which can be called by
simply using alert(). This also works for objects such as the history object,
which are within the window object. Instead of typing window.history.back(),
you can type history.back() to access the back() method of the history object.

Using the Properties of the Window Object
To begin your study of the window object, take a look at some common
properties that you can use, which are listed and described in Table 14-1.
Some of the properties are discussed in more detail following Table 14-1.

Table 14-1 Properties of the Window Object

NOTE

As in previous chapters, some of the properties and methods listed in
this chapter are not cross-browser or only work in modern browsers.
For more information and a complete property listing, see

https://developer.mozilla.org/en/DOM/window.

The closed Property
The closed property is used to check whether or not a window has been
closed by the viewer. The way it is normally used is with the name of a
window, followed by the closed property, such as in the following example:

You would replace the windowname part with the name of the window
that you wish to check. This is often a new window that you opened with
JavaScript; you will see how to name a new window later in the chapter in
the section “The open() Method.”

You can also use the closed property inside a new window to check
whether the window that opened it has been closed. To do that, you would
use closed after the opener property (discussed in “The opener Property”
section), as in the following example:

This use of the closed property is really handy if you choose to create a
new window that enables the viewer to navigate the main window through
links in the new window.

The frames Property
The frames property is an array containing each frame within a frame set. It is
often used to gain access to the properties of the various frames on a page.
You can find the number of frames in a window by using the frames.length
property.

The innerWidth and innerHeight Properties
The innerWidth and innerHeight properties hold values for width and height

https://developer.mozilla.org/en/DOM/window

of the area of the window in view (the browser window minus scroll bars,
menu bars, toolbars, and so on). These properties work in modern browsers,
but not in Internet Explorer prior to version 9 (document.body.clientWidth
and document.body.clientHeight can be used for older versions of Internet
Explorer).

So, if you wanted to obtain the width of the content area you have
available to your script, you could use the following code:

let mywin_width = window.innerWidth;

Of course, if you want to use different HTML code for the browser
depending on the available innerWidth of the window, you could use the
following code:

This will determine whether the viewer has 800 pixels of viewable width. If
so, the width of the div element will be set to 750 pixels. Otherwise, the div
element will have a safer width of 90 percent so that it can display more
easily for smaller screens.

The length Property
The length property tells you how many frames are in a window, just like the
window.frames.length property. This just shortens it to window.length
(which is often more convenient when you are writing code).

The location Property
The location property holds the current URL of the window. You can use the
location property to cause instant redirection of the browser to a new page (if
your page has moved to a new location, for instance). However, make sure
that you don’t use this technique on a page that is listed with search engines

that do not allow quick redirection, because they may drop the page from
their listings.

If a page has been moved and you want to redirect the viewer without any
delay, you could just give the location property a new value, as shown in the
following code:

This would just take the viewer to the local URL newpage.html. A standard
link was included for browsers without JavaScript. Otherwise, the preceding
code would load a blank page for those viewers and nothing would happen.

NOTE

Instant redirection is best suited for testing purposes on pages that are
not indexed by a search engine, since the rules on redirection vary
from one search engine to the next.

The name Property
The name property holds the name of the current window and also enables
you to give a window a name. If you want to give the main window a name,
you could assign the name you want to use to this property. The following
code shows an example of this:

The script gives the window a name, and then alerts the name to the viewer.
Figure 14-1 shows the result of this script in a browser.

Figure 14-1 The name of the window is alerted to the viewer.

The opener Property
The opener property is used to reference the window that opened the current
window. This is often used in new windows opened using the open() method,
which you will see later in the chapter in the section “The open() Method.”
By using the opener property in a new window, you could detect whether the
main window has been closed using the closed property you learned about
earlier. The following example shows how you could perform this test:

if (window.opener.closed)

This adds the closed property after the opener property to check whether the
window that opened the current window has been closed. This is helpful if
you want to perform an action in the main window through the new one,
because you could check to see that it still exists before doing anything.

The parent, self, and top Properties
The parent property is only used when there are frames or iframes on a page.

It enables you to access the parent frame set of the current frame. This is
helpful when you wish to change a property in one frame from another frame.

The self property is another way of saying “the current window” in
JavaScript. It is used like the window object and can access the properties of
the current window just like the window object. The self property is useful if
you have a lot of windows with names and want to be sure you are using a
property of the current window and not one in another named window.

The top property is used to access the top window out of all the frame sets
(which could be nested). This is a little different from the parent property,
which only goes to the top of the current frame set. The top property instead
goes all the way to the top window, even if the window contains nested frame
sets.

The status and defaultStatus Properties
The status property contains the value of the text set in the status bar of the
window. Changing this property overrides the content of the status bar set
with the defaultStatus property.

CAUTION

Modern browsers, by default, do not display status bar text altered by
JavaScript, in order to keep unscrupulous Web sites from deceiving
users with false link destinations in the status bar. Thus, the status and
defaultStatus properties will not work unless browser settings are
altered by the viewer. Since it is a security risk for the user to change
browser settings to allow this, use of these properties is not
recommended.

The defaultStatus property sets the text string that is displayed by default
in the status bar when nothing has been assigned to the window.status
property. A change of the window.status property overrides this setting,
because it is only shown as the default. This property is often set in the load
event to display a custom message when the viewer is not performing an
action that would change the text in the status bar.

Try This 14-1 Use the location and innerWidth

Properties

pr14_1.html

prjs14_1.js

This project enables you to practice using the location and innerWidth
properties of the window object.

Step by Step
1. Create an HTML page, leaving the body section blank other than

including a set of script tags to reference a JavaScript file named
prjs14_1.js just before the closing </body> tag. Save the file as
pr14_1.html.

2. Create a JavaScript file and save it as prjs14_1.js. Use this file for steps
3–6.

3. Set a default value for a variable named mywin_width.

4. Assign the value of the window.innerWidth to mywin_width.

5. If the value of mywin_width is greater than or equal to 1000, send the
viewer to the URL http://github.com. Otherwise, send the viewer to the
URL http://developer.mozilla.org (use the window.location property).

6. When complete, the JavaScript file should have the following code:

7. Save the JavaScript file and open the HTML file in your Web browser.
Try changing the width and then reopening the page with the new width
to see which Web page it gives you.

http://github.com
http://developer.mozilla.org

Try This Summary
In this project, you were able to use your knowledge of the location and
innerWidth properties of the window object to create a script that will redirect
a viewer based on the available width of the viewing area in the viewer’s
browser.

Using the Methods of the Window Object
Now that you know how to use the properties of the window object, you can
move on to using window methods. Table 14-2 lists a number of the methods
of the window object with a description of each, and particular methods are
described in more detail next.

Table 14-2 Methods of the Window Object

The alert(), prompt(), and confirm() Methods
The alert(), prompt(), and confirm() methods all bring up system dialogs that
require the user to take an action. For example, the user may click OK to
close an alert, or enter information into a text box when prompt() is used.

The alert() Method
You have used the alert() method extensively in earlier chapters in example
scripts. This pops up a message to the viewer, and the viewer has to click an
OK button to continue.

The prompt() Method
The prompt() method is used to prompt the viewer to enter information. You
used this method in Chapter 6 to allow the user to enter data into the prompt
dialog.

The confirm() Method
The confirm() method can be used to give the viewer a chance to confirm or
cancel an action. This method returns a Boolean value of true or false, so its
result is often assigned to a variable when it is used. So, if you wanted to
assign the result to a variable named is_sure and ask the question “Are you
sure?”, you could use the following code:

let is_sure = confirm("Are you sure?");

Figure 14-2 shows a sample confirm dialog box that is displayed by the
preceding code. Notice the two buttons the viewer can choose to click: OK
and Cancel. If the viewer clicks OK, the method returns true. If the user
clicks Cancel, the method returns false. Note that as with alert() and
prompt(), you cannot change the value of the text in the buttons, since this is
determined by the user’s browser and operating system.

Figure 14-2 An example of a confirm dialog box

As a real example of this method, suppose that you want to create a link to
another page, but you want to be sure the viewer wants to leave before being
sent away. You could use the confirm dialog box to find out whether or not
the viewer wishes to leave the page. The following code shows how you can
get a confirmation from the viewer and react appropriately. First, the HTML
code:

Next, use JavaScript to confirm whether the user really wants to leave when
the link is clicked:

Notice that if OK is clicked and the confirm() method returns true, the viewer
is taken to the linked Web site. If cancel is clicked and the confirm() method
returns false, an alert is sent to the viewer and the function returns false so
that the link won’t be followed by the browser (you can also simply omit the
alert and just have nothing happen after Cancel is clicked, by using only the
return false statement).

Figure 14-3 shows the browser window after the link is clicked on the
page. The confirm dialog box with your “Are you sure you want to leave?”
message pops up on the screen.

Figure 14-3 A confirm dialog box pops up when the button is clicked.

The print() Method
The print() method enables the viewer to print the current window. When this
method is called, it should open the viewer’s Print dialog box so that the
viewer can set the printer settings to print the document.

To use it, you could create a button that enables the viewer to print the
page they are viewing:

This code should open the user’s Print dialog box when the user clicks the
Click to Print Page button. Figure 14-4 shows the result of running this script
in a browser. This dialog box may appear differently for different viewers,
depending on the browser and printer being used.

Figure 14-4 The viewer’s print options pop up when the print button is
clicked.

The setInterval() and clearInterval() Methods

The setInterval() method is used to execute a JavaScript function repeatedly
at a set interval. The following is the general syntax for using this method:

You replace function content with the code you wish to repeat. You then
replace time with the time (in milliseconds) you want to wait before each
repetition of the function.

So, if you really wanted to annoy your viewers, you could use this method
to pop up an alert every 10 seconds (10,000 milliseconds) once the page is
viewed. You could do this by placing the following script inside the HTML
of a document:

This, of course, could become quite annoying. The less time set in the
interval, the more annoying it would become. Luckily, the ten-second interval
gives you enough time to leave the page before another alert pops up.

CAUTION

You may come across scripts that provide a string value in place of
the function as the first argument to setInterval() or setTimeout(). This
requires JavaScript to evaluate the string as JavaScript code using the
eval() function, the use of which is discouraged in most cases.

To end the barrage of alerts from the previous script, you could use the
clearInterval() method. The following is the general syntax for using this
method:

clearInterval(name);

You must replace name with a variable name that has been assigned to the
setInterval() method call you want to clear. The problem is, you didn’t assign
your setInterval() call to a variable name in the previous example.

In order to clear it, you need to adjust your code. The following code is
updated and assigns the setInterval() call to a variable name:

You now have a way to use the clearInterval() method, by calling it with
the madness variable as the parameter. So, offer the visitor a button that
enables them to stop the madness. As long as it is clicked between intervals,
it will stop the interval from running any further. The following code gives
you an HTML page with the button for the viewer to click as well as the
updated JavaScript code:

The updated JavaScript code:

Now the viewer can stop the alerts by clicking the Stop the Madness button.
You will see in later chapters that this method can be handy for clocks and

other things that need to be updated at regular intervals on the page.

The setTimeout() and clearTimeout() Methods
The setTimeout() method enables you to execute a JavaScript function after a
certain amount of time has passed. It differs from the setInterval() method
because it is only executed once (unless it is put inside a loop of some sort).
The general syntax is the same as that of the setInterval() method.

If you want to have only a single alert pop up after ten seconds and not
repeat, you could use the following code:

This would send the viewer an alert after ten seconds, demanding that the
guest book be signed immediately.

The clearTimeout() method enables you to cancel a setTimeout() call if
you call the clearTimeout() method before the time expires from the
setTimeout() call. The general syntax is the same as that of the clearInterval()
method: you use a variable name as a parameter so that it knows which
setTimeout() call to cancel.

So, if you want to give viewers a chance to avoid getting an alert, you
could add a button for them to click within ten seconds. If the button is
clicked in time, the setTimeout() call is canceled and no alert pops up. The
following is the example code:

The JavaScript code:

If the button is clicked in time, the viewer avoids receiving an alert about
signing the guest book.

Ask the Expert
Q: There are way too many properties and methods here! How

am I ever going to remember all of these?

A: As you begin using them with more frequency, they will be easier
to remember. I remember the ones I use more often better than
those I don’t use much. If you do a lot of coding, it is good to keep
a reference handy, such as this book, in case you need to check the
details of a property or method now and then. I keep a bunch of
books and bookmarks to reference Web sites on hand.

Q: Will I be making window remote controls any time soon?

A: A new window that changes properties (like the location property)
in the main window is a “remote control.” Though remote controls
are not discussed in this book, there are scripts for these at free
script sites on the Web. For now, you want to be sure to master the
coding that you need to create and manipulate a regular new
window. Note that working between two windows could cause
security concerns.

Q: Will I be using the timed methods like setTimeout() and
setInterval() often?

A: You will have a use for them when you need to build time-
dependent scripts such as clocks, slide shows, or Dynamic HTML
(DHTML) animations.

Try This 14-2 Use the setTimeout() and confirm()
Methods

pr14_2.html

prjs14_2.js

This project enables you to practice using some of the window methods. You
will have the browser wait a certain number of seconds and then ask the
viewer to confirm whether to stay at the page or move on to an Internet
search site.

Step by Step
1. Create an HTML page, with the following code in the body section, and

save it as pr14_2.html:

2. Create a JavaScript file and save it as prjs14_2.js. Use it for steps 3–4.

3. After 20 seconds, have a confirm box display to the viewer asking them
if they want to continue using this Web page. If so, do nothing. If not,
send them to the URL http://www.google.com to search for more news.

4. When complete, the JavaScript file should have the following code:

5. Save the JavaScript file and open the HTML file in a Web browser.
After 20 seconds, you should see a confirm box.

Try This Summary
In this project, you were able to use your knowledge of the properties and
methods of the window object to create a timed, interactive script. This
allowed you to give the viewer a choice as to whether to stay at the current
Web page or move on to an Internet search site.

The Main Window and New Windows

http://www.google.com

The main browser window is often protected from being moved, resized,
closed, or otherwise manipulated for security reasons (for example, to keep a
new window from being opened to a bad site while closing the main window,
or to keep microscopic pop-up windows from being opened). Thus, many of
the methods mentioned in the previous section, such as resizeTo() or close(),
don’t do anything when called in the main window or display a warning to
the viewer.

In a number of cases, browsers will allow you more control of a pop-up
window. The following sections will discuss how to open new windows and
how to customize their look and placement on the screen.

CAUTION

Even when using new windows, some browsers will not allow some
methods such as resizeTo() or moveTo() to be used. In addition,
browsers may simply open the new window content in a new tab or in
the main browser window rather than a pop-up window. It is not
recommended that pop-up windows be used on Web sites (though
they can have uses for local applications or in other JavaScript
environments).

The Tale of Pop-up Windows
At one time, pop-up windows were used quite often on Web sites. While
there were legitimate advertisements that used pop-up windows, there were
also a number of deceptive advertisements that were designed to “trick” the
user into clicking them by appearing to be an alert or some other type of
system message. Also, the fact that numerous new windows could be opened,
could be hidden from the user’s view, or could be otherwise manipulated
caused many security concerns.

These concerns were addressed in a number of ways:

• Pop-up windows can only be opened in modern browsers when the user
performs a click or a key press.

• Pop-up windows may only be opened in the main window or as a tab in
the main browser window in some browsers.

• In most cases, the status bar and/or location bar will be displayed

regardless of the information provided to design the pop-up window.

• A pop-up window may not be permitted to be resized or moved in some
browsers.

• Certain code may be effective working locally, but will not work when the
page is online.

For these reasons, it is typically not a good idea to use pop-up windows on
Web sites. With that said, the following information is provided should you
need to work with new windows in a local environment or a more secure
platform.

NOTE

Instead of using new windows, you may wish to use a dialog that
overlays the current window, but is not a pop-up window. For more
information on this, see jqueryui.com/dialog.

Opening New Windows
The open() method enables you to open a new window with JavaScript. This
method is typically used with three arguments, as shown in the following
example:

window.open("URL","name","attribute1=value,attribute2=value");

The first argument, “URL”, is replaced with the URL of the HTML
document that is to be opened in the new window. The “name” parameter is
replaced with the name you wish to give to the window. The third parameter
enables you to add attributes for the new window. These attributes are set by
using “yes”, “no”, or a numeric value on the right side of the equal sign.
Notice that each time an attribute is set with a value, there is a comma before
the next one and no spaces in between.

If you want to open a window with the features of the current window,
you could do so by leaving off the third argument with the attributes. The
following example would open a new window with a local URL of
newpage.html and a name of my_window; it will have the same features as
the window that opened it:

http://jqueryui.com/dialog

window.open("newpage.html","my_window");

Attributes
If you want to include window features, you need to learn some of the
attributes that you can use with the windows. Table 14-3 lists attributes that
you can use as part of the third argument in the open() method.

Table 14-3 Standard Attributes for a New Window

Any “yes or no” attribute not defined will default to “no” if it is not
overridden by the browser. For example, the location, menubar, and status
attributes will likely default to “yes” in most modern browsers and will be
unchangeable. Any numeric values not defined will use the settings of the
browser being used. These also may be unchangeable or may only allow
certain values. For instance, the new window may be required to have left
and top coordinates that place it in a viewable area on the screen, and the
width and height may have minimum values that you cannot go under in
order to keep a window from being too small to be noticed by the user.

To open a basic new window with a width of 400 pixels and a height of

300 pixels, you can use the following code:

window.open("newpage.html","my_window","width=400,height=300");

Aside from the width and height, this window will open with the default
values for the other attributes, which will depend on the browser being used
by the viewer.

To set the other attributes, you can assign them a value of “yes” or “no”
depending on whether or not you want each feature. You may also use 1 for
yes and 0 for no if you prefer, as they will have the same effect. So, if you
want to have a 300×200 pixel window with a menu bar added (this adds the
Forward, Back, Stop, and other similar buttons), you could use the following
code:

window.open("newpage.html","cool","width=300,height=200,menubar=y

es");

This gives you a new window with the contents of newpage.html, a name of
“cool,” dimensions of 300×200 pixels, and a menu bar.

You can add as many of the attributes as you want inside the quote marks
of the third parameter by separating each one with a comma.

NOTE

Due to space limitations, a new window command may occasionally
be on more than one line in the code in this book. Be sure that when
you use the code, you put everything from window.open to the ending
semicolon (;) on one line to avoid JavaScript errors.

The following example opens a window with most of the features
mentioned in Table 14-3 (again, this takes up more than one line here, but
when you enter it in your text editor, the code should go on a single line):

If you want a viewable example, you need to make a page named
newpage.html and create the code for the main page to include a
window.open() command, as described next.

First, create the code for newpage.html (this is just a short page that has
some text in it):

Now, create the main page (save as mainpage.html):

Finally, create the JavaScript code (save as openwin.js):

When the link is clicked, it launches the new window with the contents of
your newpage.html document. This window is 400×300 pixels and has a
status bar at the bottom. Note that the event.preventDefault() method is added
so that the newpage.html file will not also be opened in the main browser
window when the link is clicked (if the viewer does not have JavaScript
enabled, the link will work normally and open the newpage.html file in the
same window).

Figure 14-5 shows the result of opening the main page in the browser and
clicking the link to open the new window.

Figure 14-5 A new window is opened when a link is clicked.

Closing New Windows
The close() method is used to close a window; however, unless your script
has certain security rights, this method can only be used to close a window
that you have opened using JavaScript. It cannot close the main window
(though some browsers will offer the user the option to do so via a
confirmation dialog).

To use the close() method, you could modify your newpage.html code to
provide a button at the end of the text that enables the viewer to close the
window by clicking it. So, you could change the code of newpage.html to
look like the following code:

When the button is clicked now, the window.close() method is invoked and
closes the window just like the standard Close button at the top right of a
window. If you want to try it out, use the main page you used in the previous
section and click the button to open the new window. It should offer the new
button with the option to close the window, and it should close the window if
you click the button.

If you prefer to close the new window from the main window, you can do
so by assigning the open() method to a variable, which will provide a
reference to the new window. You can then add another link that provides the
option to close the window. You can modify mainpage.html to use the
following code:

Next, you will need to alter the openwin.js file to use the following code:

This allows the window to be both opened and closed via the main window.

Moving, Resizing, and Scrolling New Windows
The moveBy(), moveTo(), resizeBy(), resizeTo(), scrollBy(), and scrollTo()
methods allow you to alter the window position, window size, or the
beginning viewing position within the window. As with the close() method,
browsers typically do not allow these methods to be used on the main
window. However, they can often be used on windows created via
JavaScript.

The moveBy() and moveTo() Methods
The moveBy() method can be used to move a new window to a new location
on the screen. This moves a window by the number of pixels given as
arguments in the method call. The following is the syntax for using this
method:

moveBy(x-pixels, y-pixels);

You replace x-pixels with the number of pixels you want to move the window
from left to right. So, if you want the window to move to the right, you enter
a positive number. If you want it to move to the left, you enter a negative
number.

You replace y-pixels with the number of pixels you want to move the
window from top to bottom, with positive numbers pushing the window
down and negative numbers pulling the window up.

For example, if you want to give the viewer the option to move the
window by the number of pixels of your choice, you could again alter your
code to handle this. For mainpage.html, use the following code:

Next, use the following code for openwin.js:

This moves the window 50 pixels to the right and 50 pixels down when the
button is clicked. Notice that the focus() method is called after the move.
When you click the link in the main window to move the new window, the
new window goes out of focus (a blur event). The move still works, but you
may not be able to see this if the main window is covering it (since it regains
focus when the link is clicked). Placing the focus back on the new window
will allow it to be seen in front of any other open windows. Likewise, the
blur() method can be used to take a window out of focus, but browsers may
disable this as a security feature to ensure that windows are not hidden via
scripting. Figure 14-6 shows the initial position of the new window when it is
opened from a button on the main page.

Figure 14-6 The new window in its initial position when it is opened

Figure 14-7 shows the window after the “Alter New Page” link is clicked.
Notice that it has moved to the right and down by 50 pixels in each direction.

Figure 14-7 The window in its new position after being moved

The way this works, the viewer could continue clicking the link and
moving the window by another 50 pixels in both directions. The window just
continues to move by the number of pixels it has been set to move by in the
script. Most modern browsers will stop moving the window when the move
would take part of the window out of the viewable area of the screen.

The moveTo() method is used to move a window to a specific destination
on the screen based on the arguments given in the method call. The following
is the general syntax for using this method:

window.moveTo(x-value, y-value);

Here, you replace x-value with the number of pixels from the left of the
screen where you want the window to be moved. For example, if you input
300, the window is moved 300 pixels from the left of the screen. You then
replace y-value with the number of pixels from the top of the screen that you
want the window to be moved.

As an example, alter your openwin.js code to use moveTo() instead of
moveBy(), as in the following code:

This time the window will be moved to the coordinates (50,50) on the screen
when the link is clicked.

To see that this works differently than the moveBy() method, try clicking
the link again. Rather than making another move, it stays in the same place
because it has already made it to its destination. If you manually move the
new window, however, clicking the link again will move it back to its
moveTo() coordinates.

Most modern browsers will not allow any part of the window to be moved
off the screen. For example, a window moved to (–10, –10) will likely be
moved to (0, 0) by the browser instead.

The resizeBy() and resizeTo() Methods
The resizeBy() method is used to resize a window by the number of pixels
given in the arguments sent in the method call. To make the window larger,
use positive numbers. To make it smaller, use negative numbers. For
example, you could alter your openwin.js code to make the new window
smaller when clicked, as in the following code:

This code will make the window smaller by 100 pixels in width and height.
Figure 14-8 shows how the new window looks when it is first opened, and
Figure 14-9 shows how the new window looks after it has been resized.

Figure 14-8 The new window when it is originally opened

Figure 14-9 The new window after it is resized: it shrinks by 100 pixels in
height and width.

As with moveTo(), clicking the link again will continue to resize it. Most
modern browsers will stop resizing the window once it gets to a minimum
allowable size for security reasons, and will stop once the window size
reaches the maximum viewable area on the screen.

The resizeTo() method is used to resize a window to a specific dimension
in pixels based on the arguments sent in the method call. As an example, you
can again alter your openwin.js file. Use the following code:

Clicking the “Alter New Page” link in the main window will now resize the
new window to 600 × 600 pixels. If the new dimensions will cause the
window size to be greater than the viewable area of the screen, then most
modern browsers will limit the size of the window to that viewable area
rather than using the provided dimensions for security reasons.

The scrollBy() and ScrollTo() Methods
The scrollBy() method is used to scroll a window by the number of pixels
given in the arguments sent in the method call. The scrollTo() method is used
to scroll a window to a specific destination. The syntax and usage are the
same as the other methods mentioned here, and will scroll the new window
based on the numbers provided as arguments.

Working with Images
JavaScript uses the image object to preload images, create rollover effects,
and even create slide shows or animations. The image object’s properties will
help when you want to create such scripts. Table 14-4 lists and describes the
image object’s properties.

Table 14-4 Properties of the Image Object

Rollovers
Image rollovers (also known as hover buttons, image flips, and other similar
names) can add some zest to your navigational images. With the recent
advances in browsers and CSS, rollovers are commonly implemented via
CSS rather than JavaScript now. You can see an example of this at
https://www.kirupa.com/css/css_rollovers.htm. This is a common way to
make rollovers more accessible.

https://www.kirupa.com/css/css_rollovers.htm

A Simple JavaScript Rollover
A simple rollover just changes one image to another when the mouse moves
over the initial image. First, you create two images and make the second
image different in some way. For example, examine the two images shown
here:

NOTE

For each JavaScript rollover effect you create, you need two separate
images.

Once you have two images, you can begin working on the code for the
image rollover. You can code your initial image into your HTML document,
giving it an id:

In your JavaScript code, you will just need to get the image element by its
id and assign it a new value for the src property on a mouseover event. Then
you will simply change it back on a mouseout event. The following is the
JavaScript code:

The closest you can get to seeing the results here is to see a before and after
set of images. Figure 14-10 shows the initial image, while Figure 14-11
shows the result when the mouse is moved over the image.

Figure 14-10 The initial image

Figure 14-11 The new image appears when the mouseover event occurs.

JavaScript and Frames
The decision of whether or not to use frames on your Web site is up to you.
However, it should be noted that frames do have accessibility/usability
issues. In fact, <frameset> and <frame> are no longer valid in HTML5. The
<iframe> element (an inline frame) is still available.

Purpose of Frames
Frames divide a window into two or more separate areas (a frame set), each

containing different content. This differs from tables in that the divisions in a
frame set each contain a separate Hypertext Markup Language (HTML)
document, and you can change one of the sections without affecting the other
sections.

NOTE

Each frame shown on a Web page is actually a separate HTML
document.

For example, Figure 14-12 shows a Web page with two frames. Each
frame is actually a separate HTML document. The HTML document that
creates the frames uses a set of <frameset> and </frameset> tags to create a
frame set.

Figure 14-12 A frame set containing two frames

Accessing Frames
How do you access a frame in JavaScript? You can either use the frames
array or name the frame and use the frame name instead. To begin, take a
look at how to access a frame using the frames array.

The frames Array
You use the frames array to access frames based on their order in the source
code. You will access one frame from within another frame, so you must be
able to find the frame you want to access.

Recall that the frames array comes from the window object. Frames carry
most of the same properties and methods as regular windows, but you access
them differently. For instance, take a look at this code, which creates a frame
set with two frames. Name it frameset1.html.

If you’re coding some script inside the first frame (frame1.html) and want
to know the value of the location property in the second frame (frame2.html)
to display it for the viewer, you must figure out how to access the second
frame. To access the other frame, you need to find a way to get back to the
main window and reference the frame. Recall that the window object’s top
property allows you to access the topmost window in a frame set (the main
window).

You can now use the frames array because you have access to that main
window, which contains the code for the frame set. The frames array contains
an item for each frame tag in the code. The count starts at 0, so to access the
first frame in a frame set, you could use the following syntax:

top.frames[0]

Using the top property allows you to access the main window and the
frameset code. Then, frames[0] is used to access the first frame in the source
code. So, if you’re coding within the second frame and want to access the
first frame, you would use this syntax:

top.frames[0]

Now, you can make the code in the second frame access the needed
information in the first frame for the viewer. The following code is for the
first frame (frame1.html):

To complete this script, you could use the following code for frame2.html:

Now you can see the result by opening the main window (frameset1.html).
The right frame should tell you the location of the document used for the left
frame. Figure 14-13 shows how this may appear in a browser. (Your location
value will probably be different from the filename.)

Figure 14-13 The second frame shows information taken from the first
frame.

Using a Frame Name
Another way to access one frame from another is to use the name of the
frame (much like the way you used form names in the previous chapter). For
example, this code gives each frame a name by adding the name attribute to
the frame tag (call this frameset3.html):

You can now access one of the frames from the other using the frame
name rather than the frames array. Thus, if you want to access the second
frame (right_side) from the first one, you could use this syntax:

top.right_side

In the same way, you could access the first frame from within the second
frame with this syntax:

top.left_side

Now you can make each frame tell the viewer the location of the other
frame by coding the frames with a short document.write() statement in each.
The document for the first frame (frame1.html) could be coded like this:

After that, frame2.html could be coded as follows:

Each frame now gives out information about the other one.

NOTE

Frames and iframes have potential security risks such as cross-frame
scripting when they are used. For more on these risks, see
https://www.owasp.org/index.php/Cross_Frame_Scripting.

Breaking Out of Frames
Sometimes another Web site will code links that don’t break the user out of
the site’s frames before arriving at your site. Your site is then left in a smaller
portion of the viewer’s window with the navigation from the other site still
showing in other frames. When this happens, you may want to offer your
viewers a way to break out of the other site’s frames.

You can place a link on your page for viewers to click to break out of

https://www.owasp.org/index.php/Cross_Frame_Scripting

frames. You need to add a special target in the <a> tag, as shown here:

Break Out of

Frames

The target of _top tells the browser to use the full window when opening the
URL in the link, rather than opening the link inside a frame. You just need to
replace the URL in the tag with your own.

Using iFrames
An iframe is a single frame embedded in the main window of your document.
You can have multiple iframes if desired. One thing you can do is to embed
another Web page into your current page. For example, if you wanted to
embed a discussion site like stackoverflow into your main document, you
could do the following:

<iframe src="https://stackoverflow.com/" frameborder="2">

</iframe>

Of course, if you want it to look seamless, you can set frameborder to 0. This
might be the case if you choose to use an iframe to embed audio or video
files. Some more examples of using iframes can be found at
https://ilovecoding.org/lessons/embeds-video-audio-and-iframe-elements.

 Chapter 14 Self Test

1. A(n) __________ object is created for each browser window.

2. The closed property is used to check whether or not a window has been
closed.

A. True
B. False

3. The __________ property returns the number of frames within a
window.

4. The location property can cause instant redirection of the browser to a

http://yoursite.com
https://stackoverflow.com/
https://ilovecoding.org/lessons/embeds-video-audio-and-iframe-elements

new page.

A. True
B. False

5. The __________ property holds the name of the current window and
also allows you to give the window a name.

6. The calls to properties and methods of the window object can often be
shortened because

A. The window object is the global object for JavaScript in Web
browsers.

B. The window properties and methods are assumed to be part of the
navigator object.

C. There really is no window object.
D. The browser assumes the window object is part of the document

object.

7. The __________ property is another way of saying “the current
window” in JavaScript.

8. Why would this code not work:
onmouseover="window.status='Page 2'; return true;"

A. It should work without a problem.
B. The quote marks are not set correctly.
C. Newer browsers do not allow the window status to be changed by

default, so the user would need to change security settings in order
for it to work.

D. A change in the status property in a mouseover event must return
false afterward.

9. What is the difference between the parent and top properties?

A. The parent property goes to the top of the current frame set, while
the top property goes to the top window of all frame sets on the
page.

B. The top property goes to the top of the current frame set, while the
parent property goes to the top window of all frame sets on the

page.
C. The parent property goes to the top of the current frame set, while

the top property goes to the top of the current frame.
D. The parent property goes to the top of the outermost frame set,

while the top property goes to the top window of all frame sets on
the page.

10. The __________ method pops up a message to the viewer, and the
viewer has to click an OK button to continue.

11. What value is returned by the confirm() method if the viewer clicks the
OK button?

A. true
B. false
C. “OK”
D. 25

12. The __________ method enables the viewer to print the current window.

13. The prompt() method is used to __________ the viewer to enter
information.

14. When setting the toolbar attribute as part of the third parameter in the
open() method, what values may the attribute have?

A. yes and no only
B. 1 and 0 only
C. yes, no, true, and untrue
D. yes, no, 1, and 0

15. What is the difference between the setInterval() method and the
setTimeout() method?

A. The setTimeout() method is used when the viewer needs to take a
break from reading, while setInterval() is used when the viewer
needs no breaks.

B. The setInterval() method is used to repeat a function at a set time
interval, while setTimeout() executes a function only once after a
set time delay.

C. The setInterval() method flashes an advertisement across the
screen at a set interval by default, while setTimeout() is ad-free.

D. They both perform the same function.

W

Chapter 15
JavaScript Forms and Data

Key Skills & Concepts
• Accessing Forms

• Using the Properties and Methods of the Form Object

• Ensuring the Accessibility of Forms

• Validating Forms

• HTML5 and Forms

• AJAX and JSON

hen you use JavaScript to access forms, you can create new scripts
for your Web pages. This chapter begins by explaining how to access
a form with JavaScript. Then you’ll learn about the various

properties and methods to use with forms and form elements. You’ll also
learn about forms and accessibility, how to validate form elements, and how
to use <select></select> elements as navigational tools.

Accessing Forms
Each time you add a set of <form> and </form> tags to an HTML document,
a form object is created. To access one of the forms using JavaScript, you can
use any one of the following options:

• Use the forms array of the document object

• Name the form in the opening form tag and use that name to access the
form

• Give the form an id in the opening form tag and access it using the
document.getElementById() method

Using the forms Array
The forms array allows you to access a form using an index in the array. Each
set of <form> and </form> tags on the page will create an additional item in
the forms array, in the order in which they appear in the document. Thus, you
can reference the first form in a document like this:

document.forms[0]

As you will recall, arrays begin counting at 0, so the previous example will
access the first form in the document. If you want to access the second form,
you could use the following:

document.forms[1]

This will work for the rest of the forms on the page in the same way. Just
remember to begin counting at 0 rather than 1 to access the correct form.

Accessing the form doesn’t do anything on its own. The form that you
access is an object. To use it, you need a property or method of the object.
The properties and methods of the form object are listed in a later section,
“Using the Properties and Methods of the Form Object,” but for now, take a
look at the length property to see what it does.

A Property Value
The examples in this section use the form object’s length property. This
property allows you to find out how many elements exist (such as input
boxes, select boxes, radio buttons, and others) in an HTML form. For
example, take a look at this code:

The code creates a short form that contains three elements: two text boxes
and the submit button. Because it’s the only form on the page, it will be the
first form, allowing you to access it using document.forms[0]. To use the
length property, add it to the end like this:

document.forms[0].length

Using the preceding code, you can create a short script to tell the viewer how
many elements are in the form. The code that follows will write the
information on the page after the form:

This code informs the viewer that the form has three elements. Figure 15-1
shows this script’s results when using the example HTML code shown
previously.

Figure 15-1 The number of elements in the form is displayed to the viewer.

Covering Two Length Properties

If you want to try to show the number of elements in the forms on a page
when there is more than one form, you can use a more complex script that
prints a message for each form on the page. Recall that because there is a
forms array, you can find its length.

The length of the forms array is the number of forms on the page
(similarly, the length property of a particular form is the number of elements
in the form). To find the number of forms on the page rather than the length
of a form, you can use the following code:

document.forms.length

This syntax finds the number of forms on the page. Thus, you need to
remember these points:

• document.forms.length finds the number of forms on the page.

• document.forms[x].length finds the number of elements in a specific form
on the page, where x is the index of the form to be accessed.

This syntax might look a bit confusing, but just remember that one length
property is for the forms in general, while the other length property is used on
a specific form.

CAUTION

Remember the difference between document.forms.length and
document.forms[x].length. The former finds the number of forms on
the page, while the latter finds the number of elements in a specific
form (by replacing x with a number).

The following script uses both of the length properties and a loop to cycle
through each form. The code displays the number of elements in each form
on the page. First, the HTML code (save as lengths.html):

Next, the JavaScript code (save as lengths.js):

The code creates two forms in the HTML document. The script then opens
a loop beginning at 0 (where arrays begin counting) and ending before it gets
to the value of document.forms.length, which is the number of forms on the
page. Because there are two forms (which will make 2 the value of
document.forms.length), the count runs from 0 to 1 and then stops. The count
allows you to access the forms array at indexes 0 and 1, which will turn out to
be Form 1 and Form 2 in the HTML code.

The formnum variable has the value of the position number in the array
plus one, which is the number of the form as seen in the HTML code. The

script then writes the number of elements in each form on the page using the
document.write() statements.

The forms array is used with the value of the count variable as the index
number, which finds the number of elements in the specified form each time
through the loop. Figure 15-2 shows the results of this code when run in a
browser.

Figure 15-2 The number of elements in each form is displayed.

Using an ID
The third way to access a form is to use an id attribute and to then use
document.getElementById(). This is often the clearest way to access a form
and its elements, because you can access each element by using its individual
id, whereas the previous two access methods require you to know which
array index the form is at or the form name and the element’s name.

NOTE

If you need a refresher on accessing elements using
getElementById(), you can refer to Chapter 9.

If you wanted to write the script from the previous section using the id
method, you could use the following HTML code:

Next, the JavaScript code:

Since you are familiar with using document.getElementById() from previous
chapters, this should be a straightforward method for you.

The method you use to access a form and its elements will depend on the
types of scripts you are writing. If you are using multiple forms on a page,
then the forms array can be a handy way to cycle through each form. On the
other hand, trying to validate in XHTML 1.0 Strict will require you to use an
id to name each form element, so using the id method would be more
appropriate in that case. You will see more on how to access elements in a
form as you move through this chapter.

Using the Properties and Methods of the Form
Object
The JavaScript form object will help you when you need to access certain
elements or attributes of the form in a script. The form object has only a few
properties and methods. The properties are described first.

Properties
The form object’s properties provide information you might need when
working with forms in your scripts. Table 15-1 lists the properties of the form
object and their values.

Table 15-1 Properties of the Form Object

Most of these properties just hold values corresponding to the various
attributes in an HTML form tag. A few of them have different types of
values, though, as explained next.

The action Property
This property allows you to access the value of the action=“url” attribute in
the opening form tag. This attribute is used to send the form to a server-side
script for processing (such as a Node.js or PHP script). The following

example shows how to access the property with a named form. First, the
HTML code:

Next, the JavaScript code:

document.write("The form goes to " + document.info_form.action);

This script writes the URL on the page given in the action attribute. Figure
15-3 shows the result of this script when run in a browser.

Figure 15-3 The value of the action attribute in the form is printed on the
page.

The elements Property (Array)
The elements property is an array that allows you to access each element
within a specific form in the same order it appears in the code, starting from
0. It works much like the forms array but has an entry for each element in a
given form.

To use the elements array to access an element in a form, use the index
number for the element you want to access. For instance, the following form
has two elements:

To access the first element (the text box), you can use the syntax shown here:

document.info_form.elements[0]

Alternatively, if you want to use the forms array (assume this is the first
form on the page), you could use this syntax:

document.forms[0].elements[0]

Yet another option to access the text box is to name it (as with the form)
and access it using its name. You can do this with each element, as well as
the form itself; you can choose which method is best for accessing a form and
its elements in each situation.

The following code gives the form and the text box a name, and allows
you to access them using those names:

In this case, you could access the text box using the form name and the text
box name, as in the syntax shown here:

document.info_form.yourname

Also, you can of course use the id method:

Then, you can access the input element using document.getElementById():

document.getElementByID("yourname");

The encoding and enctype Properties
These properties both contain the value of the enctype attribute of a form tag,
which is the type of encoding used for the data that is sent to the server from
the form. The default is “application/x-www-form-urlencoded.”

The length Property
The length property holds the number of elements in a given form on a page.
This chapter has already covered this property pretty extensively, so there’s
no need to discuss it again here.

The method Property
This property holds the value contained in the method attribute of a form tag.
Thus, if you’re sending the form to the server to be processed, you might use
something similar to the following code:

The value of the method property for this form would be post because it’s
within the method attribute of the form.

The name Property
This property holds the value of the form’s name, which is given to it in the
name attribute of the form tag. You might have some code like this:

Here, the value of the name property is cool_form, because it’s the value
inside the name attribute of the form.

The noValidate Property
This property contains the Boolean value of the novalidate attribute in a form
tag (added in HTML5). If true, the form is not supposed to be validated when

submitted. For more on HTML5 validation, see “HTML5 and Forms” later in
this chapter.

The target Property
This property holds the value given in the target attribute in a form tag. For
instance, you might have the following code:

Here, the value of the target property is _top, because it’s the value inside the
target attribute of the form.

Methods
Now take a look at the form object’s methods. Selected methods will be
discussed following Table 15-2.

Table 15-2 The Methods of the Form Object

The checkValidity() Method
In HTML5, you can have the browser check whether a field contains data or
validates against a pattern, which does not require JavaScript. You may wish
to perform further actions; however, depending on whether or not all of the
fields that require validation pass their respective tests. The checkValidity()
function returns true if all elements that have validation requirements pass, or
returns false if any of these elements fail validation. More information on
how HTML5 affects forms can be found later in this chapter in the “HTML5
and Forms” section.

The reset() Method
This method enables you to reset a form from your script, which will clear
any data entered by the user. For example, you could use the following code
to reset a form once you have completed processing previously entered data:

Here, the form is reset after performing a simple operation (an alert) with the
data input into a text field.

The submit() Method
This method allows you to submit a form without the viewer clicking the
submit button. This can be useful if you need to provide an alternate way
(aside from the submit input element) to submit the form. The following code
shows an example of this. First, the HTML code:

Next, the JavaScript code:

Ensuring the Accessibility of Forms
Ensuring that your forms are accessible to viewers can be somewhat
challenging because your preferred layout might not be interpreted properly
by an assistive technology (such as Jaws or Voice Over). There are several
things you can do to help ensure that most of your viewers can access and use
your forms. You can place elements and their labels in the expected order,
use <label></label> tags, or use <fieldset></fieldset> tags, and be sure not to
assume the user has client-side scripting (such as JavaScript) enabled.

Using Proper Element and Label Order
In your HTML code, the order of your label text and form elements can help
assistive technology in reading the form. For instance, consider the following
input fields:

Here, an assistive technology looks for label text to appear before the form
element. Since the first input element does not have any label text before it,
the viewer is simply prompted for input, with no indication of what
information to enter. Afterward, the label text “Name” is associated with the
zip_code text box, which can cause the viewer to enter unexpected input.

To correct this, you can simply move the label text and place it before the
form element, as in the following code:

Now, the assistive technology likely will pick up the form label and allow the
user to enter the expected information. Using both the name and id attributes
also helps, because various assistive technologies will pick these up as well.

This works for text boxes, text areas, and select boxes as well. However,
when dealing with check boxes and radio buttons, many assistive
technologies expect the element first, followed by the descriptive label. Thus,
these should be switched around when being used.

When dealing with buttons (such as submit, reset, or created buttons), be
sure to use the value attribute to describe what the button does, as that is what

assistive technologies will likely expect.

Using <label></label> Tags
Using label tags helps you to further specify which label text belongs with
which form element. Here is an example:

Here, since the label is in its expected position, you can simply apply the
label tag. If you need to be more specific and point directly to the id of a form
element, you can add the for attribute, as in the following code:

Here, you assign the for attribute of the opening label tag the value of the id
attribute for the form element that will use the label text contained within the
<label> and </label> tags. In the preceding example, the for attribute contains
yourname, which links the text to the element with the id of yourname in the
HTML code.

Using <fieldset></fieldset> Tags
Using a fieldset can be helpful when dealing with radio buttons and check
boxes in order to group them together into a logical set. Using a legend tag to
label the options to choose from allows the user to know what is expected to
be selected. The following code uses a fieldset to group together a group of
radio buttons used to select a type of fruit:

Here, you group all of the radio buttons within the <fieldset> and </fieldset>
tags and use a legend tag after the opening fieldset tag to give the group a
label. Then, each element is labeled normally within the fieldset (also using
the label tags).

Not Assuming Client-Side Scripting
When coding a form initially, it’s best not to assume JavaScript or another
client-side technology will be available. If JavaScript is required to make the
form usable, then a number of users will not be able to use it because they
will have JavaScript disabled for any number of reasons, such as security.

The best practice is to allow the form to be sent to the server side (which
will handle the form and provide the most important validation routines) even
if JavaScript is unavailable. Code like the following wouldn’t be usable for
those without JavaScript:

<input type="button" onclick="this.form.submit();" value="Submit

Form">

In this case, a JavaScript event handler and method are required to submit the
form. It would be better to use the traditional submit input element to create a
submit button.

If you are using some JavaScript validation, you could use code such as
the following:

This allows you to run JavaScript if it is available (by creating an event
listener for the submit event). Otherwise, the JavaScript submit event will be
ignored and the form will be submitted to the server-side script for validation
and handling. If JavaScript is available, the client-side validation routine can
save a trip to the server side. If not, the server-side script will need to do the
work, but the user will still be able to use the form as expected.

Also, checking the form layout with CSS turned off is a good idea, as you
will want this to be in a usable state as well. Screen readers will follow this
layout, so the order of your elements and labels will need to flow in a way

that is still accessible and usable for those with screen readers.

Validation
Validating JavaScript forms is extremely useful. For example, you can
validate input before it is submitted, to help reduce the number of forms with
incomplete or inaccurate information. Validation of form data prior to
submission to, say, a Common Gateway Interface (CGI) script, PHP script, or
a Java servlet can save time and reduce load on the server.

Simple Validation
In a previous chapter (Try This 13-1), you performed some simple validation
on form input by using the submit event to execute a function when the form
is submitted and testing the input for particular characters (the @ and . in an
e-mail address). You also learned about regular expressions, which can also
be helpful when validating form input.

For an example, suppose you had this HTML code for a form:

If you use addEventListener() to handle the submit event, you can validate
the entered name and allow the default action to occur (submitting the form
content to the server), or you can prevent the default action and send an error
message if the name does not validate according to your specified rules. Here
is an example of this:

As you can see, this uses a regular expression (see Chapter 13) to limit the
type and number of characters that are allowed in the name field. It uses the
letter ranges A–Z and a–z to allow all letters, ’ to allow apostrophes (for
names such as O’Neil), \- to allow hyphens (the hyphen is escaped to avoid
being confused with a new range), and a blank space to allow for spaces. It
then uses {2,50} to ensure that there are at least two characters in the name
and no more than 50 characters. The ^ and $ are used to match the string from
beginning to end, rather than stopping after the first valid character. If the
name does not validate, the form is not submitted (event.preventDefault()
stops the submission) and the user is sent an alert. Otherwise, the form is
submitted normally to the server for server-side processing.

Techniques
For the most part, validation can be as simple or as complex as you need it to
be for your purposes. All you need to do is create your own custom functions
to validate the form fields of your choice based on the information needed.

For instance, you could check whether a field contains five digits for a
typical Zip code by using a regular expression. If it does not, then you can
send an alert telling the viewer the Zip code is invalid and asking for it to be
reentered. The following code shows a way to do this. First, the HTML code:

Next, the JavaScript code:

The code uses the regular expression to check for five digits. If anything
other than five digits is entered, then the function will return false. You can,
of course, expand this to allow for the extra four digits that are sometimes
used to designate more precisely a specific area within a Zip code. To do so,
add another input field and require that it have four digits if a value is entered
in that second field.

You can make the validation as strict or as loose as you need it in your
JavaScript. Keep in mind, though, that at the application layer (your server-
side script or program), you will need to take extra care with your validation
routines to ensure that bad and/or malicious data cannot be submitted to your
application.

TIP

One way to find validation scripts is to try checking some JavaScript
sites on the Web. A number of them have special functions that are
made to validate different types of data. This can save you some work
if you can find a function to suit your purposes.

Check Boxes and Radio Buttons
When using check boxes and radio buttons, you may simply want to know if
they have been “checked” by the user. For example, you could have the
following form:

In this case, you want to be sure the user checks the “agree” box before the
form can be submitted for the user to sign up. To check for this in JavaScript,
you can use the checked property for the checkbox element, which returns
true if the element is checked and false if it is not. The following code shows
an example of this:

Here, if the “agree” checkbox is not checked, the form will not be submitted.
The user will receive the alert saying that the “Agree to Terms” checkbox
must be checked.

If you are working with a set of radio buttons and just want to ensure that
one of the options has been checked, you can combine the
document.getElementsByName() method (see Chapter 9) and the checked
property to determine if this is the case. For example, suppose you had the
following form:

The name attribute for each radio button of the same category will be the
same (here it is “food”) so that only one option can be selected. In order to
ensure that one of the options was indeed selected, you could use the
following code:

One more thing to mention here is that validation should be done on both the
client side and the server side. While client-side validation is helpful and can
save strain on your server, it should not replace server-side validation. Since
client-side validation can be bypassed fairly easily, it can be a very big
security risk if no server-side validation is in place! Since the data entered by
the user could be malicious (or could even unintentionally break something),
it is best to always validate data entered by the user on the server side to help
avoid security issues like SQL injection and cross-site scripting. You will see
more about these issues in Chapter 16.

Ask the Expert
Q: Is validation necessary? After all, couldn’t it be handled by the

server-side application?

A: Yes, but using client-side validation can help you save strain on
your server, since those who have JavaScript enabled won’t need to
access the server-side application each time invalid information is
entered. It can also be helpful to the users, who will not need to
reload the entire page to correct any invalid information.

Q: What types of input can I validate?

A: For the most part, you can validate anything you like in the
manner you see fit. You can validate dates, names, times,
addresses, e-mail addresses, phone numbers, or anything else you
might need.

Q: Can I validate the selections in a select box or the text in a text
area, or maybe some of the other input types?

A: In some of these cases, you will already have your own values
built into the elements. However, if you can, you should still
validate those values against other information to be sure the
information you receive matches your needs. You just need to
adjust your function to perform the needed tasks based on the
different types of input devices (text areas, radio buttons, and so
on).

Q: I don’t use server-side scripts, but I use JavaScript for fun and
want to validate the information. Do I really need to add a
server-side script?

A: The need for a server-side script depends on your purposes. If you
have a form that needs to have information saved, sent by e-mail,
or sent to a database, then you need a server-side application.

Here, each of the radio button elements that has “food” as the value of its
name attribute is placed into food_array. This allows you to use a loop to
cycle through each of the radio buttons to see if it has been checked. A
Boolean variable named selection_made is set to false initially. Within the
loop, if the script finds that a radio button has been checked, it will set
selection_made to true and exit the loop using the break statement. You can
do this since only one radio button can be checked—you won’t need to
continue checking after a positive result is found. If selection_made remains
false after running the loop, then the form submission is canceled and the
user receives the error alert instead.

Try This 15-1 Request a Number

pr14_1.html

prjs14_1.js

In this project, you create a script for basic validation of a phone number
entered by the viewer, such as 222-222-2222.

Step by Step
1. Create an HTML page with a form and a text box with the label text

“Phone Number (XXX-XXX-XXXX):” and an id of “phone”. Make
sure the form has a submit button. Insert the necessary script tags after
the form to call an external JavaScript file named prjs14_1.js. Save the
HTML file as pr14_1.html. When complete, the HTML code should
look like this:

2. Create an external JavaScript file and save it as prjs14_1.js. Use it for
step 3.

3. Use a regular expression to ensure that the data entered into the text box
is in the format XXX-XXX-XXXX. If it is, send an alert saying “Phone
number validated.” Otherwise, send an alert saying “Invalid phone
number entered. Valid format is XXX-XXX-XXXX.” When complete,
the JavaScript code should look like this:

4. Save the JavaScript file and open the HTML file in your browser. See if
it works by typing various values into the text box and submitting the
form.

Try This Summary
In this project, you used your knowledge of JavaScript and forms to create a
script to validate a form. The script validates a time entry by the viewer to see
if it is a valid phone number by a particular set of standards.

HTML5 and Forms
HTML5 provides several new elements, as well as a number of new input
types and attributes. It also provides a way for the browser to perform
validation on fields on the client side, easing the burden on JavaScript in
browsers that support the new features.

New Elements
The new form-related elements in HTML5 are listed in Table 15-3.

Table 15-3 New Form-Related Elements in HTML5

These elements allow you to provide additional information to the viewer
or to perform other helpful tasks. You will look at the meter and progress
elements in this section, but for more details on any of these elements,
including which browsers support each one, see wufoo.com/html5/.

The meter Element
The meter element is used to display a value based on a scale you define. For
example, if you decided to use a scale of 0–100, you would give the min
attribute a value of 0 and the max attribute a value of 100. The actual value to
be displayed on that scale is provided in the value attribute. For example, to
show 55 on a scale of 0–100, you could use the following code:

<meter min="0" max="100" value="55"></meter>

This will display a meter bar in browsers that support it, showing the bar
filled to 55 out of the 100 units available. Figure 15-4 shows how this looks
in a supported version of Google Chrome.

Figure 15-4 A meter bar is displayed.

For browsers that do not support the element, you can provide default text
to be displayed by inserting the text within the opening and closing tags, as in
the following code:

<meter min="0" max="100" value="55">55</meter>

http://wufoo.com/html5/

This will simply display 55 on the page where the meter would have
appeared.

This can be used in combination with JavaScript to display helpful
information to the user, such as how many questions have been correctly
answered in a quiz. For example, suppose you had the following HTML
code:

Here, a form is created for a quick math quiz, allowing the viewer to enter the
answers into text boxes and then submit the answers to be checked. An empty
div with an id of grade will be used to display the answer via JavaScript. The
following code shows how the meter tag could be used as a visual aid in
displaying the number of correct answers:

Here, the test is graded when the form is submitted. A variable named
num_correct is created with an initial value of zero, a variable named
num_questions obtains the number of questions in the quiz by grabbing the
length of the qs array, which contains each text box input element, and a
variable name grade_HTML is assigned an empty string that will be filled in
with the meter tag and other text to display the results.

A loop is created to iterate over the qs array, get each value, and determine
if it is equal to its corresponding correct answer in the ans array. Notice that
the unary + operator is used to attempt to coerce the user’s entry into a
number before comparing it to the correct answer, since each text box will
return a string by default. If the answer is correct, the one is added to the
num_correct variable.

The next lines of code create the HTML string that will eventually be
placed within the grade div. Notice how the max attribute of the meter tag is
assigned the value of the num_questions variable, and how the value attribute
is assigned the value of the num_correct variable. An additional message is
displayed after the meter element to show the user what type of results the
meter is displaying (for example, if two answers were correct, the message
“2/3 Correct”).

In this case, if the user does not get all the answers correct, the entries can
be edited and submitted to be checked again until a 3/3 is obtained. Figure

15-5 shows the result of this script when two of the answers are correct.

Figure 15-5 The meter is displayed to show how many questions were
answered correctly.

The progress Element
The progress element is similar to meter, but displays a percentage rather
than a scalar value. For example, to show 25 percent out of 100 percent on a
progress bar, you could use the following code:

<progress max="100" value="25">25%</progress>

As with meter, you can use the max attribute to set the maximum and the
value attribute to set the percentage value within a range if zero up to the max
value. You could edit the previous meter JavaScript code to use a progress
bar to display a percentage grade for the quiz if desired, using the following
code:

Here, some changes are made to calculate the percentage score that will be
used in the progress element. The progress element is then generated based
on the percentage score. Figure 15-6 shows the result of this script when two
out of three answers are correct.

Figure 15-6 The result is displayed as a percentage using the progress
element.

New Input Types
In addition to new elements, HTML5 adds a number of new input types that
can be used for the input element. Table 15-4 lists the new additions.

Table 15-4 New Input Types in HTML5

You will notice that some of these input types allow for the use of a tool
by the user, such as the color input type. Browsers may implement these in
different ways, but those that support one or more of the new input types
often make it easier for the user to enter each specific type of value and/or
make the value entered easier to validate. An example of using the new color
type is shown in this code:

<input type="color" name="mycolor" id="mycolor">

As you can see, you can plug in the specific type inside the type attribute to
make use of it. Since these fields ask for specific types of values, the browser
is able to perform its own validation on the fields, which is helpful when it is
supported. Figure 15-7 shows an example of an input field with the color
type. The validation will be discussed further in the “HTML5 Form
Validation” section later in this chapter.

Figure 15-7 A color picker is shown when the color input type is used.

New Attributes
HTML5 also brings new attributes that can be used with forms and/or form
elements. These are listed in Table 15-5.

Table 15-5 New Attributes in HTML5 Forms/Form Fields

Many of these allow you to override attributes in the main form element
using the submit element. There are also some attributes such as required,
novalidate, and pattern that assist with form validation, which is discussed in
the next section.

HTML5 Form Validation
HTML5 allows the browser to validate various input types automatically.
This can be overridden by using the novalidate attribute in the form tag to
disable browser input validation for all of a form’s fields or by using it in
individual form fields so that they are not validated. Note that novalidate is
not relevant to custom validations that you do yourself using the onsubmit
event to capture the form submission.

If you decide to allow the browser to validate fields, the new input types
will have certain validation methods used on them to ensure that the expected
type of information is entered. Each field is optional by default, though you
can make it required by adding the required attribute to each field that needs
to be completed. For example, the browser will validate the following form
and will require that the URL field be completed:

Figure 15-8 shows what happens when the required field is not completed in
a supported browser. Figure 15-9 shows the result of entering an invalid URL
in the URL field in a supported browser.

Figure 15-8 The field must be completed to validate.

Figure 15-9 The field must contain a valid URL to validate.

You can also use the pattern field so that the browser will validate a field
according to a regular expression. For example, if you want the name field
from the previous form to contain only letters and spaces, you could use the
following code:

The only drawback is browser support. If you need to validate the input on
the client side in browsers that do not support the particular input types or
validations used in HTML5, then you will need to write some JavaScript as a
backup. For example, suppose you had the following form:

If a browser does not support the pattern attribute and you still want to make
sure the field contains only letters and spaces, then you will need to write a
script to ensure that the field is still validated. In this case, you could simply
use the following code to validate the name field when the submit button is
clicked.

This simply uses the desired pattern as a regular expression in JavaScript and
runs the test method to see if the input matches the pattern. If not, an alert is
sent to the viewer so that the name can be corrected.

HTML5 provides numerous new and helpful features to forms. At the time
of this writing, JavaScript backups may be necessary for client-side
validation. As more users move to newer browsers and browser support for
all of the new features is increased, these new tools will become even more
helpful to you as a developer.

NOTE

For more details on any of the HTML5 form improvements, including
which browsers support each one, see wufoo.com/html5/.

Try This 15-2 Validate a Phone Number with HTML5
or JavaScript
In this project, you will build on the previous project by creating a form that
will validate a phone number using the new HTML5 pattern attribute. If the
browser does not support HTML5, a backup JavaScript validation is run
instead.

Step by Step
1. Create an HTML document and add script tags so that the HTML file

will call an external JavaScript file named prjs14_2.js. Create a form
with an id of “getphone”, and add a text box with an id of “phone” to
obtain a phone number. The text box should use the pattern attribute

http://wufoo.com/html5/

with a regular expression that will validate the phone number if the
format is XXX-XXX-XXXX. It will also be a required field. Make sure
the form contains a submit button. Save the HTML file as pr14_2.html.
When complete, the HTML code should look like this:

2. Create a JavaScript file and save it as prjs14_2.js. Use it for step 3.

3. Create a script that will back up the HTML5 validation when the form is
submitted. If the field does not validate, send an alert saying “Invalid
phone number entered. Valid format is XXX-XXX-XXXX.” Otherwise,
allow the form to be submitted. When complete, the JavaScript code
should look like this:

4. Save the JavaScript file and open the HTML file in your browser. Check
to see whether the validation system works.

Try This Summary
In this project, you used your knowledge of JavaScript and HTML5 forms to
create a validation system that checks for a valid phone number in HTML5
and backs up the validation with JavaScript code.

AJAX and JSON

AJAX provides a method of obtaining data from a server-side script using the
XMLHttpRequest object. The data obtained can be returned as a usable
JavaScript value such as an array or object by using JSON. Both of these are
explained in more detail in the following sections.

AJAX
AJAX stands for Asynchronous JavaScript and XML, which is a way
JavaScript can obtain data from a server-side file or application without the
need to reload a page. For example, a synchronous request to the Web server
requires that the current page be reloaded to use the new information. An
asynchronous request allows the information to be obtained and used without
the need to wait for the entire page to reload.

The data obtained from the server can be any number of things (for
example, a text file, an XML file, the result of running a server-side script).
The value returned does not actually need to be in XML format, in spite of
the AJAX terminology. This gives you a lot of flexibility as to how you can
retrieve the data you need.

This type of scripting is useful in progressive enhancement, as it allows
applications to enhance the user experience for those with JavaScript enabled
in modern browsers. Instead of waiting for a page to load again, the
information can be obtained and used on-the-fly.

The XMLHttpRequest Object
In JavaScript, an XMLHttpRequest object is created, which can then be used
to make HTTP requests to the server in the background and allow the user to
continue using the application without interruption. This object is often
referred to as XHR in text as a shorthand for the full object name
(XMLHttpRequest).

To create an XHR object, you simply use its constructor, as shown in the
following code:

let xhr = new XMLHttpRequest();

This object is available in most modern browsers. In Internet Explorer
versions before version 7, you would need to create an ActiveX object.
Workarounds for earlier versions of Internet Explorer can be found on the

Web, such as the one at github.com/ilinsky/xmlhttprequest. If you do not
need the functionality in older browsers, you can use the standard
constructor.

The open() and send() Methods
The open() method allows you to prepare a request to be sent to the server. It
takes three arguments: the request method (for example, “get” or “post”), the
URL to open, and a Boolean value (true if the request is to be asynchronous
and false if the request is to be synchronous). So, to use the “get” method to
open a PHP script named get_info.php as an asynchronous request, you could
use the following code:

Now that the request is prepared, you can send it using the send() method.
The send() method takes one argument, which is data to be sent as part of the
request. If you are using a “get” request, you can simply use null as the
argument, as in the following code:

This will send the request to the server. Once the request has been sent, you
will need to wait for a status to be returned and for the data to be received to
complete transmission.

The status Property, the readystatechange Event, and the
responseText Property
The first thing you will need to know when trying to retrieve data from the
server is whether or not the request received a valid response from the server.
This can be determined using the status property. Basically, any status code
in the 200 range is a successful response. Also, a status code of 304 is
successful, since data will be available from the browser cache.

To see what data is returned, you can use the responseText property (or, if
using a response MIME type of “text/xml” or “application/xml”, the

http://github.com/ilinsky/xmlhttprequest

responseXML property can be used). If the get_info.php PHP script is
expected to return a string of data, then that data will be available in the
responseText property.

Finally, for an asynchronous request, you will want to be able to determine
when the data you are trying to retrieve is available for use. This is done
using the readystatechange event. This event is fired whenever an update
occurs to the readyState property of your XHR object. The readyState
property can have the following values:

• 0 – Uninitialized. The open() method has not been called.

• 1 – Open. The open() method has been called.

• 2 – Sent. The send() method has been called.

• 3 – Receiving. Data has been received, but is still not complete.

• 4 – Complete. All of the data has been received and can be used.

For most applications, you only need to worry about whether the response
code is 4, since you won’t do anything until you have all of the data.

To send a request and receive data, you need to put all of this together.
The request needs to be open and sent, a good response status is needed, and
you need to know when the value of readyState is equal to 4 by using the
onreadystatechange event. This can be accomplished using the following
code:

A couple of notes on this code: due to browser compatibility issues, the DOM
0 method of handling the readystatechange event is used, and the open() and

send() methods are called after the function that handles the readystatechange
event. These two things help to minimize the risk of unexpected errors
occurring in various browsers. If the response passes all of the tests, then the
user receives an alert with the text received from the PHP script.

The text received in the responseText property can be anything from a
simple value to a complex string of data. Whether the script returns “John” or
“x=34&y=25&z=50”, that value will be placed in the responseText property.

Note that since this is a beginner’s guide, you will use “get” requests to
retrieve data and won’t change the HTTP headers. For additional details on
these features of AJAX, see the “Further Reading” section later in this
chapter.

An Example AJAX Script
The best way to show how the response data is created is to apply an
example. Suppose you had the following HTML to create a simple poll:

In this case, the form action will be a separate PHP script that will run if
JavaScript is not available. If JavaScript is available, you will call a script
named get_winner.php in your AJAX code.

The get_winner.php will be a server-side application that returns data.
This could be results from a database query, a calculation, or any other task a
server-side application can perform. In this case, the script is going to add

your vote to a database and query the database for the person who has the
most votes, declaring that person the current winner of the poll. Since server-
side programming is beyond the scope of this book, the get_winner.php script
will be shortened to describe its purpose. Here is the script:

Here, a function is run to determine the value of the $winner variable from
the database. The echo command sends a string of text as a response. If this
were run as a standalone script, the string would simply be written in the
browser window. When responding to an XHR request, however, this string
is returned to the JavaScript application as the value of the responseText
property. You can now make use of this data returned from the server-side
application in JavaScript!

NOTE

When you’re using a server-side application to return data, it does not
need to be written in PHP. Any server-side language (for example,
Perl, ASP, Python, Java, Node.js) can be used based on your
background and server setup.

With this in mind, the bulk of the remaining work is performed in your
JavaScript code. Since you want to display the current winner, the value
returned for the responseText property will give you the data you need. Here
is the JavaScript code to retrieve and use the information from the
get_winner.php script:

This looks like quite a long process, but most of it is preparing the user’s vote
to be sent (checking that a selection was made before submitting, and so on).
This obtains the user’s vote, which is stored in the vote variable. This
variable is then used as part of a query string that will be added to the URL

when get_winner.php is called. For example, if the user voted for “Paul”,
then the URL sent to the server in this case would be “get_winner.php?
vote=Paul”. Notice that the encodeURIComponent() method is used on the
vote variable, which ensures that the value can be part of a valid URL. This
will give the PHP script the data it needs to add that vote to the database. The
remainder of the script uses what you learned in this chapter to obtain the
data (the current winner of the poll). Since the data is already in the desired
format, the results div innerHTML is updated to show the current poll
winner. Figure 15-10 shows how the HTML page appears initially, while
Figure 15-11 shows how the page appears when the result is displayed.

Figure 15-10 The initial HTML page

Figure 15-11 The page after retrieving the data

This script conveniently returned a simple text string, but you may wish to
have more data returned that you could use to display more detailed results.
Returning this data could result in a string that you have to break apart to get
the values (for example, “John=2&Nick=34&Doug=32&Paul=25”). This can
be used, but it would be even better if this data could be returned in a format
that JavaScript could use more easily. JSON makes this possible, and is
discussed in more detail shortly.

Further Reading
More information on AJAX and how to use it in your applications can be
found at the following Web sites:

• https://developer.mozilla.org/en-US/docs/Web/Guide/AJAX

• https://www.w3schools.com/js/js_ajax_intro.asp

JSON
JSON stands for JavaScript Object Notation. It is a data format that can be
used in numerous programming languages, which makes it a perfect

https://developer.mozilla.org/en-US/docs/Web/Guide/AJAX
https://www.w3schools.com/js/js_ajax_intro.asp

companion when making use of AJAX. If you send JSON data to a server-
side application, most of these languages have JSON parsers that can take the
information and place it in a usable form in that language—be it a value,
array, object, and so on. When sending JSON data back to JavaScript, it can
easily be used either via the JSON object (newer browsers) or with a
JavaScript JSON parser (older browsers).

JSON Object or JSON Parser?
Most modern browsers support the JSON object: Firefox 3.5+, Internet
Explorer 8+, Chrome, and others. If you need to use JSON data in JavaScript
in older browsers, you can get a parser written by Douglas Crockford at
github.com/douglascrockford/JSON-js.

JSON Formatting
Often, you will send or receive an array or object containing data. JSON
formatting simply takes the array literal and object literal notation from
JavaScript. For example, an array in JSON format could look like this:

[2, 5, "Cool"]

Notice that this is not assigned to a variable; it is simply the data itself that is
passed along in JSON format. The JSON object or JSON parser will convert
the data to the desired format for the language that makes use of the
information.

For objects, JSON also requires double quotes around all strings, including
property names. For example, a JavaScript object could look like this:

let info = { num: 77, color: "red" }

In JSON format, the property names would also need to be quoted, as in the
following code:

{ "num": 77, "color": "red" }

Notice that the property names are also quoted in this case. So, if you need to
write or parse JSON data, keep these rules in mind to avoid errors sending or
receiving the data.

http://github.com/douglascrockford/JSON-js

Using the JSON Object
The JSON object has two methods: stringify() to send JSON data to another
application and parse() to turn JSON data into JavaScript values. For
example, if you were going to send data from JavaScript to another
application, you could convert it into JSON format easily using
JSON.stringify(), as in the following code:

The j_data variable could then be sent via the send() method once you have
an XHR object. Note that if you covert the data to JSON format, you will
have to use post and set xhr.setRequestHeader("Content-Type",
"application/json"); as well.

When receiving JSON data, you would use the JSON.parse() method to
convert the data from JSON format into usable JavaScript values. For
example, suppose you are receiving the following JSON data in JavaScript:

{ "num": 77, "color": "red" }

If this JSON data were read into the responseText of an XHR object named
xhr, you could convert this data into a usable JavaScript object, as in the
following code:

let info = JSON.parse(xhr.responseText);

The info object would now be created, which would be the same as if you
had written this code:

let info = { num: 77, color: "red" };

With this ability to quickly convert data into a usable JavaScript value,
JSON can make data collection and use much easier for your AJAX scripts.

AJAX and JSON Example
Suppose you wanted to change your AJAX script from earlier in the chapter,
which displayed the current winner of the poll. Instead of just displaying the
current winner, you would like to show all of the current results. Recall that

without JSON, you would need to send back and parse a string of
names/values or an XML document from the server-side application. With
JSON, you could simply send back the data in JSON format, where you could
then quickly use the parse() method to make it usable JavaScript.

Here, you will use the same HTML code, a PHP script named
get_results.php, and will alter your JavaScript code to make use of JSON
data.

First, the PHP script: It will add your vote to the database, then retrieve the
current results from the database, then send those results back to JavaScript in
JSON format. Here is the example:

In summary, this will send back a string of JSON data to your JavaScript
application (here the JSON string is built, but PHP has methods for
converting PHP objects to JSON as well), which could look like the
following:

{ "John": 2, "Nick": 35, "Doug": 32, "Paul": 25 }

You can now alter your JavaScript code to show the names and vote totals
for each of the people in the poll. Here is the updated JavaScript code:

Here, you are able to simply parse the responseText to obtain a usable
JavaScript object named results. A for-in loop cycles through each of the
object’s properties, which are the names of each person in the poll. The
property names and values are then added to a variable named res_HTML,
which is then displayed as the innerHTML of the results div on the HTML
page.

With the ability to easily use data obtained from a server-side application,
you can enhance your scripts to provide your users more options without the
need to reload the entire page to get results.

Further Reading
More information on JSON is available from the following Web sites:

• www.json.org/

• https://developer.mozilla.org/en-US/docs/Glossary/JSON

 Chapter 15 Self Test

1. Each time you add a set of <form> and </form> tags to an HTML
document, a(n) _______object is created.

2. The forms __________ allows you to access a form using an index
number.

3. Which of the following would access the fourth form on a page?

A. document.forms[4]
B. document.forms[3]
C. document.forms(4)
D. document.forms(3)

4. Which of the following would find the number of elements in the third
form on a page?

A. document.forms[2].length
B. document.forms[3].length

http://www.json.org/
https://developer.mozilla.org/en-US/docs/Glossary/JSON

C. document.forms.length
D. document.forms(3).length

5. Which of the following holds the value of the number of forms in a
document?

A. document.forms[0].length
B. document.form.length
C. document.forms.length
D. document.forms[1].length

6. Using form __________ or __________ allows you to name the forms
on the page that you want to access later.

7. Which of the following accesses the value of an element named e1 in a
form named f1?

A. document.f1.e1.value
B. document.e1.f1.value
C. document.f1.e2.value
D. document.forms1.e1.value

8. The __________ property allows you to access the value of the
action=“url” attribute in the opening form tag.

9. The __________ property is an array that allows you to access each
element in a specific form.

10. The __________ attribute in HTML5 allows you to give a form field a
regular expression it must validate.

11. The __________ method allows you to reset a form using your script.

12. Which of the following would add a valid meter tag to the document to
show 8 on a scale of 0 to 10?

A. <meter min=“0” max=“10” value=“7”>8</meter>
B. <meter min=“4” value=“8”>8</meter>
C. <meter min=“0” max=“10” value=“8”>8</meter>
D. <meter min=“0” max=“100” value=“8”>8</meter>

13. One way to help with form accessibility is to use the __________ tags to
identify what field a piece of text is describing.

14. The __________ method allows you to submit a form without the
viewer clicking the submit button.

15. Which of the following HTML5 form attributes is used for fields that
must be filled in by the user to validate?

A. obligatory
B. needed
C. required
D. compulsory

16. What object allows you to get data from the server in JavaScript?

A. XMLServerRequest
B. XMLHttpRequest
C. JSONRequest
D. XMLFileGet

17. _________ stands for Asynchronous JavaScript and XML.

18. JavaScript can retrieve data from the server other than an XML
document.

A. True
B. False

19. The acronym for JavaScript Object Notation is __________.

T

Chapter 16
Further Browser-Based JavaScript

Key Skills & Concepts
• Using jQuery

• Debugging Scripts

• JavaScript and Accessibility

• JavaScript Security

• JavaScript and APIs from HTML

• Node.js App Completion

• Further Reading

his chapter introduces a number of advanced techniques you may wish
to pursue further once you have finished this book. First, you will be
introduced to jQuery, which is a good JavaScript library for creating

DOM-related scripts that work cross-browser. You will also learn about
JavaScript accessibility and security, how JavaScript is incorporated into
HTML5, and then finish your basic Node.js app using what you learned in
previous chapters.

Using jQuery
One of the reasons to learn JavaScript is so that you can more easily work
with jQuery. The jQuery library has become a very popular tool for easily

creating dynamic effects that work cross-browser while avoiding many of the
issues you may face trying to do so, such as dealing with the differences in
how to handle events in each browser. At the time of this writing, jQuery had
support for Internet Explorer 6.0+, Firefox 10+, Safari 5.0+, Opera, and
Chrome.

Obtaining jQuery
The first thing you will need to do is grab a copy of jQuery or use a remote
copy. If you want to use a local copy, you can download the latest version
from jquery.com. Once you have it, you call it using a <script> tag as you
would any other external JavaScript file, as in this code:

If you decide to use a remote copy, such as one from the official jQuery site
(which can be helpful because the user might already have the file cached,
which will speed up load time), here is an example:

<script src="https://code.jquery.com/jquery-3.4.1.min.js">

</script>

You can choose the method that works best for you. Once you have the code
included in your HTML, you are ready to make use of what jQuery has to
offer.

NOTE

When including JavaScript from external sites, you need to consider
security concerns. For more on this, see
www.securitee.org/files/jsinclusions_ccs2012.pdf.

Getting Started: document.ready()
The first thing jQuery needs is to be sure that all DOM elements are available
for scripting. The document.ready() method determines when the DOM
structure is loaded and then runs the code within, usually a function, as in this
code:

http://jquery.com
https://code.jquery.com/jquery-3.4.1.min.js
http://www.securitee.org/files/jsinclusions_ccs2012.pdf

This is placed in your regular JavaScript code (for example, your .js file).
Notice the $ at the beginning of the code. This is the jQuery selector and is
used when you invoke jQuery in your JavaScript code.

Using Selectors
In jQuery, you can select elements via CSS syntax rather than using a typical
JavaScript method such as document.getElementById() or
document.getElementsByClassName(). For example, suppose you have the
following code:

This simply changes a couple of CSS style properties, but it takes several
lines of code to do so. In jQuery, this code can be shortened like this:

First, you will notice that the “story” div is selected using CSS syntax
(“#story”) rather than document.getElementById(“story”). This makes the
selection of the element a little shorter. Also, you will see that event handling
is simply attached to the event name (“click” in this case), followed by the
function to execute when the event occurs. This keeps you from needing to
write cross-browser event-handling code. Next, you are able to alter the CSS
of the element by using the css() method on the story element. The css()
method accepts an object as a parameter, and it contains each property to
change along with its new value (all quoted much like JSON syntax). In this
way, you do not need to code a separate statement for each CSS property
change you want to make.

To see this example in action, you will need to create an HTML page with
a “story” div, as in the following code:

If you are using a local copy of jQuery, you can call that in place of the
Google copy here. You can save this HTML page as jqexample.html. Next,
you will want to create a JavaScript file, which you will save as jqexample.js.
Here is the code:

Once you have the code in place, open jqexample.html in your browser and
click the div element. The text should become larger and turn blue. Figure
16-1 shows the page before the changes, while Figure 16-2 shows the page
after the changes.

Figure 16-1 The original page

Figure 16-2 The page after the div element is clicked

There are a number of selectors available in jQuery to help you select the
element(s) you need in your scripts. Here are some of the most common:

• (*) Selects all of the elements in the document

• (.class_name) Selects all elements with the provided class name

• (#id) Selects the element with the provided id

• (element_name) Selects all element_name elements

• (element_name.class_name) Selects all element_name elements with the
class_name class

• (element_name[attribute=“value”]) Selects all element_name elements
that have the provided attribute with the provided value

Further selection options are available, if needed, at
api.jquery.com/category/selectors.

NOTE

In vanilla JavaScript, document.querySelectorAll() works similarly to
the jQuery selector function.

Altering Classes
The addClass() and removeClass() functions make it very easy to change the
style of elements in jQuery. If you already have classes coded in your CSS,
you can use these methods to add or remove them at any time. For example,
suppose you had the same HTML page (jqexample.html) and altered it to
include a CSS file named jqexample.css. You could then write CSS classes
that could be added or removed from the “story” div. Here is the updated

http://api.jquery.com/category/selectors

HTML code:

The next step is to create jqexample.css and include some CSS
declarations:

This gives three possible styles. Each can now be easily applied to an element
or taken away, as needed. To add a class, simply call addClass() with the
class name as the argument, as in the following code:

$("#story").addClass("style2");

If you later decide to remove it, you can do the same thing with
removeClass():

$("#story").removeClass("style2");

You can also add more than one class to an element at a time by
separating each class name with a space, as in the following code:

$("#story").addClass("style2 style3");

This will not only make the text larger and blue, but will also make it italic.
You can make use of this along with the existing code in order to add or
remove classes on a click.

If you decide you want to toggle one or more classes, you can use the
toggleClass() method. This will add a class if the element does not already

have it and will remove a class if the element already has it. Here, you will
update your jqexample.js code to toggle the style2 and style3 classes when
the div is clicked. The updated script is shown in the following code:

With this code, each click will add or remove both the style2 and style3
classes, depending on the current style of the element.

If you want to check whether or not an element has a class before adding
or removing it, you can use the hasClass() method. The method returns true if
the element has the class applied to it, and false if not. For example, the
following code would make sure the “story” div does not already have the
style3 class before adding it:

As you can see here, the JavaScript if statement and the logical NOT operator
(!) are used along with the jQuery code. jQuery is a JavaScript library, so all
the code is still JavaScript code. Since this is the case, you can use any
JavaScript code you need as well—operators, statements, arrays, functions,
and more. Figure 16-3 shows what the initial page looks like, while Figure
16-4 shows how the page looks after the link is clicked.

Figure 16-3 The initial page

Figure 16-4 After the link is clicked, the class is added.

Methods for Effects
The jQuery library has a number of methods that make creating specific
dynamic effects easier. Table 16-1 lists some of the most commonly used
jQuery effects.

Table 16-1 Common Methods Used for Effects in jQuery

Each of these methods can take two arguments: the amount of time to take
to perform the effect and an optional callback function (discussed later in this
section). For example, calling the show() method will reveal an element
immediately if no arguments are used, as in the following code:

$("#story").show();

If you want to show the element over time, you can send the number of
milliseconds to the show method as an argument:

$("#story").show(1000);

When this argument is provided, the element will fade in while increasing in
width and height during the specified span of time. Here, the “story” element
would fade in and increase in size over a period of 1000 milliseconds (1
second). Alternatively, you can use the preset value “fast” or “slow” in place
of a specific time, as in the following code:

The other methods work the same way, but perform different animations:
slideDown() shows an element by sliding it down into position, slideUp()
hides an element by sliding it up and out of sight, fadeIn() shows an element
by gradually fading it in, while fadeOut() hides an element by gradually
fading it out.

If desired, you can provide a second argument to any of these methods,
which is a callback function that will be executed as soon as the effect
completes execution. This can be useful to string two or more effects
together, executing each one after the previous one has been completed. For
instance, the following code will show the “story” element over 500
milliseconds, then fade it out over 2000 milliseconds:

You could continue the process by using a callback function as the second
argument of the fadeOut() method and then continue adding callback
functions as needed until your desired effects have all been completed.

Finally, if you need to prevent the default action when an event occurs on
an element (such as when you need a link to not be followed), you can use
the jQuery event registration while still passing in the event object. This
allows you to call event.preventDefault(), as in the following code:

The jQuery library can prove to be a very useful tool if you need to get
scripts working across a larger number of browsers. Since it helps with
element selection, event handling, and display/animation methods, it allows
you to do less work when you need cross-browser code. The next section
gives you some resources to look at if you want to delve further into the
jQuery library.

Further Reading
You can read more about jQuery and how to use it with the following
resources:

• https://learn.jquery.com/

• jQuery: A Beginner’s Guide (McGraw-Hill, 2014)

Try This 16-1 Use jQuery to Create Effects

pr16_1.html

prjs16_1.js

You have a link and a div element with some text that you would like to have
initially hidden but then displayed when the link is clicked. Once it displays,
you want the div element to slowly fade out. You want to use jQuery to
accomplish the task.

Step by Step
1. Create an HTML document named pr16_1.html and use the following

HTML code for the body section:

https://learn.jquery.com/

2. Create a JavaScript file named prjs16_1.js. In this file, you need to wait
until the document is ready, then immediately hide the “story” element.
Next, register the click event for the “changelink” link, prevent its
default action, and then show the “story” element using a “slide down”
animation over 3000 milliseconds. The “story” element should then fade
out over 10,000 milliseconds. When complete, your JavaScript code
should look like this:

3. Save the HTML and JavaScript files and then open the HTML file in
your browser. Click the link to view the story. It should slide down, then
fade out over time.

Try This Summary
In this project, you used your knowledge of JavaScript and jQuery to create
animations in response to a user event. The jQuery made it easier to write the
code and have it work cross-browser at the same time.

Ask the Expert
Q: There are a lot of libraries! How do I know which one to use?

A: What you decide to use will depend on your needs and your
coding style. For example, if you want to make event registration
and handling work across a larger number of browsers using a
shorter syntax, jQuery is a good choice. If you have other needs
that aren’t met by jQuery or another well-known library, searching
the Web should provide additional options that may be helpful.

Q: Do I need to learn jQuery? Couldn’t I just write the JavaScript
code?

A: This will also depend on your needs. If your boss wants you to use
it or you need to code for maximum cross-browser compatibility,
then you probably will want to learn it. If your script is designed to
work only with the latest browsers (and does not need to be
functional in older ones), then you may not need to learn it. It all
depends on your needs at any given time.

Q: Does jQuery do more than what I saw here?

A: Yes, it can do quite a bit. There are more advanced selectors,
additional effects, and numerous plugins to fill any additional
needs that are not met with the library itself. You can find out more
and read more advanced information at
docs.jquery.com/Main_Page.

Q: Are there any libraries for developing JavaScript games?

A: Yes! If you would like to delve into game development, you can
check out the following links to see some of the available libraries
and how to use them:

• PixiJS https://github.com/pixijs/pixi.js

• Phaser https://github.com/photonstorm/phaser

• Babylon.js https://github.com/BabylonJS/Babylon.js

http://docs.jquery.com/Main_Page
https://github.com/pixijs/pixi.js
https://github.com/photonstorm/phaser
https://github.com/BabylonJS/Babylon.js

Debugging Scripts
Even though JavaScript is fun, sometimes it can also be quite frustrating. One
error in the code can cause an entire script to run incorrectly or not run at all.
Debugging a script can be a time-consuming and arduous process, but there
are a few techniques you can use that may help save some time while looking
over the code. The first step in debugging a script is to figure out what type of
error is likely to be causing the problem.

Types of Errors
The two main types of errors are syntax errors and logical errors. A syntax
error occurs when the coder forgets to add a semicolon, forgets a quotation
mark, misspells a word, and so on. A logical error occurs when the code is
implemented incorrectly.

For example, a while loop could go on infinitely if the condition for
executing the loop never becomes false. While it may be coded with the
correct syntax, the results won’t be what the programmer expected.

Finding Syntax Errors
A syntax error could be as simple as leaving out a necessary semicolon. For
example, the following code is missing a semicolon between statements:

let greet = function() { say_hi() say_welcome(); };

In this case, the semicolon is very important because the two statements are
on the same line. To fix this, you just need to add the needed semicolon, as
shown here:

let greet = function() { say_hi(); say_welcome(); };

Syntax errors often cause the browser to display an error message so that you
can debug the script. For example, you might see a message like the one in
Figure 16-5.

Figure 16-5 A JavaScript error message

NOTE

Most modern browsers hide these error messages by default or place
them in the console, but you can enable them if you want to view
them.

These messages can help you figure out what’s causing the problem. The
line number shown in the error message often tells you where the error is. For
instance, if the message says the error is on line 15, you would start at the
15th line from the top of your document and see what’s there. The rest of the
message might tell you what’s missing or what has been placed improperly.

However, sometimes the line stated in the message is not the line where
the actual problem is located. It could be on the preceding line, a few lines
away, or even somewhere else entirely. You may need to do a little searching
to figure out where the problem started.

Scanning the Script If the error message doesn’t help you locate the
problem, you can try scanning the script for errors on your own. This solution
can be more tedious, but it may help you find the problem if the error
message isn’t helpful. Table 16-2 shows some items you should try to find.

Table 16-2 Items to Look for when Scanning a Script for Errors

The following code is riddled with errors; see how many of them you can
find:

The code is missing a number of necessary items. Following is the list of
items you should have found:

• Between lines 3 and 4 The function is missing its opening curly bracket.

• Line 4 The word alert is misspelled as alery; the double quotation mark
is missing after the word like; the mycar variable is misspelled as mynar.

• Line 5 The alert method is missing a closing parenthesis.

• Line 7 The word new is misspelled as neq.

• Line 9 The array index number is missing its opening square bracket.

• Line 10 The opening parenthesis for the loop is missing.

• Line 11 The index number for somearray[0] is missing its closing square

bracket.

• Between lines 11 and 12 The closing curly bracket to end the loop is
missing.

You probably won’t make that many errors, but the example provides a
nice way to see how to catch them while you’re scanning a script. After you
become more experienced with locating these small errors, you’ll be able to
find them quickly when you have a problem in a script.

Finding Logical Errors
Logical errors are often tougher to find because the syntax of the code is
correct. You will be trying to find a mistake in how the code was
implemented. For example, look at the following code (but do not run it!):

The code has no syntax errors. All the semicolons and quotation marks are
where they should be. The problem here is that the variable x is never greater
than the variable y. This situation would cause an infinite loop, possibly
crashing the browser.

You can fix the code by adding a line inside the loop to increase the value
of x, decrease the value of y, or both increase x and decrease y. The
important point is that something must be done to make the condition false.
The following code shows a possible fix for this problem:

Using the Console

If there are values that don’t seem to be correct, they can be quickly checked
at any point in the script by sending them to the console. For example,
suppose you have the following code:

When this code is run, the alert will display “Infinity,” which probably is not
the intended result. With additional code between the initial variable
definitions and the assignment of the calculation (x/y) to the z variable, it
may be difficult to see that a division by zero is taking place while you’re
scanning the code. To find out where the error is, you could place a
console.log() in the code prior to the calculation of the z variable to see if it
can help you see what is happening, as in the following example:

When the console shows that the calculation will be “2/0,” you can see that
the y variable having a value of zero is causing the issue. Knowing that, you
can look for any line of code that assigns a value to the y variable to see if it
results in y being given a value of zero. In this case, this happens on the
second line of the code and can be corrected by assigning a different value to
y.

The console.log() method allows you to place a message in the console,
which modern browsers use to track errors, warnings, or other messages that
occur when the HTML, CSS, and JavaScript code is read by the browser.

NOTE

It is best to remove your testing code when you are finished
debugging, as it is best not to have a bunch of console messages
meant for debugging in production code.

You can typically display the console in a browser by right-clicking the
page and selecting “Inspect” (or something similar to this). This should open
the browser’s developer tools, where you may need to click to the “Console”
tab.

In addition to console.log(), you can use console.warn() or console.error()
to display warnings or errors for test and/or production code. These can be
helpful when debugging during testing to discover what conditions could
cause the script to have issues. For example, having a console.error()
message when the browser is unable to retrieve information from an
XMLHttpRequest can help you debug what might cause the information to
not load (unavailable, bad parameters, and so on).

Using a Lint Tool
Thanks to some expert Web developers, there are tools available that can
assist you in finding JavaScript errors while also encouraging the use of best
practices in your JavaScript code. A lint tool (a tool that looks at the code for
anything that might not be correct) can be very useful in tracking down any
problems (or potential problems) in your code.

Here are two popular lint tools for JavaScript:

• JSLint (www.jslint.com)

• JSHint (www.jshint.com)

Both tools allow you to paste your JavaScript code into a text area and have it
checked. The tools will check for various issues, such as the following:

• Variables defined without the var, let, or const statement (making them
global)

• Missing semicolons

• Use of eval()

• == vs. ===

• Other issues

For example, suppose you have the following code:

http://www.jslint.com
http://www.jshint.com

There are some problems with this code that will give you unexpected results
when the code is run. Running the code through JSLint, for example, will
give you a number of errors. Included in the following list are some
important notes to assist you in fixing the code:

• Line 1: Expected ';' and instead saw 'let'.
The end of Line 1 is missing a semicolon to complete the first let
statement. Since these could be combined, the best practice would be to
use a comma between the two variable definitions and remove the second
let keyword, as in this code:

• Line 4: Expected '===' and instead saw '=='.
The comparison (x == y) could give an unexpected result here due to type
coercion being performed. With x = 1 and y = “1”, JavaScript will
evaluate x == y to be true. If you intended to ensure both values were in
fact the numeric value of 1, you would not want this to be the case. Using
=== is safer and avoids any potentially odd results:

if (x === y)

• Line 5: Expected '{' and instead saw 'alert'.
To avoid any potential pitfalls and make the purpose of the code easier to
read, it is best to place brackets around if and else statements, even if they
only contain one line of code (allowing the shortcut of not adding the
brackets). This error is picked up for both the if and else statements, and
can be fixed by adding the brackets to both:

As you can see, a lint tool can pick up on potential problems before you
run your code, keeping any remaining debugging tasks to a minimum. By
following the suggestions of the tool for this code, you can avoid the number
1 being equal to the string 1, and you also allow the if and else statements to
have additional lines of code added within each block without causing
problems later (forcing you to figure out what happened and then add the
brackets at that time).

Many modern code editors now help out with this. For example, IDEs
such as Visual Studio Code will integrate with a linter and make it easier to
find your issues.

Browser Developer Tools
Most of the major modern browsers have a set of developer tools available
either natively or via an add-on. These tools can prove helpful in debugging
JavaScript as well. Here are some links to tutorials on how to access/acquire
and use some of these tools:

• Chrome Debugger https://developers.google.com/web/tools/chrome-
devtools/

• Edge Debugger https://docs.microsoft.com/en-us/microsoft-
edge/devtools-guide

Ask the Expert
Q: The error message I get says something I don’t understand.

What should I do?

A: Error messages don’t always make sense and don’t always point to
the right line in the code. You may need to trace any variables or

https://developers.google.com/web/tools/chrome-devtools/
https://docs.microsoft.com/en-us/microsoft-edge/devtools-guide

functions you have called on the line that the message gave you or
check the lines near it for errors. Once you’ve seen an error
message a few times, its meaning becomes easier to figure out.

Q: Something in my code crashed the browser when I tried to run
it, and I can’t try adding alerts to help find the problem
because it crashes every time! What should I do?

A: If the script crashes the browser, look closely at your variables,
loops, objects, and functions. You might also try a browser add-on,
such as Firebug, which will allow you to set break points in the
script as needed. As a last resort, write some new code from
scratch.

Q: An error in my code crashed not only the browser, but also the
computer! What do I do?

A: Restart the computer but do not run the code again. Check it very
carefully to see if you can find the problem.

Q: Can any other strategies help me debug my scripts?

A: Some text editors use color coding to mark HTML tags, JavaScript
code, or other types of code. Color coding helps you see the code
more clearly and makes it easier to detect an error. (Try the Vim or
NoteTab text editor.)

JavaScript and Accessibility
One topic you have seen many times in this book is how a script or HTML
code for the script relates to accessibility. In some cases, a state or federal law
(such as the Americans with Disabilities Act) might require that a Web site
be accessible to viewers with disabilities. Even if it is not a legal issue for
your Web site, it is still a usability issue: you will want as many visitors as
possible to be able to use your site and access the information you have for
them.

The general theme for accessibility is that content needs to be made

accessible to all browsers and other software that may access a Web site. This
means that your content should be readable not only by various Web
browsers, but also by assistive technologies like screen-reading software (for
example, JAWS from Freedom Scientific) or Web browsing software on
portable devices like cellular phones.

Separate Content from Presentation
Typically, the first step in making your Web site content accessible is to build
the accessibility into your HTML/XHTML code, but you’ll also need to
tweak your JavaScript code. As you may already know, when coding your
HTML, you can use Cascading Style Sheets (CSS) for presentation of the
content (how many columns are displayed, the font style, the width of various
divisions, and so forth) while using HTML to simply mark up the content
itself (such as dividing it into sections with <div></div> tags or inserting
objects such as images). This takes care of issues dealing with plain HTML
content because the use of a style sheet rather than HTML markup for
presentation ensures that you can offer different CSS styles for different types
of browsers, or that those not using browsers with CSS capabilities will still
get the structural markup of the plain text (for example, there won’t be
columns or font colors, and so on), which allows them to still view the
content of the page.

With JavaScript, making the content accessible often means making sure
that the content you use in your script is already displayed on the page or is
available through a link or other means. One thing that may help is to move
all JavaScript code (or as much as possible) into external JavaScript files
while leaving as little JavaScript code in the HTML code as possible.

For example, you might have a Web page that uses the following code:

This code will function just fine for those with JavaScript. However, having
the script in the HTML code makes for a lot of extra scrolling through the file
when you need to update the HTML code (especially if you have a long
script). Thus, the first move you may want to make is to move the script to an
external file, as shown in the following code samples. First, the new HTML
code:

Next, the myscript.js JavaScript file:

This makes the HTML file shorter and easier to read because the JavaScript
functionality is placed in its own file and out of the way of the HTML code.

The next move you may want to make is to change the use of the onclick
event handler in the HTML tag. Though valid, it becomes troublesome if you
decide to use a function with a different name or decide to make it a normal
link without JavaScript, because you will need to update each HTML file to
accommodate the change cleanly (you can simply change the script to have
the new function use this function name or just do nothing when called, but
this could be confusing for those who may need to update the code later). To
get this onclick event handler out of the HTML code, you could rewrite the
JavaScript slightly and give the anchor tag an id (much like what you have
done earlier in this book). First, the updated HTML code:

Next, the myscript.js JavaScript file:

Now the HTML code has no JavaScript commands sprinkled in with it—
just a call at the end to the external script. The anchor tag is given an id of
sale, which can be used by the JavaScript code to capture the click event on
that element. The JavaScript code now uses document.getElementById() to
grab the anchor element and then assigns it a function to run when clicked.

The final note here is that the link simply does nothing for those without
JavaScript. Since the content of the alert is something you need the visitor to
know (so that they will know there is a sale), you will want to be sure that
even those visitors without JavaScript can get this message. You can either
display it elsewhere on the page, use a set of <noscript></noscript> tags to
display the message inline, or code the link so that it leads to an HTML page
with the message, as in the following code:

Then, you can place your message in a file named sale_alert.html:

This ensures that all users can access the message with or without JavaScript.

Enhancing Content
One technique for ensuring wide accessibility that has become widely used is
one that provides the content for the viewer first, then uses JavaScript to
make the experience more appealing for those who can run it. This is
typically called “progressive enhancement” and allows all viewers to use the
site while providing a richer experience for those with modern browsers.

This is what you did (on a small scale) with the script in the previous
section. By offering the “sale” message when the link is clicked, you made it
accessible to all viewers. However, those with JavaScript were able to view
the alert without leaving the page and needing to go back, thus enhancing
their experience somewhat.

This process can be simple, as in the previous example, or it can be as
complex as adding a lot of JavaScript code to work with various browsers
and/or adding server-side scripting to aid those without JavaScript. You can
learn more about progressive enhancement at
https://maqentaer.com/devopera-static-
backup/http/dev.opera.com/articles/view/progressive-enhancement-and-the-
yahoo-u/index.html. Yahoo! has a very detailed and organized system of
progressive enhancement that allows the JavaScript code to work with as
many browsers as possible, but also provides server-side scripts or HTML
content for those without JavaScript.

TIP

For information on accessibility with JavaScript and forms, refer to
Chapter 15, which discusses this topic and the use of forms with
JavaScript.

Try This 16-2 Make This Code Accessible

pr15_2.html

sales.html

prjs15_2.js

To practice making JavaScript more accessible, you will take an HTML page
and work with it to separate the JavaScript and HTML code as much as
possible. You’ll also use code that ensures that those without JavaScript can
also obtain any additional content.

Step by Step
1. Create an HTML document named pr15_2.html and use the following

HTML code for the body section:

https://maqentaer.com/devopera-static-backup/http/dev.opera.com/articles/view/progressive-enhancement-and-the-yahoo-u/index.html

2. Create an HTML document named sales.html and use the following
HTML code for the body section:

3. Make the code accessible and usable for those without JavaScript by
making any necessary adjustments and moving as much JavaScript code
as possible to a JavaScript file named prjs15_2.js.

4. One possible solution is shown in the following HTML code (for
pr15_2.html) and the JavaScript code (for prjs15_2.js).

HTML Code:

JavaScript Code:

5. Save the HTML and JavaScript files and open the HTML file in your
browser. The content should now be accessible in any browser with
which you choose to open the page.

Try This Summary
In this project, you used your knowledge of accessibility to make a document
and script more accessible for the viewer.

JavaScript Security
You may have noticed that when you try to use the window.close() method
on the main browser window, a confirmation box appears asking if you really
want to allow the window to be closed. This situation is one of the issues of
JavaScript security. The browser does not want a site to close a window that
the viewer opened without permission from the viewer. If that were allowed,
the programmer would have some control of the viewer’s computer, which
could be a problem.

Another aspect of security is the mistaken belief that you can “protect”
Web pages with passwords or keep the source code of the page from being
viewed by a user.

Yet another aspect of security is protecting against cross-site scripting—
the use of JavaScript to grab information from a server-side application that
didn’t properly filter user input.

Page Protection
Many scripts attempt to keep viewers out in some way, such as by using
password protection or by using a “no right-click” script to keep the source
code of the page from being viewed.

However, these security strategies are largely ineffective because these
“password” and “no right-click” scripts can often be bypassed by turning off
JavaScript or by doing a little extra work.

Passwords

Some password systems are better than others, but none really seems to offer
true Web page security. If you don’t want someone to view a page, much
better methods exist than using a JavaScript system, such as using server-side
languages or using certain setups on your Web server.

If you are on a free Web-hosting service, the better methods may or may
not be available. However, keep in mind that a JavaScript password system is
not foolproof and that you should not protect anything important with such a
system.

Hiding Web Page Source Code
Many people would love to hide the source code of a Web page. However,
JavaScript isn’t going to do the trick. A number of scripts try various means
of disabling the right-click. Basically, these strategies don’t work because
they can be bypassed in a couple of ways:

• If the right-click is disabled, you can always try selecting View | View
Source.

• If the preceding method does not work, you can always turn off JavaScript
or look in your cache folder on your computer. The browser must have the
code to display the page, so a copy of it goes into the browser’s cache.

In the long run, these scripts just make viewing the source code more
difficult (and they can be annoying).

Cross-Site Scripting
Cross-site scripting (often shortened to XSS) uses JavaScript code (or other
types of code) in a malicious way to obtain information from users of various
Web sites with vulnerable applications. With this information, a person can
use someone else’s cookie or session information and access the Web site as
though they were the user from whom they obtained the information. This, of
course, can lead to big trouble, especially if that user is an administrator in
that application or if the application deals with money (such as a banking or
shopping application).

While JavaScript is one of the ways used to perform such an attack, the
vulnerable application is usually one that is server-side and displays user
input on the page. If the user input is not sanitized (validated) in the server-

side application, then any number of possible malicious scripts could be
entered instead of the expected input.

For example, you might have a form that uses a server-side script to allow
people to send comments. The script displays the user-submitted comment
back to the user as a confirmation. If the input is not sanitized, it is possible
to enter something like this into the comments field: <script>alert(“You’ve
been had!”);</script>. If someone submits this and sees an alert on the
response page, the person will know there is a potential vulnerability and
could simply direct a subsequent user to a malicious URL where the user’s
cookie or session information can be taken. Figure 16-6 shows how a
vulnerable application would display such an alert (this one also included
some comment text to help disguise the intent of the person submitting the
form).

Figure 16-6 Oh no! This would not be good for users of this Web site!

Cross-site scripting has evolved over the years. In the beginning, it was
that a bad Web site could load a good Web site in a frame (or in a pop-up
browser window) and then access the text boxes, cookies, and other data
(user id and password) using JavaScript—thus the name “cross-site.” It
should be noted that modern browsers, within the past four or five years,

don’t allow this type of cross-site scripting. One domain cannot access the
contents of a different domain. Most of the modern cross-site scripting
attacks are injection attacks like the example here (though often much more
complex).

This introduction just scratches the surface of this type of security issue.
The main thing to remember is that when you are using server-side
applications, you must sanitize any user input to be sure that you receive the
type of input you expect. For more information on this topic, go to
www.owasp.org/index.php/Cross_site_scripting.

JavaScript and APIs from HTML
HTML5 provides an API (application programming interface) for a number
of elements and markup that allow you to create more dynamic Web pages or
application. Some of these include dynamic drawing via the <canvas>
element, local storage, and the dragging and dropping of elements. These are
possible in browsers that support HTML5 and the corresponding JavaScript
interfaces. To begin, you will look at the HTML5 <canvas> element.

The <canvas> Element
The <canvas> element allows you to create graphics with JavaScript as the
page is rendered. When a <canvas> element is placed on the page, it creates a
rectangular area (based on its width and height attributes) where graphics can
be drawn. For example, the following code will create a drawing area of
400×400 pixels:

<canvas width="400" height="400" id="graphic"></canvas>

Anything inside the opening and closing tags will be displayed in browsers
that do not support the <canvas> element, as in the following code:

<canvas width="400" height="400" id="graphic">My fabulous

drawing!</canvas>

To begin working with the <canvas> element in JavaScript, you will need
to get the element by its id, and then use the getContext() method to create a
drawing context. The getContext() method takes one argument, which is the

http://www.owasp.org/index.php/Cross_site_scripting

type of context being created. Most modern browsers support a 2D context. A
3D (three-dimensional) context is in the works. Here is an example that opens
a 2D context for the <canvas> element you have been using:

Once you have the context, you can begin using it to draw lines, shapes, text,
and more.

Rectangles
Rectangles can be drawn in a context by using the fillRect() or strokeRect()
method. The fillRect() method will create a rectangle that is filled in with
color, while strokeRect() will create a rectangle that is outlined but has no fill
color. Both methods take four arguments: the x-coordinate of the top-left
corner, the y-coordinate of the top-left corner, the width, and the height. For
example, the following code will draw a filled rectangle beginning at (70, 70)
that is 50 pixels wide and 30 pixels tall:

Figure 16-7 shows how this would look in a browser. Notice that the canvas
is not outlined. If you want to outline it, you can use CSS to add a visible
border.

Figure 16-7 A canvas with a filled rectangle

The origin on a canvas is the top-left corner, so a higher x-coordinate will
move the point further to the right, while a higher y-coordinate will move the
point further down. Figure 16-8 shows how the canvas grid is laid out when
the example rectangle is drawn.

Figure 16-8 The example showing the canvas layout

If you decide you would rather have an outlined rectangle that is not filled
with color, you can use strokeRect() instead, as in the following code:

If you need to clear a rectangular area on the canvas, you can use the
clearRect() method. It uses the same four arguments as fillRect() but clears
(makes transparent) the area that it affects. For example, you could clear out a
rectangle within a filled rectangle using the following code:

Figure 16-9 shows the result of this code. Notice how the filled rectangle now
has an area cleared inside of it.

Figure 16-9 The rectangle now has an empty rectangular area within it.

Using fillStyle and strokeStyle
The default color of a shape or outline is black (#000000). To use different
colors, you can set these using the fillStyle property for fill color and
strokeStyle property for the color of a stroke (outline or line). For example,
consider this code:

Here, fillStyle is set to #FF0000 (red), and any shapes after this assignment
will use red for the fill color. This can always be changed as you go to use

shapes with different colors, as in the following code:

If you have particular settings such as fillStyle and strokeStyle that you want
to save for later, you can use the save() method. You can then restore those
settings using the restore() method, as in the following code:

You can use strokeStyle in the same way as fillStyle to set the color of a
shape outline or a drawn line (path). For example, the following code will
create a rectangle with a red outline:

Using Paths
The canvas context also allows you to draw lines and curves (paths), which
gives you the opportunity to create more complex drawings. You begin a path
by calling the beginPath() method, and then end a path by calling one of
several methods. In between, you can use a number of methods to draw lines,
curves, and more. Table 16-3 lists the methods that can be used within a path.

Table 16-3 Methods for Drawing Paths

Once you have completed drawing a path, you can end the path in several
ways. Table 16-4 lists the available methods.

Table 16-4 Methods to End a Path

As an example, suppose you decide to draw a path using lines and arcs
and then want to stroke the path. You could use the following code:

Figure 16-10 shows the result of this code. It draws a half-oval on the canvas.

Figure 16-10 A stroked path on the canvas

Adding Text
The canvas API provides two methods for adding text to the context:
fillText() and strokeText(). Both take the same arguments: the text string, x,
y, and an optional argument to set a maximum width (which will attempt to
condense the text string if it is longer than the set width). For example, the
following code will draw the text string “I am some text on a canvas”
beginning at (10,10) with a maximum width of 200 pixels:

There are also three properties you can use to style text:

• font Sets the font properties using CSS format (for example, “bold 1em
Verdana”).

• textBaseLine Sets the text baseline. Possible values are “alphabetic”,
“bottom”, “hanging”, “ideographic”, “middle”, and “top”.

• textAlign Sets the alignment of the text. Possible values are “center”,
“end”, “left”, “right”, and “start”.

Thus, if you wanted to change the font and align the text, you could set
font and fontAlign, as in the following code:

The text will now be a bold Verdana font with “end” alignment. Figure 16-11
shows the result of this code when run in a browser.

Figure 16-11 The font is now a bold Verdana with “end” alignment.

Further Reading
The basics of using canvas have been covered, but there are even more things

you can do. You can learn more about using canvas at the following sites:

• https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API/Tutorial

• www.html5canvastutorials.com/

Drag and Drop
HTML5 provides native drag-and-drop capabilities to the browser with the
help of JavaScript. Some elements, such as links, images, and selected text,
are draggable by default. If you want to make another element draggable, or
if you want to ensure an element is not draggable, you can use the draggable
attribute in its HTML tag, as in the following examples:

The next thing you will need is a valid drop target. To set this, you will
need to get the element in JavaScript and ensure that its dragover, dragenter,
and drop events prevent the default action, which is to not allow dropping. To
do this, you can simply add event listeners to each event for the element, as in
the following code:

Doing this will allow items to be dropped into the dropdiv element.

https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API/Tutorial
http://www.html5canvastutorials.com/

The Drag-and-Drop Events
Seven events are involved in the drag-and-drop process, and each is
described in Table 16-5.

Table 16-5 The Drag-and-Drop Events

Each of these can have event listeners added in order to perform further
scripting. Depending on what you need to do, you may use any number of
these events when creating a drag-and-drop script.

The dataTransfer Object
While you can currently drag an item and drop it with what you have so far,
you will probably want to be able to access data stored within the item being
dragged so that it can be used when it is dropped. This is where the
dataTransfer object can be used.

The dataTransfer object is part of the event object and has two methods
for setting and retrieving data from the dragged item: setData() and getData().

The setData() method can be used to set custom data, but it’s also called
by default when selected text, an image, or a link is dragged. For selected
text, it will store the dragged text; for an image, it will store the image URL;
and for a link, it will store the link URL. If you need to store custom data
rather than using these defaults (or if you are dragging a different type of
element), you can store either text or a URL using the following code:

Note that you can store both “text” and “URL” types in a single dataTransfer
object, but you cannot have more than one of either type. HTML5 extends
this to allow for any MIME type to be passed (“text” and “URL” are still
valid and are the same as using the “text/plain” and “text/uri-list” MIME
types, respectively). Just remember that only one piece of data from each
MIME type can be stored in a dataTransfer object.

The getData() method is used to retrieve any data stored in a dataTransfer
object. Due to browser compatibility issues, it is best to use the following
example code when retrieving text or URL information from the dataTransfer
object:

Notice the capital “T” when retrieving text, which allows older versions of
Firefox to get the text value while still working for other browsers. Also, note
the method for getting the URL tests first for the “URL” and then for the
MIME type “text/uri-list” in order to help with older versions of Internet
Explorer.

A Quick Drag-and-Drop Script
As an example to put all of this together, you will create a script to drag a
link into a div element in order to display the link URL. First, begin with the
following HTML code:

Since links are draggable by default, the draggable=“true” attribute is not
necessary here. The div element is given a border so that the user can see
where to drag the link. Next, you will need the following JavaScript code:

You will notice that since you are dragging a link, you do not need to call
setData() to store the URL in the dataTransfer object (if you needed to do
this, for example, to store text, you would also need to get the link element by
its id, add an event listener for the dragstart event, and then use setData()
within that function). The action here occurs on the drop event for the target
div element. When the link is dropped inside the target div, the URL that was
stored in the dataTransfer object is displayed in that div using innerHTML.
Figure 16-12 shows the page before the item is dragged and dropped, and
Figure 16-13 shows the page afterward.

Figure 16-12 The original page

Figure 16-13 The page after the item has been dragged and dropped

Further Reading
While this book introduces drag and drop, you may decide to delve deeper
into the topic to create more advanced drag-and-drop scripts. The following
resources will provide you with more information on using the drag-and-drop
capabilities of HTML5.

• http://html5doctor.com/native-drag-and-drop/

• dev.opera.com/articles/view/accessible-drag-and-drop/

Try This 16-3 Drag and Drop

pr16_2.html

prjs16_2.js

This project will update the drag-and-drop example script so that it stores
descriptive text about the link. This will be displayed when the link is
dropped in the target div rather than the link URL.

Step by Step
1. Create an HTML document named pr16_2.html and use the following

HTML code for the body section:

http://html5doctor.com/native-drag-and-drop/
http://dev.opera.com/articles/view/accessible-drag-and-drop/

2. Create a JavaScript file named prjs16_2.js and begin with the code from
the drag-and-drop example from this chapter. Alter the code so that the
text “This links goes to my Web Site!” is stored in the dataTransfer
object when the link is dragged and then is displayed in the drop target
div when the link is dropped inside it. When complete, the code should
look like this:

3. Save the JavaScript file and then open the HTML file in a browser that
supports HTML5 drag and drop (the latest Firefox or Chrome browser
should work). Drag the link into the div to display the link’s description.

Try This Summary
In this project, you updated your drag-and-drop script so that it stores and
retrieves text from the dataTransfer object. This text is then displayed when
the link is dragged and dropped into the target div element.

Node.js App Completion
With your work on AJAX in Chapter 15, you can now complete your Node.js
web app by simply retrieving the bowler information using
XMLHttpRequest. This will require some changes to both the Node.js code
and the front-end code so that you can complete the display of the bowler
information.

Update the Node.js Code
Since you now want to be able to send the information to the front end when
an XMLHttpRequest is used, you will replace your old getBowlerData()
function with a new route handler that will return the results of the database
query along with a couple of additions you will make before sending the final
data to the front end.

First, update your server.js file to use the following code:

Note that you will need to make sure the connection string uses the correct
information for your installation (you should have this from older examples
you have completed).

Notice that the old getBowlerData() function is replaced with a new route.
Much like you handled the default route ‘/’, you now have the ‘/api/bowlers’
public route. If you have the server running and type
http://localhost:3000/api/bowlers into the address bar, the browser will show
the JSON data that results from retrieving the bowler information from the
database. When you alter the front-end code, the browser will use an AJAX
request to get this information.

Notice that within the route-handling function, you do much of what you
did to get the bowler information before. The database is queried and then
you are able to use the result of the query. Here, you use the opportunity to
perform some concatenation to get bowler full names, calculate the bowler
ratings, and sort the results from highest to lowest bowler rating. The result is
then sent as JSON to the front end using the following line of code:

res.status(200).json(result.rows);

The status(200) portion sets the http status code that will be returned, while
json(result.rows) provides the content to be returned and puts it into JSON
format.

Notice also the following line of code that hasn’t been looked at in detail
yet:

app.use(express.static(path.join(__dirname, 'public')));

This line provides a folder where the front-end code can access public assets

http://localhost:3000/api/bowlers

such as CSS and JavaScript files that will be needed for the front end. In this
case, it sets the location of these files to a folder named “public” within your
main project folder. You will create this folder and add some files to it in the
next section.

With this in place, you can now move on to updating the front-end code to
be able to use this new route and get the information.

Update the Front-End Code
On the front end, you will want to add a “public” folder inside your main
project folder (where you are keeping the server.js and index.html files). You
will place a JavaScript and CSS file inside this folder after the index.html file
is updated.

First, update your index.html file to use the following code:

The updated HTML includes an external CSS and external JavaScript file,
and it creates the beginning of a table that will be used to display the bowler
data. You will use JavaScript to append a new table row for each bowler after
the header row that is already in place.

Next, create a CSS file named bowlers.css with the following code and
save it inside the “public” folder you created:

This provides some basic styles for the page and the table that will display.
You can expand on this as you like to create a more interesting layout!

Next, create a JavaScript file named bowlers.js with the following code
and save it inside the “public” folder you created:

Here you will see that an “outer” object named bowlerApp is created. This
helps keep the majority of the code out of the global space where variable or
function names could get crossed up with those of other libraries if you were
to use them. Instead, your app code is contained inside your own
“bowlerApp” namespace.

You are familiar with the AJAX call from using it in Chapter 15. This

simply gets the data from the API route you created on your Node.js server
and then calls the displayBowlers method, which will then create the table
elements needed, insert the data retrieved into those elements, and add those
elements to the DOM within the table you created in your HTML code.

One thing you may notice here is that at the end of the onreadystatechange
function is a .bind(this). This addition ensures that the “this” you refer to
within the onreadystatechange function is the “this” for the “bowlerApp”
object. By default, the onreadystatechange function (as well as many others)
use their own “this” context. This behavior can make using properties or
methods of the object fail unexpectedly, saying they are undefined. By
providing the proper context for the object, you can again use the “this”
keyword to access the properties and methods of the object like you intended.
Note that if you will not use any of the bowlerApp properties or methods
within the onreadystatechange function, then the bind is not necessary and
the default “this” context won’t affect anything.

Another option is to make use of the newer arrow functions you have
learned about earlier in this book. The following code shows an example of
using arrow functions instead:

With all the new code in place, start your Node.js server (node server.js
from the command line) and then open http://localhost:3000 in your browser.
The bowler information should display in a table, as shown in Figure 16-14!

http://localhost:3000

Figure 16-14 The bowler information is displayed in the browser.

With this basic app in place, you can go back and expand on it any number
of ways. You could add more data to the database and retrieve that, add more
interactivity by allowing users to add or remove bowlers from this list, or any
number of other ideas. Have a little fun with it!

Need Help?
If you find that you are stuck and need help, feel free to get online and visit
me.

If you would like to contact me, you can find me on the following
platforms:

• Twitter @ScripttheWeb

• LinkedIn https://www.linkedin.com/in/john-pollock-82a2b074

• GitHub https://github.com/JohnPollock

Ask the Expert
Q: Where can I find free cut-and-paste JavaScript code on the

Web?

A: • http://javascript.internet.com
• https://javascriptsource.com/
• www.javafile.com

https://www.linkedin.com/in/john-pollock-82a2b074
https://github.com/JohnPollock
http://javascript.internet.com
https://javascriptsource.com/
http://www.javafile.com

Q: Where can I learn more about JavaScript?

A: • developer.mozilla.org/en/JavaScript
• www.javascriptkit.com
• www.quirksmode.org/js/contents.html

Q: Where can I learn more about Cascading Style Sheets?

A: • https://css-tricks.com/
• www.csszengarden.com

Q: Where can I learn more about HTML5?

A: • www.html5doctor.com

 Chapter 16 Self Test

1. Which of the following is used to see if a document is ready in jQuery?

A. docReadyState()
B. $documentReady()
C. $(document).ready()
D. $(document).done()

2. Which of the following lines would hide an element with an id of
“story” using jQuery?

A. $(getElementById(“story”)).hide();
B. $(“#story”).hide();
C. $#story.hide();
D. $(“story”.hide)();

3. __________ syntax is used to select elements in jQuery.

4. The jQuery library makes it easier to write code that is __________.

5. The __________ element allows you to use JavaScript to draw on a

http://developer.mozilla.org/en/JavaScript
http://www.javascriptkit.com
http://www.quirksmode.org/js/contents.html
https://css-tricks.com/
http://www.csszengarden.com
http://www.html5doctor.com

defined area of the page.

6. When drawing on a canvas, you can use the fillCircle() method to draw
a circle.

A. True
B. False

7. The __________ attribute of an element defines whether or not the
element can be dragged.

8. JavaScript __________ may make some advanced coding tasks easier
by making the code easier to write.

9. By default, all elements are draggable.

A. True
B. False

10. The __________ event occurs when an element begins being dragged.

11. Which object can be used to store or retrieve data during the drag-and-
drop process?

A. event.dataStorage
B. event.dataTransfer
C. event.data
D. event.dataMove

12. Which method is used to get data stored during a drag and drop?

A. retrieveData()
B. getInfo()
C. getItems()
D. getData()

13. Is JavaScript fun?

A. Yes!
B. Maybe for you!
C. I was forced to learn this by my boss, so it can never be fun!
D. I guess it’s OK.

Appendix
Answers to Self Tests

Chapter 1: Introduction to JavaScript
1. C. HTML

2. A. A Web browser

3. C. JavaScript

4. B. False

5. C. ECMAScript

6. A. True

7. C. LiveScript

8. A. prototype-based

9. B. False

10. B. It may offer features such as code highlighting, completion,
debugging tools, and more.

11. C. interpreted

12. B. False

13. D. The client

14. D. It is added to an HTML document.

15. A. <script> and </script> HTML tags

Chapter 2: Placing JavaScript in an HTML

File
1. D. All of the above

2. B. To ensure the Web page validates when using XHTML

3. A. Yes

4. The noscript tag provides content for those without JavaScript.

5. A. .js

6. B. <script src=“yourfile.js”></script>

7. In HTML, the script tag is not case sensitive. However, with XHTML,
the script tag must be in lowercase.

8. D. semicolon

9. A. document.write()

10. C. When the script is very long or needs to be placed in more than one
HTML document

11. JavaScript comments can be very useful for the purpose of
documenting or debugging your code.

12. C. //

13. A. /*

14. D. */

15. A. close

Chapter 3: Using Variables
1. A variable represents or holds a value.

2. A. They can save you time in writing and updating your scripts, and they
can make the purpose of your code clearer.

3. To declare a variable, you use the var keyword.

4. D. =

5. C. var pagenumber = 240;

6. B. False

7. A variable name must begin with a letter, a dollar, or an underscore
character.

8. A. True

9. B. var my_house;

10. In JavaScript, the data types include Number, String, Boolean, Null,
Undefined, Symbol, and Object.

11. To denote an exponent in JavaScript, you use the letter e right after the
base number and before the exponent.

12. C. var mytext = “Here is some text!';

13. D. document.write(“John said, \“Hi!\””);

14. Special characters enable you to add things to your strings that could not
be added otherwise.

15. B. document.write(“I like to” + myhobby + “every weekend”);

Chapter 4: Using Functions
1. In general, a function is a little script within a larger script that is used

to perform a single task or a series of tasks.

2. B. They provide a way to organize the various parts of the script into the
different tasks that must be accomplished, and they can be reused.

3. On the first line of a function, you declare it as a function, name it, and
indicate whether it accepts any arguments.

4. C. function

5. A. {} (curly brackets)

6. A. True

7. B. False

8. C. function get_text()

9. Arguments are used to allow a function to import one or more values

from somewhere outside the function.

10. B. () (parentheses)

11. D. Comma

12. D. window.alert(“This is text”);

13. B. some_alert(“some”, “words”);

14. A. var shopping = get_something();

15. A global variable can be used anywhere in JavaScript.

16. The const and let keywords create values in the current block context.

Chapter 5: JavaScript Operators
1. operator

2. Arithmetic

3. addition

4. before

5. D

6. A

7. right, left

8. C

9. A

10. D

11. logical

12. B

13. B

14. Bitwise

15. Precedence

Chapter 6: Conditional Statements and
Loops
1. condition, condition

2. cause, effect

3. A

4. B

5. C

6. switch

7. loop

8. B

9. A

10. while

11. B

12. A

13. B

14. B

15. D

Chapter 7: JavaScript Arrays
1. An array is a way of storing a list of data.

2. In JavaScript, there are two ways to define an array.

3. In an array, access to an element is achieved through the use of a(n)
index.

4. You can use a loop to cycle through all of the items in an array.

5. B. False.

6. D. let myarray = new Array[10];

7. B. False (this accesses the sixth item, cool[4] accesses the fifth).

8. C. Creates an array with five items.

9. A. The length property.

10. Array literal notation allows you to create an array using square
brackets, without the need to write out “new Array”.

11. The concat() method is used to combine the items of two or more arrays
and return a new array containing all of the items.

12. The join() method is used to combine the items of an array into a single
string, with each item separated by a specified character.

13. The pop() method is used to remove the last element from an array.

14. C. It sorts the contents using string character codes.

15. Nested arrays provide the ability to create arrays of more than one
dimension.

Chapter 8: Objects
1. An object is a collection of properties and values.

2. When creating single objects, you can use the object constructor or
object literal notation.

3. A. True.

4. B. dot operator (.).

5. When you need to use a variable to access a property name, you can use
bracket notation.

6. A constructor function can be used to create an object structure.

7. An instance of an object can be created using the new keyword.

8. B. False.

9. C. Assuming the myhouse object exists, it assigns the value of the
kitchen property of the myhouse object to the variable x.

10. If a property cannot be found in the object instance, JavaScript will look
in the object’s prototype.

11. B. window.alert(“You are using” + navigator.appName);

12. C. Assuming the myhouse object exists, the kitchen property is assigned
a new string value of “big” or is initialized with the value “big”.

13. In JavaScript, there are many predefined objects you can use to gain
access to certain properties and methods you may need.

14. The navigator object gives you access to the various properties of the
viewer’s browser.

15. C. appType.

Chapter 9: The Document Object
1. The document object is an object that is created by the browser for each

new HTML page that is viewed.

2. The referrer property of the document object returns the URL of the
document that referred the viewer to the current document.

3. A. True.

4. D. getElementById().

5. B. False (it is added as the last child node rather than the first).

6. B. False.

7. The anchors property of the document object is an array that contains
all of the anchor (<a>) tags on the page.

8. The innerHTML DOM node property allows you to change the HTML
content of an element node.

9. The lastModified property holds the value of the date and time the
current document was last modified.

10. A. True.

11. A. True.

12. C. URL.

13. C. It adds a JavaScript newline character at the end of the line.

14. C. All the elements that have the same value for the name attribute (most
commonly radio buttons).

15. B. document.write() and document.writeln() statements.

Chapter 10: Event Handlers
1. A. True.

2. Event handlers are useful because they enable you to gain access to the
events that may occur on the page.

3. To use an event handler, you can place it in the HTML or the
JavaScript code.

4. C. <input type=“button” onclick=“window.alert(‘Hey there!’);”>

5. The load event occurs when a Web page has finished loading.

6. D. The viewer moves the mouse cursor over an element on the page.

7. B. False.

8. The unload event occurs when the viewer leaves the current Web page.

9. The blur event is the opposite of the focus event.

10. The event object contains properties and methods for an event.

11. The type property of an event contains the type of event that occurred.

12. The submit event occurs when the viewer submits a form on a Web
page.

13. A. True.

14. In Internet Explorer prior to version 9, the event object can be accessed
by using window.event.

15. The addEventListener() method and the attachEvent() method are two
new ways to register events.

Chapter 11: Introduction to Node.js
1. B. False

2. C. node hello-world.js

3. D. const fs = require(‘fs’);

4. A custom module allows you to define your own reusable code.

5. A .js

6. B. False

7. The MEAN stack uses MongoDB, Express, AngularJS, and NodeJS.

8. B. False

9. The pg module can be used to query your database from a Node script.

10. A. *

11. The express module can be used to create a Web server in Node.js.

12. B. 80

13. D. router

14. B. False

15. A. You can use a WHERE clause to return only the rows in a table that
meet certain criteria.

Chapter 12: Math, Number, and Date
Objects
1. A. Take the square roots and other such values of strings and return a

number.

2. The E property holds the value of Euler’s constant.

3. The LN10 property holds the value of the natural logarithm of 10.

4. B. False

5. C. document.write(Math.PI);

6. The SQRT2 property holds the value of the square root of 2.

7. C. absolute

8. The asin() method returns the arcsine of a number sent to it as an
argument.

9. The pow() method returns the numeric value of the first argument raised
to the power of the second argument.

10. C. var rand_int= Math.floor(Math.random()*8);

11. The sqrt() method returns the square root of a number sent to it as an
argument.

12. D. An instance of the Date object

13. The getDay() method returns the number of days into the week.

14. B. False

15. B. var weekday= rightnow.getDay();

Chapter 13: Handling Strings
1. The String object provides properties and methods to get information

about strings or to modify strings.

2. A. Creating an instance of the String object and creating a string literal

3. You can create a string literal by assigning a string value to a variable.

4. C. JavaScript takes the string literal and turns it into a temporary String
object

5. C. length

6. The length property returns the length of a string.

7. B. var the_text = “Look at me!”;

8. B. charAt()

9. The big() method adds <big> and </big> tags around a string value.

10. The concat() method combines two or more strings together and returns
the new combined string value.

11. D. The indexOf() method returns a numeric value that is the position of
a character sent as a parameter, but only the position of the first
occurrence of that character.

12. Cookie information is stored in the document.cookie property.

13. The toString() method returns the string literal value of a string.

14. To replace information in a string, you can use regular expressions and
the replace() method of the String object.

15. The match() method compares a regular expression and a string to see
whether they match.

Chapter 14: Browser-Based JavaScript
1. A window object is created for each browser window.

2. A. True

3. The length property returns the number of frames within a window.

4. A. True

5. The name property holds the name of the current window and also
allows you to give the window a name.

6. A. The window object is the global object for JavaScript in Web
browsers.

7. The self property is another way of saying “the current window” in
JavaScript.

8. C. Newer browsers do not allow the window status to be changed by
default, so the user would need to change security settings in order for it
to work.

9. A. The parent property goes to the top of the current frame set, while the
top property goes to the top window of all frame sets on the page.

10. The alert() method pops up a message to the viewer, and the viewer has
to click an OK button to continue.

11. A. true

12. The print() method enables the viewer to print the current window.

13. The prompt() method is used to prompt the viewer to enter information.

14. D. yes, no, 1, and 0

15. B. The setInterval() method is used to repeat a function at a set time
interval, while setTimeout() executes a function only once after a set
time delay.

Chapter 15: JavaScript Forms and Data
1. Each time you add a set of <form> and </form> tags to an HTML

document, a form object is created.

2. The forms array allows you to access a form using an index number.

3. B. document.forms[3]

4. A. document.forms[2].length

5. C. document.forms.length

6. Using form names or ids allows you to name the forms on the page that
you want to access later.

7. A. document.f1.e1.value

8. The action property allows you to access the value of the action=“url”
attribute in the opening form tag.

9. The elements property is an array that allows you to access each
element in a specific form.

10. The pattern attribute in HTML5 allows you to give a form field a
regular expression it must validate.

11. The reset() method allows you to reset a form using your script.

12. C. <meter min=“0” max=“10” value=“8”>8</meter>

13. One way to help with form accessibility is to use the <label></label>
tags to identify what field a piece of text is describing.

14. The submit() method allows you to submit a form without the viewer
clicking the submit button.

15. C. required

16. B. XMLHttpRequest

17. AJAX stands for Asynchronous JavaScript and XML.

18. A. True

19. The acronym for JavaScript Object Notation is JSON.

Chapter 16: Further Browser-Based
JavaScript
1. C. $(document).ready()

2. B. $(“#story”).hide();

3. CSS syntax is used to select elements in jQuery.

4. The jQuery library makes it easier to write code that is cross-browser.

5. The <canvas> element allows you to use JavaScript to draw on a
defined area of the page.

6. B. False

7. The draggable attribute of an element defines whether or not the
element can be dragged.

8. JavaScript libraries may make some advanced coding tasks easier by
making the code easier to write.

9. B. False

10. The dragstart event occurs when an element begins being dragged.

11. B. event.dataTransfer

12. D. getData()

13. Any answer is correct!

Index

Please note that index links point to page beginnings from the print edition.
Locations are approximate in e-readers, and you may need to page down one
or more times after clicking a link to get to the indexed material.

A
abs() method in Math object, 322
acceptCharset property in Form object, 433
access

array elements, 167
forms, 438–440
frames, 420–423
web sites, 485–489

acos() method in Math object, 322
action property in Forms object, 433–434
activeElement property in document object, 224
add-and-assign operator (+=), 107–108
addClass() function, 473–474
addEventListener() method

DOM nodes, 242
event registration, 272–273, 275–276
form validation, 440–441
project, 278
window object, 399

addition operator (+) and addition
add-and-assign operator, 107–108
array elements, 176–178
precedence, 121
special rules, 100–101

strings, 50–51
type coercions, 99–100
variables, 98–99

addresses, testing, 370–371
AJAX (Asynchronous JavaScript and XML)

description, 456
example script, 458–461, 463–465
further reading, 461
open() and send() methods, 456–457
status property, readystatechange event, and responseText property, 457–

458
XMLHttpRequest Object, 456

alert() method in window object, 399–400
alerts, creating, 72–74
alignment of path text, 497
all property in document object, 224
allowed characters in variable names, 39–40
altering classes in jQuery, 473–475
ampersands (&)

bitwise assignment, 107
AND bitwise operator, 118
AND logical operator, 117, 133–134
precedence, 121

AND bitwise operator (&), 118, 121
AND logical operator (&&), 117

complex comparisons, 133–134
precedence, 121

anonymous functions, 83
APIs

<canvas> element, 492–498
drag and drop, 498–503

appCodeName property in Navigator object, 215
appendChild() method in DOM nodes, 241–244
appMinorVersion property in Navigator, 215

appName property in Navigator, 214–215
appVersion property in Navigator, 215
arc() method in paths, 496
arcTo() method in paths, 496
arguments

arrays, 166
functions, 20, 65, 67–69, 76–80

arithmetic operators
addition, 98–101
decrement, 104
division, 102
exponentiation, 106
increment, 103–104
modulus, 102–103
multiplication, 101
overview, 97
subtraction, 101
unary negation, 105–106
unary plus, 105

Array.from() method, 174, 187
Array.isArray() method, 174, 187
Array.of() method, 174, 187
arrays

benefits, 165
concat() method, 179–181
constructors, 165–166
defining, 165–167
description, 164
element access, 167
every() method, 183–184
filter() method, 183–184
find() and findNext() methods, 186
flat() and flatMap() methods, 187
forEach() method, 183–184

forms, 428–431
frames, 421–422
includes() method, 186
indexOf() and lastIndexOf() methods, 182–183
join() method, 174–175
keys() method, 186–187
length, 168–171
literal notation, 166–167
loops, 168–169, 171
map() method, 183–185
methods overview, 173–174
names, 165
nesting, 189–193
objects, 202–203
pop() method, 175–176
properties, 172–173
push() method, 176–177
Q&A, 188
reduce() and reduceRight() methods, 185
reverse() method, 178
self test, 193–194
shift() method, 177
slice() method, 181
some() method, 183–185
sort() method, 178–179
splice() method, 181–182
toLocaleString() method, 185
toString() method, 185
unshift() method, 177–178
valueOf() method, 185
values, 169–170

arrow functions, 84–85
asin() method in Math object, 322
assignment operators (=)

add-and-assign, 107–108
bitwise, 107
direct, 107
divide-and-assign, 109
exponent-and-assign, 109–110
modulus-and-assign, 109
multiply-and-assign, 109
precedence, 121
subtract-and-assign, 108
variables, 36–39

asterisks (*)
comments, 29
exponent-and-assign operator, 109–110
exponentiation operator, 106
jQuery elements, 472
multiplication operator, 101
multiply-and-assign operator, 109
precedence, 121
regular expressions, 381

async attribute in script tags, 18
asynchronous execution in Node modules, 296–298
Asynchronous JavaScript and XML. See AJAX (Asynchronous JavaScript

and XML)
atan() method in Math object, 322
atan2() method in Math object, 323
attachEvent() method, 242, 274–276
attributes

HTML5, 452
windows, 408–410

autocomplete property
Forms object, 433
HTML5, 452

autofocus attribute in HTML5, 452

B
\b characters

backspaces, 44
regular expressions, 382, 386

back() method in History object, 217
backslashes (\)

escaping characters, 45
regular expressions, 377, 382
special characters, 43–44

backspaces
regular expressions, 382
special character, 44

backticks (`) in template literals, 52–53
baselines for path text, 497
baseURIObject property in document object, 224
beginPath() method in paths, 495
bezierCurveTo() method in paths, 496
bitwise operators

assignment, 107
precedence, 121
symbols, 118

blank spaces in variable names, 39–40
block context for functions, 89–90
block nesting

for loops, 149–152
if/else statements, 129–132

block scope in if/else statements, 135–137
block structure in if/else statements, 127–129
blur events, 263–265, 270–271
blur() method

DOM nodes, 242
window object, 399

body property in document object, 224

body sections in script tags, 72–75
Boolean type

description, 47
is-equal-to operator, 112
is-greater-than operator, 115
is-not-equal-to operator, 113
switch statements, 139

boundaries in regular expressions, 382, 386
break statements

loops, 156–157
switch statements, 137

breaking out of frames, 423–424
browser-based JavaScript

accessibility, 485–489
APIs, 492–503
debugging, 479–485
frames, 420–424
images, 418–420
jQuery, 470–479
Node.js file, 503–508
security, 489–492
self test, 424–426, 509–510
windows. See windows and window object

browserLanguage property in Navigator, 215
browsers

guidelines, 8
viewing pages in, 26

bubbles property in event object, 276
bubbling phase for events, 274
buildID property in Navigator, 215
buttons in forms, 439

C
\c characters in regular expressions, 382

calculate-sum.js code, 299–300
call_alert() function, 75–76
callback functions, 297
calling

external scripts, 17, 27
functions, 71
functions, from other functions, 75–76
functions, script tags, 72–75
functions, with arguments, 76–80
functions, with return statements, 81
variables, 50

cancelable property in event object, 276
cancelBubble property in event object, 276
<canvas> element

color, 494–495
overview, 492
paths, 495–497
rectangles, 492–494
text, 497–498

capitalization
arguments, 67
regular expressions, 380
strings, 43, 368
variable names, 39

capturing phase in events, 274
carets (^)

bitwise assignment, 107
precedence, 121
regular expressions, 381, 383
XOR bitwise operator, 118

carriage return special character, 44
Cascading Style Sheets (CSS)

jQuery, 471–475
knowledge requirements, 3

Node.js file, 387–388, 505–508
presentation, 486
styles, 247–249, 252

case
arguments, 67
regular expressions, 380
strings, 43, 368
variable names, 39

ceil() method, 327–328
chaining if/else statements, 135
change content in scripts, 280–284
character codes for String object, 363–364
characterSet property in document object, 224
charAt() method in String object, 360–362
charCodeAt() method in String object, 360–362
charset attribute in script tags, 17
check_alert() function, 79–80
check boxes

forms, 439
validation, 442–444

checkValidity() method in Forms object, 436–437
Chrome browser, 4
Chrome Debugger tool, 484
class keyword for objects, 209–210
classes in jQuery, 473–475
clearInterval() method in window object, 399, 403–404
clearRect() method for rectangles, 494
clearTimeout() method in window object, 399, 404–405
click events

dynamic scripts, 249–250
overview, 262–263

click() method in DOM nodes, 242
client-side programming, 6–7
clip() method in paths, 496

clock script, 348–351
cloneNode() method in DOM nodes, 242
close() method

document object, 235–237
window object, 399, 411–412

closed property in window object, 393–394
closePath() method in paths, 496
closing windows, 411–412
cmd command, 292
code clarifiers, variables as, 36
coding dynamic scripts, 250–251
collections in document object, 225–226
colons (:)

conditional operator, 119, 140
objects, 198
precedence, 121
switch statements, 137

color
<canvas> element, 494–495
HTML5, 451
styles, 248

combining
array elements, 174–175, 179–181
strings, 51–52, 362–363

comma operator (,)
description, 119
precedence, 121

commands, adding, 55–56
commas (,)

arguments, 69
arrays, 166
comma operator, 119, 121
cookies, 372
objects, 198

precedence, 121
variable assignment, 36, 38

comments
multiple-line, 29–30
one-line, 28–29

compareDocumentPosition() method in DOM nodes, 242
comparison operators

is-equal-to, 111–113
is-greater-than, 114–115
is-greater-than-or-equal-to, 116
is-less-than, 115
is-less-than-or-equal-to, 116
is-not-equal-to, 113
precedence, 121
project, 121–122
strict is-equal-to, 114
strict is-not-equal-to, 114

comparisons
arrays, 179
for loops, 149
if/else statements, 128–129, 132–134
String object, 364

compatMode property in document object, 224
complete property in Image object, 418
complex comparisons in if/else statements, 132–134
concat() method

arrays, 179–181
String object, 362–363

concatenating
arrays, 174–175, 179–181
strings, 51–52, 362–363

conditional operator (?:)
description, 119
precedence, 121

using, 139–140
conditional statements

benefits, 127
conditional operator, 139–140
description, 126–127
if/else, 127–137
Q&A, 142
self test, 160–161
switch statements, 137–139
user input, 140–141

conditions in for loops, 146
confirm() method in window object, 399–401, 406–407
console for debugging scripts, 482–483
console property in window object, 393
const keyword, 90
constructor property for arrays, 172
constructors

arrays, 165–166, 190
functions, 84
objects, 197–198, 201–206

content
enhancing, 488
presentation separated from, 486–487

contentType property in document object, 224
context in functions, 87–91
continue statements in loops, 156–157
conversions

String object case, 368
type coercions, 99–100

cookie property in document object, 224, 226
cookieEnabled property in Navigator, 215–216
cookies

expiration dates, 373–374
names, 374–377

overview, 371
reading, 374–376
setting, 372–374
user input, 373

copyWithin() method in arrays, 174
cos() method in Math object, 322
count variable in for loops, 146–147
cpuClass property in Navigator, 215
createElement() method in document object, 241
createTextNode() method in document object, 241, 243
Crockford, Douglas, 462
cross-site scripting (XSS), 490–492
CSS. See Cascading Style Sheets (CSS)
css() method in jQuery, 471
curly brackets ({})

block context, 89
do while loops, 155
for loops, 145–147, 149
functions, 66
if/else statements, 128–130, 134–135
objects, 198
regular expressions, 381, 384
switch statements, 137

current window, 397
currentScript property in document object, 224
currentTarget property in event object, 276
custom events for scripts, 284–286
custom Node modules, 299–301

D
\d characters in regular expressions, 382–383
data

AJAX, 456–461
JSON, 462–465

self test, 465–467
data types

Boolean, 47
null, 47
numbers, 41–42
objects, 48, 196
strings, 42–47
symbol, 48
type coercions, 99–100
undefined, 47
variables, 41–48

databases in Node.js
adding data to, 308–310
creating, 303–311
installing, 301–302
options, 302
pg module, 310–311
PostgreSQL, 302
query users, 307–308
tables, 303–306

datalist element in HTML5, 446
dataTransfer object drag and drop, 499–500
Date object

description, 340
methods, getting values, 342–344
methods, miscellaneous, 345–346
methods, overview, 340–342
methods, setting values, 345
methods, UTC, 344–345
Node.js, 351–355
scripts, 346–351
self test, 355–356

date type in HTML5, 451
datetime-local type in HTML5, 451

datetime type in HTML5, 451
debugging scripts

browser developer tools, 484
console, 482–483
error types, 479–480
lint tool, 483–484
Q&A, 485

declaring
functions, 65, 82
variables, 36–37, 49–50, 78

decodeURIComponent() method in window object, 399
decrement operator (--), 104
default actions for event object, 277
default statements for switch, 137–138
defaultPrevented property in event object, 276
defaultStatus property in window object, 397–398
defaultView property in document object, 224
defer attribute in script tags, 18
defining

arrays, 165–167
document object, 222–223
functions, 66, 82–85
nested arrays, 189–190
objects, 196
variables, 36–37, 54–55

delete operator, 119
designMode property in document object, 224
detachEvent() method in DOM nodes, 242
detail property in event object, 276
digits in regular expressions, 382–383
dir property in document object, 224, 226
dirname attribute in HTML5, 452
dispatchEvent() method in DOM nodes, 242
division

divide-and-assign operator, 109
division operator, 102
modulus operator, 102–103
precedence, 121

do while loops, 154–156
doctype property in document object, 224
document object

close() method, 235–237
collections, 225–226
cookies, 372–374
defining, 222–223
Document Object Model, 223
DOM nodes, 238–247
dynamic scripts, 247–252
forms. See forms
getElementById() method, 232–233
getElementsByClassName() method, 233
getElementsByName() method, 233–234
getElementsByTagName() method, 234
methods overview, 230–232
open() method, 235–237
properties, 223–230
querySelector() method, 234
querySelectorAll() method, 234
self test, 253–254
write() method, 237–238
writeln() method, 237–238

Document Object Model (DOM)
event object levels, 274–275
jQuery elements, 470
nodes, adding to documents, 246–247
nodes, methods, 241–246
nodes, properties, 238–241
purpose, 7

using, 223
document property in window object, 393
documentElement property in document object, 224
documentMode property in document object, 224
documentURI property in document object, 224
documentURIObject property in document object, 224
dollar characters ($)

regular expressions, 381, 383
template literals, 52
variable names, 39–40

DOM. See Document Object Model (DOM)
domain property in document object, 224
dots (.)

arrays, 168
commands, 22
objects, 197–200, 205
parseInt() method, 339
regular expressions, 381

drag and drop
events, 499–500
example script, 500–501
overview, 498–499
project, 502–503

draggable attribute, 498
drawing context for graphics, 492
dynamic scripts

coding, 250–251
event handling, 249–250
styles, 247–249

E
E property in Math object, 319
e value in exponential notation, 42
ECMAScript, 5

Edge Debugger tool, 484
elements

array access, 167
HTML5, 446–450

elements property in Forms object, 433–435
email type in HTML5, 451
embeds property in document object, 224
empty arrays, 166
encodeURIComponent() method

cookies, 372–374
window object, 399

encoding property in Forms object, 433, 435
enctype property in Forms object, 433, 435
entries() method for arrays, 174
environments, 9
EPSILON property in Number object, 335
equal to (=) symbol

arrow functions, 84
assignment operators, 107–111, 121
comparison operators, 111–114, 116
precedence, 121
variable assignment, 37–39

error() method in console, 483
error types, 479–480
escaping characters, 45–47
eval() method, 89
event object

DOM levels, 274–275
event information, 277
properties and methods, 276–277
registering events, 275–276

event property in window object, 393
eventPhase property in event object, 276
events and event handlers

benefits, 256–257
blur, 263–265, 270–271
click, 262–263
description, 256
drag and drop, 499–500
dynamic scripts, 249–250
event object, 274–277
events overview, 260–262
focus, 263–265, 270–271
in HTML elements, 257–258
keyboard, 269–270
load, 265–268
mouse, 269
Node modules, 297
Q&A, 271–272
registering, 272–276
removing, 273–274
reset, 268
in script code, 259–260, 278–286
self test, 286–287
submit, 268

every() method in arrays, 183–184
exclamation points (!)

is-not-equal-to operator, 113
NOT operator, 118
precedence, 121
strict is-not-equal-to operator, 114

execution order of functions, 73–74
exp() method in Math object, 322
expiration dates for cookies, 373–374
exponent-and-assign operator (**=), 109–110
exponential notation, 42, 338
exponentiation operator (**), 106
expressions

functions, 82–84
regular. See regular expressions
switch statements, 139

external scripts
calling, 17, 27
working with, 24–27

F
\f characters

form feeds, 44
regular expressions, 382

fadeIn() method in jQuery, 475
fadeOut() method in jQuery, 475–476
fadeToggle() method in jQuery, 475
falling through switch statements, 137–138
false values, 47
<fieldset> tag in forms, 439
File System (fs) module, 295–296
fill() method

arrays, 174
paths, 496

fillRect() method in rectangles, 492–494
fillStyle property in rectangles, 494–495
fillText() method in paths, 497
filter() method in arrays, 183–184
find() method

arrays, 174, 186
window object, 399

findIndex() method in arrays, 174
findNext() method in arrays, 186
Firefox browser, 4–5
flags in regular expressions, 379–380
flat() method in arrays, 174, 187
flatMap() method in arrays, 174, 187

floor() method, 328
flow control. See conditional statements
focus events, 263–265, 270–271
focus() method

DOM nodes, 242
window object, 399

font property for path text, 497–498
for each in loops, 156
for in loops

description, 156
objects, 210–211

for loops
block nesting, 149–152
comparisons, 149
infinite, 152–153
multiple statements, 153
structure, 145–148

for of loops, 156
forEach() method in arrays, 183–184
form feed special character, 44
formaction attribute in HTML5, 452
formatting, JSON, 462
formenctype attribute in HTML5, 452
formmethod attribute in HTML5, 452
formnovalidate attribute in HTML5, 452
forms

accessibility, 438–440
arrays, 428–431
attributes, 452
elements, 446–450
Forms object, 433–437
HTML5, 446–456
input types, 450–451
self test, 465–467

server-side scripts, 439–440
validation, 440–444, 452–455

Forms object
methods, 436–437
properties, 433–436

forms property in document object, 224
formtarget attribute in HTML5, 452
forward() method in History object, 217
forward slashes (/)

comments, 28–29
divide-and-assign operator, 109
division operator, 102
regular expressions, 377

frameElement property in window object, 393
frames

accessing, 420–423
breaking out of, 423–424
frames array, 421–422
iFrames, 424
names, 422–423
purpose, 420

frames property in window object, 393, 395
framework for pages, 54
from() method in arrays, 174, 187
fromCharCode() method in String object, 363–364
front-end code in Node.js file, 504–508
fs (File System) module, 295–296
fs.mkdir method, 296
fullscreen attribute in windows, 409
fullscreenEnabled property in document object, 224
function declaration hoisting, 71
function keyword, 65
functions

arguments, 67–69

arrow, 84–85
benefits, 64–65
calling, 71–87
constructors, 84
declaring, 65, 82
defined, 20
defining, 66, 82–85
description, 64
execution order, 73–74
expressions, 82–84
HTML pages with, 86–87
names, 67
Q&A, 85
return statements, 69–71, 81
scope and context, 87–91
self test, 91–93
writing, 90–91

G
g flag in regular expressions, 380, 385
get_added_text() function, 70, 81
get_messages() function, 76
get methods in document object, 230–232
get-monthly-income.js code, 299
getAttribute() methods in DOM nodes, 242
getContext() method in graphics, 492
getData() method in dataTransfer object, 499–500
getDate() method in Date object, 343
getDay() method in Date object, 343
getElementById() method

document object, 223, 232–233
event handlers, 259
forms array, 431–432

getElementsByClassName() method in document object, 233

getElementsByName() method in document object, 233–234
getElementsByTagName() method

document object, 223, 234
DOM nodes, 242

getElementsByTagNameNS() method in DOM nodes, 242
getFullYear() method in Date object, 344
getHours() method in Date object, 343
getMilliseconds() method in Date object, 343
getMinutes() method in Date object, 343
getMonth() method in Date object, 344
getSeconds() method in Date object, 344
getTime() method in Date object, 344
getTimezoneOffset() method in Date object, 344
global context for functions, 87–88
global matches in regular expressions, 380
global objects in window object. See windows and window object
global variables for functions, 77–78
go() method in History object, 217
Google Chrome browser, 4
Grant Wizard, 307–308
graphics

<canvas> element, 492–498
color, 494–495
paths, 495–497
rectangles, 492–494
text, 497–498

greater than signs (>)
arrow functions, 84
bitwise assignment, 107
is-greater-than operator, 114–115
is-greater-than-or-equal-to operator, 116
precedence, 121
right shift operators, 118

grouping regular expressions, 384–387

H
hasAttribute() method in DOM nodes, 242
hasChildNodes() method in DOM nodes, 242
hasClass() method in jQuery, 474
hash tables, 196
hasOwnProperty() method, 208
head property in document object, 224
head sections in script tags, 72–75
height

Image object, 418
windows, 395, 409

Hello World script, 20–22, 292–294
hexadecimal numbers in parseInt() method, 339
hidden content in scripts, 279–280
hide() method in jQuery, 475
hiding web page source code, 490
History objects, 216–218
history property in window object, 393
hover buttons for images, 418–420
HTML files

calling external scripts from, 27
comments, 28–30
creating, 21, 24–26
event handlers in elements, 257–258
external files, 24–27
knowledge requirements, 3
scripts, creating, 20–22
scripts, inserting, 21–23
scripts, loading, 18
scripts, tags, 16–20
self test, 30–32

HTML5
attributes, 452

<canvas> element, 492–498
drag and drop, 498–503
elements, 446–450
form validation, 452–455
input types, 450–451

Hypertext Markup Language (HTML). See HTML files

I
i flag in regular expressions, 380
id attribute in event handlers, 259
IDs in forms array, 431–432
if/else statements

block nesting, 129–132
block scope, 135–137
block structure, 127–129
chaining, 135
complex comparisons, 132–134
curly brackets shortcuts, 134–135

iFrames, 424
images

Image object, 418–420
random numbers for, 331–333

images property in document object, 224
implementation property in document object, 224
in operator, 119
includes() method in arrays, 174, 186
increment operator (++), 103–104
indentation, 130
indexes

array elements, 167, 172, 182–183
document object, 225–226
forms array, 428–429

indexOf() method
arrays, 182–183

String object, 364–366
infinite loops

for, 152–153
while, 154

infinity value, 102
innerHeight property in window object, 393, 395, 398
innerHTML property in dynamic scripts, 250–251
innerWidth property in window object, 393, 395
input

cookies, 373
HTML5 types, 450–451
from prompts, 140–141, 143–144

input property for arrays, 172
inputEncoding property in document object, 224
insertBefore() method, 241–242
inserting scripts, 21–23
installing

Node.js file, 291–295
PostgreSQL, 302

instanceof operator, 119
instances of objects, 196, 202–203
integers, random, 329
interpreted languages, 9
is-equal-to operator (==), 111–113
is-greater-than operator (>), 114–115
is-greater-than-or-equal-to operator (>=), 116
is-less-than operator (<), 115
is-less-than-or-equal-to operator (<=), 116
is-not-equal-to operator (!=), 113
isArray() method, 174, 187
isNaN() function in Math object, 320
iterative functions for arrays, 183–185

J

Java programming language vs. JavaScript, 6
javaEnabled() method in Navigator, 216
JavaScript Object Notation (JSON), 462–465
JavaScript overview, 2

client-side and server-side programming, 6–7
environments, 9
HTML and CSS knowledge requirements, 3
interpreted language, 9
online resources, 10
prototype-based language, 9
running, 10
self-test, 11–13
text editor requirements, 3
versions, 5–6
web browser requirements, 3–5
writing text, 10–11

join() method for arrays, 174–175
jQuery

altering classes, 473–475
effects project, 477–478
methods, 475–477
obtaining, 470–471
Q&A, 478–479
selectors, 471–473
starting, 471

JSHint tool, 483
JSLint tool, 483
JSON (JavaScript Object Notation), 462–465

K
keyboard events, 269–270
keys() method for arrays, 174, 186–187
keywords, 40–41

L
<label> tag, 438–439
labels in Forms object, 438
language property

Navigator, 215
script tags, 17, 19

lastIndexOf() method
arrays, 182–183
String object, 364–366, 370–371

lastModified property in document object, 224, 226–227
lastStyleSheetSet property in document object, 224
left attribute in windows, 409
left shift operator (<<), 118
length and length property

arrays, 166, 168–171, 173
forms array, 429–430
Forms object, 433, 435
String object, 360
window object, 393, 395

less than signs (<)
bitwise assignment, 107
is-less-than operator, 115
is-less-than-or-equal-to operator, 116
left shift operator, 118
precedence, 121

let keyword, 89–90
line breaks for functions, 66
lineTo() method in paths, 496
links_alert() function, 76
links property in document object, 224
links, random numbers for, 334–335
lint tool for debugging scripts, 483–484
literal notation

arrays, 166–167
objects, 198
strings, 52–54, 359–360

LN2 property in Math object, 319
LN10 property in Math object, 319
load events, 265–268
loading scripts, 18
local variables in functions, 78
localeCompare() method in String object, 364
localStorage property in window object, 393
location property

document object, 225
window object, 393, 395–396, 398
windows, 409

log() method in console, 483
LOG2E property in Math object, 319
LOG10E property in Math object, 319
logical errors, 481–482
logical operators

AND, 117
bitwise, 118
NOT, 118
OR, 117–118
precedence, 121

loops
arrays, 168–169, 171
benefits, 144–145
break and continue statements, 156–157
description, 144
do while, 154–156
for, 145–153
for each in, 156
for in, 156
for of, 156

nested arrays, 190–192
objects, 210–211
Q&A, 157–158
self test, 161–162
while, 154
working with, 158–160

lowercase conversions for String object, 368

M
m flag in regular expressions, 380
map() method for arrays, 183–185
match() method

regular expressions, 386–387
String object, 366–367

matchAll() method in regular expressions, 386–387
matches in regular expressions. See regular expressions
Math object

benefits, 318
ceil() method, 327–328
description, 318
floor() method, 328
methods overview, 321–323
min() and max() methods, 324–325
pow() method, 325–326
properties, 318–320
Q&A, 333–334
random() method, 328
random numbers, 329–335
round() method, 328
self test, 355–356
two-argument methods, 323–324

max() method in Math object, 323–325
MAX_SAFE_INTEGER property in Number object, 335
MAX_VALUE property in Number object, 335–336

menubar attribute in windows, 409
meter element in HTML5, 446–448
method property in Forms object, 433, 435
methods

arrays, 173–188
Date object, 340–346
document object, 230–238
DOM nodes, 241–246
event object, 276–277
Forms object, 436–437
History object, 217–218
jQuery, 475–477
Math object, 321–333
Navigator object, 216
Number object, 337–340
objects, 197, 205–208
String object, 360–369
window object, 399–407

Microsoft Edge browser, 4
mimeTypes property in Navigator, 215
min() method in Math object, 323–325
MIN_SAFE_INTEGER property in Number object, 335
MIN_VALUE property in Number object, 335–336
minus signs (-)

add-and-assign operator, 108
decrement operator, 104
precedence, 121
subtraction operator, 101
unary negation operator, 105–106

modifying pages, 56–57
modulus-and-assign operator (%=), 109
modulus operator (%)

description, 102–103
precedence, 121

month type in HTML5, 451
mouse events, 269
moveBy() method in window object, 399, 412–416
moveTo() method

paths, 496
window object, 399, 412–416

Mozilla Firefox browser, 4–5
multiline mode in regular expressions, 380
multiple arguments for functions, 69
multiple-line comments, 29–30
multiple statements in for loops, 153
multiplication operator (*), 101
multiplication precedence, 121
multiply-and-assign operator (*=), 109

N
\n characters

newlines, 44–45
regular expressions, 382

name property
Forms object, 433, 436
Image object, 418
window object, 393, 396–397

names
arrays, 165
cookies, 374–377
frames, 422–423
functions, 65, 67
objects, 196–197
variables, 39–41

namespaceURI property in document object, 225
NaN (Not a Number)

division, 102
is-equal-to operator, 112

is-not-equal-to operator, 113
multiplication, 101
subtraction, 100–101
unary plus operator, 105

NaN property in Number object, 335–336
native Node modules, 295–296
Navigator object, 214–216
navigator property in window object, 393
NEGATIVE_INFINITY property in Number object, 335–336
nesting

arrays, 189–193
conditional operator, 140
for loops, 149–152
if/else statements, 129–132
while loops, 154

new operator
arrays, 166
objects, 197, 202–203
purpose, 119

new windows
closing, 411–412
moving, 412–416
opening, 408–411
resizing, 416–417
scrolling, 417

newline character, 44–45
newpage() function in document object, 236–237
node include-express.jscommand, 299
Node.js file

CSS, 387–388
databases, 301–312
Date object, 351–355
Hello World script, 292–294
installing, 291–295

introduction, 290–291
Node modules, 295–301
self test, 315–316
server side, 6–7
SQL queries, 312
updating, 503–508
web servers, 313–314

Node modules
asynchronous execution, 296–298
native, 295–296
non-native, 298–300

Node Package Manager (npm), 298–300
non-native Node modules, 298–300
nonblocking, 297
normalize() method in DOM nodes, 243
<noscript> tags, 18–19
Not a Number. See NaN (Not a Number)
NOT bitwise operator (~), 118
NOT logical operator (!), 118
Notepad text editor, 3
novalidate attribute in HTML5, 452
noValidate property in Forms object, 433, 436
npm (Node Package Manager), 298–300
null arguments in functions, 77
null data type, 47
null values

is-equal-to operator, 112
is-not-equal-to operator, 113

Number object
methods, 337–340
properties, 335–337
self test, 355–356

number type in HTML5, 451
numbers

data types, 41–42
operators. See arithmetic operators

O
objects

class keyword, 209–210
constructors, 197–198, 201–206
creating, 196–201
Date, 340–355
defining, 196
description, 48
document. See document object
event, 274–277
for-in loops, 210–211
Forms, 433–437
History, 216–218
literal notation, 198
Math, 318–334
methods, 205–208
names, 196–197
Navigator, 214–216
Number, 335–340
predefined, 213–218
project, 212–213
prototype-based interpreted languages, 9
prototypes, 206–210
self test, 218–219
String. See strings and String object
structure, 201–206
window. See windows and window object
with statements, 211

of() method for arrays, 174, 187
onclick event handler, 257–258
one line comments, 28

onLine property in Navigator, 215
online resources, 10
open() method

AJAX, 456–457
document object, 235–237
window object, 399, 408–411

opener property in window object, 393, 397
opening windows, 408–411
operators

arithmetic. See arithmetic operators
assignment, 106–111
comparison, 111–116
logical, 117–118
order of operations, 120–121
self test, 123–124
special, 119
types, 96–97

optional arguments in functions, 80
OR bitwise operator (|)

description, 118
regular expressions, 381

OR logical operator (||)
complex comparisons, 133–134
description, 117–118
precedence, 121

order
form elements and labels, 438–440
operations, 120–121

oscpu property in Navigator, 215
outerHeight property in window object, 393
outerWidth property in window object, 393
output element in HTML5, 446

P

pages
commands, 55–56
creating, 58–59
dates on, 346–348
defining variables, 54–55
framework, 54
modifying, 56–57
protecting, 490–492
viewing, 26
writing, 54–60

parent property in window object, 394, 397
parentheses ()

arrays, 166
complex comparisons, 132–133
for loops, 146
functions, 20, 65, 67–69
if/else statements, 127–128
objects, 205
order of operations, 120–121
regular expressions, 381, 384

parentWindow property in document object, 225
parse() method

Date object, 345
JSON, 462–463

parseFloat() method in Number object, 339–340
parseInt() method in Number object, 339–340
passwords, 490
paths in <canvas> element, 495–497
pattern attribute in HTML5, 452, 454
pattern matching

regular expressions. See regular expressions
String object, 366–367

percent signs (%)
modulus operator, 102–103

modulus-and-assign operator, 109
precedence, 121

pg module, 310–311
pgAdmin utility, 302–305
phone number validation, 455
PI property in Math object, 319
placeholder attribute in HTML5, 452
placeholders, variables as, 35
plain text editors, 3
platform property in Navigator, 215
plugins property

document object, 225
Navigator, 215–216

plus signs (+)
add-and-assign operator, 107–108
addition operator, 98–101
increment operator, 103–104
precedence, 121
regular expressions, 381, 383
strings, 50–51
unary plus operator, 105

pop() method in arrays, 175–176
pop-up windows, 407–408
positions in String object, 364–366
POSITIVE_INFINITY property in Number object, 335–336
PostgreSQL, installing, 302
PostgreSQL databases

adding data to, 308–310
creating, 303–311
pg module, 310–311
query users, 307–308
SQL queries, 312
tables, 303–306

pound signs (#) in jQuery, 471

pow() method in Math object, 320, 323, 325–326
precedence of operations, 120–121
precision in Number object, 338
predefined objects, 213–214

History, 216–218
Navigator, 214–216

preferredStyleSheet property in document object, 225
presentation, content separated from, 486–487
preventDefault() method in event object, 276–277
print() method in window object, 399, 401–402
privileges in query users, 307–309
product property in Navigator, 215
productSub property in Navigator, 215
progress element in HTML5, 446, 448–449
prompt() method in window object, 140–141, 399–400
prompts, user input from, 140–141, 143–144
properties

arrays, 172–173
document object, 223–230
DOM nodes, 238–241
event object, 276–277
forms array, 429–431
Forms object, 433–436
History object, 216–217
Image object, 418
Math object, 318–320
Navigator object, 215–216
Number object, 335–337
objects, 197–200, 204–205
String object, 360
window object, 393–398

protocol property in document object, 225
prototype-based interpreted languages, 9
prototype property for arrays, 172

prototypes for objects, 206–210
push() method for arrays, 176–177

Q
quadraticCurveTo() method in paths, 496
Query Tool, 303
query users for databases, 307–308
querySelector() method in document object, 234
querySelectorAll() method in document object, 234
question marks (?)

conditional operator, 119, 140
precedence, 121
regular expressions, 381

quotation marks (" ')
escaping characters, 46–47
event handlers, 257
special characters, 44
strings, 42–43

quotes, random numbers for, 330–331

R
\r characters

carriage returns, 44
regular expressions, 382

radio buttons
forms, 439
validation, 442–444

radix value in parseInt() method, 339–340
random() method, 328–335
random numbers

for images, 331–333
integers, 329
for links, 334–335

for quotes, 330–331
for scripts, 329

range type in HTML5, 451
reading cookies, 374–376
ready() method in jQuery, 470
readyState property in document object, 225
readystatechange event in AJAX, 457–458
rect() method in paths, 496
rectangles, 492–494
reduce() method for arrays, 174, 185
reduceRight() method for arrays, 174, 185
referrer property in document object, 225, 227–228
RegExp object. See regular expressions
registering events, 272–276
regular expressions

creating, 377–378
flags, 379–380
grouping, 384–387
match() and matchAll() methods, 386–387
patterns, 380–384
replace() method, 385–386
search() method, 387
self test, 389–390
testing against strings, 378–379

relational operator precedence, 121
remainder operator, 102–103
removeAttribute() method in DOM nodes, 243
removeChild() method, 243–244
removeClass() function in jQuery, 473–474
removeEventListener() method, 243, 273–274
removing

array elements, 175–177
events, 273–274

replace() method

regular expressions, 385–386
String object, 366–367

replaceChild() method in DOM nodes, 243
reportValidity() method in Forms object, 436
required attribute in HTML5, 452
reserved words, 40–41
reset events, 268
reset() method in Forms object, 436–437
resizable attribute in windows, 409
resizeBy() method in window object, 399, 416–417
resizeTo() method in window object, 399, 416–417
resizing windows, 416–417
responseText property in AJAX, 457–458
return statements in functions, 65, 69–71, 81
returnValue property in event object, 276–277
reverse() method for arrays, 178
right shift operators, 118
rollovers for images, 418–420
round() method, 328

S
\s characters in regular expressions, 382
scaled values in HTML5, 446–448
scanning scripts, 480–481
scope

functions, 77, 87–91, 118
if/else statements, 135–137

screen property in window object, 394
script tags

head and body sections, 72–75
jQuery, 470
using, 16–20

scripts
change content, 280–284

coding, 250–251
creating, 24–26, 278–286
custom events, 284–286
Date object, 346–351
debugging, 479–485
event handlers in, 249–250, 259–260, 278–286
hidden content, 279–280
inserting, 21–23
random numbers for, 329
styles, 247–249
variables in, 50–54

scripts property in document object, 225
scrollbars attribute in windows, 409
scrollBy() method in window object, 399, 417
scrolling windows, 417
scrollingElement property in document object, 225
scrollIntoView() method in DOM nodes, 243
scrollTo() method in window object, 399, 417
scrollX property in window object, 394
scrollY property in window object, 394
search() method

regular expressions, 387
String object, 366–367

search type in HTML5, 451
security, 489–492
securityPolicy property in Navigator, 215
selectedStyleSheetSet property in document object, 225
selectors

jQuery, 471–473
styles, 248

self property in window object, 394, 397
semicolons (;)

cookies, 372
do while loops, 155

event handlers, 258
functions, 65, 82
statements, 20–21
variable assignment, 38
variable declarations, 36

send() method in AJAX, 456–457
separators

cookies, 372, 374
split() method, 367

server-side programming, 6–7
setAttribute() method in DOM nodes, 243
setData() method in dataTransfer object, 499
setDate() method in Date object, 345
setDay() method in Date object, 345
setFullYear() method in Date object, 345
setHours() method in Date object, 345
setInterval() method in window object, 399, 403–404
setMilliseconds() method in Date object, 345
setMinutes() method in Date object, 345
setMonth() method in Date object, 345
setSeconds() method in Date object, 345
setTime() method in Date object, 345
setTimeout() method in window object, 399, 404–407
setTimezoneOffset() method in Date object, 345
setUTC() methods in Date object, 345
shift() method for arrays, 177
shift operators

precedence, 121
symbols, 118

shortcuts in if/else statements, 134–135
show_message() function, 73–74
show() method in jQuery, 475–476
signed right shift operator (>>), 118
Simple Text editor, 3

sin() method in Math object, 322
size of windows, 416–417
slice() method

arrays, 181
String object, 363

slideDown() method in jQuery, 475–476
slideToggle() method in jQuery, 475
slideUp() method in jQuery, 475–476
Socket.io engine, 290–291
some() method for arrays, 174, 183–185
sort() method for arrays, 178–179
source code

hiding, 490
Number object, 338

spaces
cookies, 372
indentation, 130
strings, 51
variable names, 39–40

special characters, 43–45
special operators, 119
splice() method for arrays, 181–182
split() method in String object, 366–367
SQL queries, 312
sqrt() method in Math object, 322
SQRT1_2 property in Math object, 319
SQRT2 property in Math object, 319
square brackets ([])

arrays, 166–167, 189
objects, 199–200
regular expressions, 381

src property
Image object, 418
script tags, 17

srcElement property in event object, 276
status property

AJAX, 457–458
window object, 394, 397–398
windows, 409

stop() method in window object, 399
stopImmediatePropagation() method in event object, 276
stopPropagation() method in event object, 276
strict is-equal-to operator (===), 114
strict is-not-equal-to operator (!==), 114
stringify() method in JSON, 462
strings and String object

addition operator, 100–101
case, 43, 368
charAt() and CharCodeAt() methods, 360–361
concat() method, 362–363
concatenating, 51–52, 362–363
cookies, 371–377
Date object, 346
defined, 20
description, 42
escaping characters, 45–47
fromCharCode() method, 363–364
indexOf() method, 364–366
is-equal-to operator, 112
is-greater-than operator, 115
lastIndexOf() method, 364–366, 370–371
length property, 360
literals, 359–360
localeCompare() method, 364
match(), replace(), and search() methods, 366–367
methods overview, 361
Number object, 338–339
overview, 358

Q&A, 369–370
quotation marks, 42–43
regular expressions. See regular expressions
self test, 389–390
slice() method, 363
special characters, 43–45
split() method, 366–367
strict is-equal-to operator, 114
vs. string literals, 359–360
substring() method, 363
template literals, 52–54
toLowerCase() and toUpperCase() methods, 368
toString() method, 368
trim() method, 368–369
variables in, 50–54

stroke() method in paths, 496
strokeRect() method for rectangles, 492–493
strokeStyle property for rectangles, 494–495
strokeText() method in paths, 497
structure of objects, 201–206
styles, 247–249, 252
styleSheets property in document object, 225
styleSheetSets property in document object, 225
Sublime code editor, 3
submit events, 268
submit() method in Forms object, 436–437
substring() method in String object, 363
subtraction

precedence, 121
subtract-and-assign operator (-=), 108
subtraction operator (-), 101

switch statements, 137–138
expressions, 139
falling through, 138

symbol values, 48
syntax errors, 479–480
systemLanguage property in Navigator, 215

T
\t characters

regular expressions, 382
tabs, 43–44

tab characters
functions, 66
indentation, 130
regular expressions, 382
special character, 43–44

tables, creating, 303–306
tan() method in Math object, 322
target property

event object, 276
Forms object, 433, 436

tel type in HTML5, 451
template literals for strings, 52–54
ternary operator, 140
test() method in RegExp object, 378–380
text

<canvas> element, 497–498
strings. See strings and String object
writing, 10–11

text_alert() function, 79
text editors

guidelines, 7–8
requirements, 3

textAlign property in path text, 497
textBaseLine property in path text, 497
textContent property in document object, 225
TextPad text editor, 3

this operator
objects, 202–203
purpose, 119

tildes (~)
NOT bitwise operator, 118
precedence, 121

time
Date object, 344–346
on pages, 346–348

time-savers, variables as, 35
time type in HTML5, 451
time zones in Date object, 344
timeouts in window object, 404–405
title property in document object, 225, 228
toDateString() method in Date object, 346
toExponential() method in Number object, 337–338
toFixed() method in Number object, 337–338
toggle() method in jQuery, 475
toggleClass() method in jQuery, 474
toLocaleDateString() method in Date object, 346
toLocaleString() method

arrays, 174, 185
Date object, 346
Number object, 337

toLocaleTimeString() method in Date object, 346
toLowerCase() method in String object, 368
toolbar attribute in windows, 409
top property for windows, 394, 397, 409
toPrecision() method in Number object, 337–338
toSource() method in Number object, 337–338
toString() method

arrays, 174, 185
Date object, 346
Number object, 337–338

String object, 368
toTimeString() method in Date object, 346
toUpperCase() method in String object, 368
trim() method in String object, 368–369
true values, 47
trusted property in event object, 276
type coercions, 99–100
type property

event object, 276
script tags, 17

typeof operator, 119

U
unary operators

description, 99
negation, 105–106
plus, 105
precedence, 121

undefined data type, 47
undefined variables

description, 36
functions, 81

underscores (_) in variable names, 39–40
uniqueID property in document object, 225
unknown values, variables for, 35
unload events, 265–268
unshift() method for arrays, 177–178
unsigned right shift operator (>>>), 118
Unterminated String error, 43
update_alert() function, 75–76
uppercase conversions for String object, 368
URIs for cookies, 372–374
URL property in document object, 225, 229
url type in HTML5, 451

URLUnencoded property in document object, 225, 229
user input

cookies, 373
from prompts, 140–141, 143–144

userAgent property in Navigator, 215
userLanguage property in Navigator, 215
userProfile property in Navigator, 215
UTC methods, 344–345

V
\v characters

regular expressions, 382
vertical tabs, 44

validation, forms
check boxes and radio buttons, 442–444
HTML5, 452–455
phone numbers, 455
project, 445
simple, 440–441
techniques, 441–442

value arguments in functions, 79–80
valueOf() method

arrays, 174, 185
Number object, 337, 339

values
arrays, 169–170
assigning to variables, 37–39
cookies, 374–375
objects, 197–200, 204–205

values() method for arrays, 174
var keyword, 36–39
variables

addition, 98–99
assigning values to, 37–39

benefits, 35–36
calls to, 50
data types, 41–48
declaring, 49–50, 78
defining, 36–37, 54–55
functions, 77–79
names, 39–41
overview, 34–35
pages, 54–55
Q&A, 48–49
in scripts, 50–54
self test, 60–61
in strings, 50–54
styles, 248
in writing pages, 54–60

vendor property in Navigator, 215
vendorSub property in Navigator, 215
vertical bars (|)

bitwise assignment, 107
OR bitwise operator, 118
OR logical operator, 117–118
precedence, 121
regular expressions, 381

vertical tab special character, 44
view property in event object, 276
viewing pages in browsers, 26
Visual Studio Code editor, 3
void operator, 119

W
\w characters in regular expressions, 382
warn() method in console, 483
web browser requirements, 3–5
web servers, creating, 313–314

week type in HTML5, 451
What You See Is What You Get (WYSIWYG) editors, 3, 7
while loops, 154
white space

functions, 66
non-quoted, 129
regular expressions, 382
String object, 368–369

width
images, 418
windows, 395, 409

width property in Image object, 418
window property in window object, 394
windows and window object

alert(), prompt(), and confirm() methods, 400–401, 406–407
closed property, 394
closing, 411–412
frames property, 395
innerHeight property, 395, 398
innerWidth property, 395
length property, 395
location property, 395–396, 398
methods overview, 398–399
moving, 412–416
name property, 396–397
opener property, 397
opening, 408–411
overview, 392–393
parent, self, and top properties, 397
pop-up, 407–408
print() method, 401–402
properties overview, 393–394
resizing, 416–417
scrolling, 417

setInterval() and clearInterval() methods, 403–404
setTimeout() and clearTimeout() methods, 404–407
status and defaultStatus properties, 397–398

with statements, 211
word boundaries in regular expressions, 382, 386
write() method in document object, 237–238
writeln() method in document object, 237–238
writing

functions, 90–91
pages, 54–60
text, 10–11

WYSIWYG (What You See Is What You Get) editors, 3, 7

X
XHTML file script tags, 16, 19
XMLHttpRequest object, 6, 456
xmlStandalone property in document object, 225
XOR bitwise operator (^), 118, 121
XSLDocument property in document object, 225

Z
zero, division by, 102

	Cover
	Title Page
	Copyright Page
	Dedication
	Contents
	ACKNOWLEDGMENTS
	INTRODUCTION
	1 Introduction to JavaScript
	What You Need to Know
	Basic HTML and CSS Knowledge
	Basic Text Editor and Web Browser Knowledge
	Which Version?
	Client-Side and Server-Side Programming

	Beginning with JavaScript
	Prototype-Based
	Interpreted Language
	Numerous Environments

	Putting It All Together
	Online Resources
	Try This 1-1: Use JavaScript to Write Text
	Chapter 1 Self Test

	2 Placing JavaScript in an HTML File
	Using the HTML Script Tags
	Identifying the Scripting Language
	Calling External Scripts
	Specifying when the Script Should Load
	Using <noscript></noscript> Tags

	Creating Your First Script
	Writing a “Hello World” Script
	Creating an HTML Document for the Script
	Inserting the Script into the HTML Document

	Try This 2-1: Insert a Script into an HTML Document
	Using External JavaScript Files
	Creating a JavaScript File
	Creating the HTML Files
	Viewing the Pages in Your Browser

	Try This 2-2: Call an External Script from an HTML Document
	Using JavaScript Comments
	Inserting Comments on One Line
	Adding Multiple-Line Comments

	Chapter 2 Self Test

	3 Using Variables
	Understanding Variables
	Why Variables Are Useful
	Variables as Placeholders for Unknown Values
	Variables as Time-Savers
	Variables as Code Clarifiers

	Defining Variables for Your Scripts
	Declaring Variables
	Assigning Values to Variables
	Naming Variables

	Understanding Data Types
	Number
	String
	Boolean
	Null
	Undefined
	Symbol
	Object

	Try This 3-1: Declare Variables
	Using Variables in Scripts
	Making a Call to a Variable
	Adding Variables to Text Strings

	Writing a Page of JavaScript
	Creating the Framework
	Defining the Variables
	Adding the Commands
	Modifying the Page

	Try This 3-2: Create an HTML Page with JavaScript
	Chapter 3 Self Test

	4 Using Functions
	What a Function Is
	Why Functions Are Useful
	Structuring Functions
	Declaring Functions
	Defining the Code for Functions
	Naming Functions
	Adding Arguments to Functions
	Adding Return Statements to Functions

	Calling Functions in Your Scripts
	Script Tags: Head Section or Body Section
	Calling a Function from Another Function
	Calling Functions with Arguments
	Calling Functions with Return Statements
	Other Ways to Define Functions

	Try This 4-1: Create an HTML Page with Functions
	Scope/Context Basics
	Global Context
	Function Context
	Block Context

	Try This 4-2: Write Your Own Functions
	Chapter 4 Self Test

	5 JavaScript Operators
	Understanding the Operator Types
	Understanding Arithmetic Operators
	The Addition Operator (+)
	The Subtraction Operator (–)
	The Multiplication Operator (*)
	The Division Operator (/)
	The Modulus Operator (%)
	The Increment Operator (++)
	The Decrement Operator (– –)
	The Unary Plus Operator (+)
	The Unary Negation Operator (–)
	The Exponentiation Operator

	Understanding Assignment Operators
	The Assignment Operator (=)
	The Add-and-Assign Operator (+=)
	The Subtract-and-Assign Operator (–=)
	The Multiply-and-Assign Operator (*=)
	The Divide-and-Assign Operator (/=)
	The Modulus-and-Assign Operator (%=)
	The Exponent-and-Assign Operator (**=)

	Try This 5-1: Adjust a Variable Value
	Understanding Comparison Operators
	The Is-Equal-To Operator (==)
	The Is-Not-Equal-To Operator (!=)
	The Strict Is-Equal-To Operator (===)
	The Strict Is-Not-Equal-To Operator (!==)
	The Is-Greater-Than Operator (>)
	The Is-Less-Than Operator (<)
	The Is-Greater-Than-or-Equal-To Operator (>=)
	The Is-Less-Than-or-Equal-To Operator (<=)

	Understanding Logical Operators
	The AND Operator (&&)
	The OR Operator (||)
	The NOT Operator (!)
	The Bitwise Operators

	Special Operators
	Understanding Order of Operations
	Try This 5-2: True or False?
	Chapter 5 Self Test

	6 Conditional Statements and Loops
	Defining Conditional Statements
	What Is a Conditional Statement?
	Why Conditional Statements Are Useful

	Using Conditional Statements
	Using if/else Statements
	Using the switch Statement
	Using the Conditional Operator
	User Input from a Prompt

	Try This 6-1: Work with User Input
	Defining Loops
	What Is a Loop?
	Why Loops Are Useful

	Using Loops
	for
	while
	do while
	for in, for each in, and for of
	Using break and continue

	Try This 6-2: Work with for Loops and while Loops
	Chapter 6 Self Test

	7 JavaScript Arrays
	What Is an Array?
	Why Arrays Are Useful
	Defining and Accessing Arrays
	Naming an Array
	Defining an Array
	Accessing an Array’s Elements
	Using the length Property and Loops
	Changing Array Values and Changing the Length

	Try This 7-1: Use Loops with Arrays
	Array Properties and Methods
	Properties
	Methods

	Nesting Arrays
	Defining Nested Arrays
	Loops and Nested Arrays

	Try This 7-2: Nested Arrays Practice
	Chapter 7 Self Test

	8 Objects
	Defining Objects
	Creating Objects
	Naming
	Single Objects

	Try This 8-1: Create a Computer Object
	Object Structures
	Constructor Functions
	Using Prototypes
	The class Keyword

	Helpful Statements for Objects
	The for-in Loop
	The with Statement

	Try This 8-2: Practice with the Combination Constructor/Prototype Pattern
	Understanding Predefined JavaScript Objects
	The Navigator Object
	The History Object

	Chapter 8 Self Test

	9 The Document Object
	Defining the Document Object
	Using the Document Object Model
	Using the Properties of the Document Object
	Collections
	The cookie Property
	The dir Property
	The lastModified Property
	The referrer Property
	The title Property
	The URL Property
	The URLUnencoded Property

	Using the Methods of the Document Object
	The get Methods for Elements
	The open() and close() Methods
	The write() and writeln() Methods

	Using DOM Nodes
	DOM Node Properties
	DOM Node Methods

	Try This 9-1: Add a DOM Node to the Document
	Creating Dynamic Scripts
	Styles in JavaScript
	Simple Event Handling
	Coding a Dynamic Script

	Try This 9-2: Try Out Property Changes
	Chapter 9 Self Test

	10 Event Handlers
	What Is an Event Handler?
	Why Event Handlers Are Useful
	Understanding Event Handler Locations and Uses
	Using an Event Handler in an HTML Element
	Using an Event Handler in the Script Code

	Learning the Events
	The Click Event
	Focus and Blur Events
	The Load and Unload Events
	The Reset and Submit Events
	The Mouse Events
	The Keyboard Events

	Try This 10-1: Focus and Blur
	Other Ways to Register Events
	The addEventListener() Method
	The attachEvent() Method

	The Event Object
	DOM and Internet Explorer: DOM Level 0 Registration
	Using event with Modern Event Registration
	Properties and Methods
	Event Information

	Try This 10-2: Using addEventListener()
	Creating Scripts Using Event Handlers
	Show Hidden Content
	Change Content
	Custom Events

	Chapter 10 Self Test

	11 Introduction to Node.js
	Introducing Node.js
	Installing Node.js
	Check for a Current Installation
	Install Node.js
	Write a “Hello World” Script

	Using Node Modules
	Using Native Node Modules
	Asynchronous Execution
	Non-Native Modules

	Try This 11-1: Use a Custom Module
	Installing a Database
	Database Options
	Install PostgreSQL
	Create a Database Using pgAdmin

	Try This 11-2: Test Some SQL Queries
	Creating a Web Server
	Chapter 11 Self Test

	12 Math, Number, and Date Objects
	Using the Math Object
	What Is the Math Object?
	How the Math Object Is Useful
	Properties
	Methods

	Try This 12-1: Display a Random Link on a Page
	Understanding the Number Object
	Properties
	Methods

	Using the Date Object
	Properties and Methods
	Methods That Get Values
	Methods That Set Values
	Other Methods
	How About Some Date Scripts?

	Try This 12-2: Create a JavaScript Clock
	Continuing Project
	Getting to the Needed Data
	Running Some Calculations on the Results

	Chapter 12 Self Test

	13 Handling Strings
	Introduction to the String Object
	The String Object
	The String Literal
	What’s the Difference?

	Using the Properties and Methods of the String Object
	The length Property

	Methods of the String Object
	Try This 13-1: Use indexOf() to Test an Address
	Using Cookies
	Setting a Cookie
	Reading a Cookie

	Try This 13-2: Remember a Name
	Using Regular Expressions
	Creating Regular Expressions
	Testing Strings Against Regular Expressions
	Adding Flags
	Creating Powerful Patterns
	Grouping Expressions
	The replace(), match(), matchAll(), and search() Methods
	More Information

	Continuing Project
	Chapter 13 Self Test

	14 Browser-Based JavaScript
	Window: The Global Object
	Using the Properties of the Window Object
	The closed Property
	The frames Property
	The innerWidth and innerHeight Properties
	The length Property
	The location Property
	The name Property
	The opener Property
	The parent, self, and top Properties
	The status and defaultStatus Properties

	Try This 14-1: Use the location and innerWidth Properties
	Using the Methods of the Window Object
	The alert(), prompt(), and confirm() Methods
	The print() Method
	The setInterval() and clearInterval() Methods
	The setTimeout() and clearTimeout() Methods

	Try This 14-2: Use the setTimeout() and confirm() Methods
	The Main Window and New Windows
	The Tale of Pop-up Windows
	Opening New Windows
	Closing New Windows
	Moving, Resizing, and Scrolling New Windows
	The resizeBy() and resizeTo() Methods
	The scrollBy() and ScrollTo() Methods

	Working with Images
	Rollovers

	JavaScript and Frames
	Purpose of Frames
	Accessing Frames
	Breaking Out of Frames
	Using iFrames

	Chapter 14 Self Test

	15 JavaScript Forms and Data
	Accessing Forms
	Using the forms Array
	Using an ID

	Using the Properties and Methods of the Form Object
	Properties
	Methods

	Ensuring the Accessibility of Forms
	Using Proper Element and Label Order
	Using <label></label> Tags
	Using <fieldset></fieldset> Tags
	Not Assuming Client-Side Scripting

	Validation
	Simple Validation
	Techniques
	Check Boxes and Radio Buttons

	Try This 15-1: Request a Number
	HTML5 and Forms
	New Elements
	New Input Types
	New Attributes
	HTML5 Form Validation

	Try This 15-2: Validate a Phone Number with HTML5 or JavaScript
	AJAX and JSON
	AJAX
	JSON

	Chapter 15 Self Test

	16 Further Browser-Based JavaScript
	Using jQuery
	Obtaining jQuery
	Getting Started: document.ready()
	Using Selectors
	Altering Classes
	Methods for Effects
	Further Reading

	Try This 16-1: Use jQuery to Create Effects
	Debugging Scripts
	Types of Errors
	Using the Console
	Using a Lint Tool
	Browser Developer Tools

	JavaScript and Accessibility
	Separate Content from Presentation
	Enhancing Content

	Try This 16-2: Make This Code Accessible
	JavaScript Security
	Page Protection

	JavaScript and APIs from HTML
	The <canvas> Element
	Drag and Drop

	Try This 16-3: Drag and Drop
	Node.js App Completion
	Update the Node.js Code
	Update the Front-end Code

	Need Help?
	Chapter 16 Self Test

	A Answers to Self Tests
	Chapter 1: Introduction to JavaScript
	Chapter 2: Placing JavaScript in an HTML File
	Chapter 3: Using Variables
	Chapter 4: Using Functions
	Chapter 5: JavaScript Operators
	Chapter 6: Conditional Statements and Loops
	Chapter 7: JavaScript Arrays
	Chapter 8: Objects
	Chapter 9: The Document Object
	Chapter 10: Event Handlers
	Chapter 11: Introduction to Node.js
	Chapter 12: Math, Number, and Date Objects
	Chapter 13: Handling Strings
	Chapter 14: Browser-Based JavaScript
	Chapter 15: JavaScript Forms and Data
	Chapter 16: Further Browser-Based JavaScript

	Index

